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The Impact of Violating Factor Scaling Method Assumptions 
On Latent Mean Difference Testing in Structured Means Models 

 
Dandan Wang Tiffany A. Whittaker S. Natasha Beretvas 

The University of Texas at Austin, 
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Type I error rates and power of the likelihood ratio test and bias of the standardized effect size measure 
associated with the latent mean difference in structured means modeling are examined when violating the 
assumptions underlying the two available factor scaling methods under various conditions. Implications 
and recommendations are discussed. 
 
Key words: Structured means modeling, latent mean difference testing, non-invariant factor loadings, 

factor scaling methods, reference indicator. 
 
 

Introduction 
Many social science studies focus on comparing 
outcomes for groups categorized by observed 
variables such as gender, race or treatment group 
membership. Structural equation modeling 
(SEM) and, more specifically, structured means 
modeling (SMM; Sörbom, 1974) may be used to 
compare, for example, male and female high 
school students’ latent variable means on math 
anxiety. The SMM approach is a multiple-group 
confirmatory factor analysis (MG-CFA) model 
in which the mean structure is incorporated into 
the model for testing the difference in latent 
variable means across groups. 
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As with traditional CFA techniques, 

each latent variable must be assigned a scale of 
measurement in SMM. This may be 
accomplished by either constraining one loading 
per factor to a value of one across groups or 
constraining each factor’s variance to a value of 
one across groups (Kline, 2011). Both factor 
scaling methods require meeting certain 
assumptions. For example, the reference 
indicator (RI) strategy involves an assumption 
that the RI has invariant factor loadings across 
groups. The factor-variance scaling method, by 
contrast, is based on an assumption that the 
factor variances are equal across groups. To 
date, no published study has examined the effect 
on latent mean comparisons of constraining 
unequal factor loadings or unequal factor 
variances to a value of one across groups. The 
focus of this study is to investigate the impact of 
violating the assumptions underlying two factor 
scaling methods on the latent mean difference 
test and the standardized effect size measure 
associated with the latent mean difference in 
SMM. 
 
Structured Means Model and Testing Latent 
Mean Differences 

A single-factor, p-indicator structured 
means model can be expressed in matrix 
notation using the following measurement 
equation: 

,= + +g g g g gx ν ξ δΛ               (1) 
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where ݃ (g = 1, 2, …, G) represents group 
membership, x is a vector containing p × 1 
observed variable scores, ࣇ is a p × 1 vector 
containing indicator variable intercepts, Λ  is a 
p × 1 vector of factor loadings that relates the 
observed indicator variables to the latent 
variable, ξ  is a latent variable score and δ  is a 
p × 1 vector of normally distributed random 
measurement errors associated with the observed 
indicator variables. 

In a structured means model (SMM), 
certain constraints are imposed in order to 
validly compare latent means across groups as 
well as to ensure model identification. The 
factor loadings and observed indicator variables’ 
intercepts are constrained to be equal across 
groups in SMM. This allows latent mean 
differences detected between groups to be 
attributed to actual differences in the constructs 
as opposed to differences in the measurement of 
the constructs across the groups (Rock, Werts & 
Flaugher, 1978; Sörbom, 1974). In addition, it is 
not possible to estimate the intercepts of all 
observed indicator variables separately across 
groups as this would result in the under-
identification of the means portion of the model 
(Sörbom, 1974).  

Under the assumption of factor loading 
and intercept invariance, and assuming that the 
mean of the measurement errors within each 
group is equal to zero, the expected values of 
observed variables in each group can be 
expressed in matrix notation as: 
 

,  = = +  Λg g gE x μ ν κ               (2) 

 
where gκ  is the latent variable mean for group 

g , ν  is a p × 1 vector containing the observed 
variables’ intercepts which are invariant across 
groups, and Λ  represents a p × 1 vector 
containing invariant factor loadings (Yoon & 
Millsap, 2007). In addition, assuming that the 
measurement errors are uncorrelated and that the 
measurement errors are uncorrelated with the 
latent variable in each group, g, the covariances 
among observed variables in each group can be 
expressed in matrix notation as: 

( )( ) − − =  
= +

'

g g g g g

'
g g

E x μ x μ Σ

ΛΦ Λ Θ
 

(3) 
 
where Φ  is the latent variable variance, Θ  is a 
p × p diagonal matrix containing p measurement 
error variances associated with the observed 
indicator variables and Λ  represents a p × 1 
vector containing invariant factor loadings 
(Sörbom, 1974; Yoon & Millsap, 2007).  

If factor loading and/or intercept 
invariance is not supported by means of model 
fit assessment and/or model comparisons, Byrne, 
Shavelson and Muthén (1989) suggested that 
some of the constraints may be relaxed and that 
partial invariance suffices when using the SMM 
approach to compare latent means across groups. 
It is important to note that there exists a debate 
concerning the issue of partial measurement 
invariance and the meaningful interpretation of 
latent mean differences in SMM. Some contend 
that strict invariance is required for valid 
interpretations of latent mean differences 
(Meredith, 1993), whereas others maintain that 
strong invariance is sufficient (Hancock, 1997; 
Thompson & Green, 2006). (In addition, some 
researchers have argued – and demonstrated – 
that meaningful interpretations of latent mean 
differences may be rendered under partial factor 
loading and partial intercept invariance; this 
debate is beyond the scope of this work but the 
interested reader is referred to: Byrne, Shavelson 
& Muthén, 1989; Muthén & Christoffersson, 
1981; Steenkamp & Baumgartner, 1998.) 

The means portion of the model is 
estimated through use of a constant which is 
modeled to have direct effects on the latent and 
observed indicator variables. The constant’s 
direct effect on a latent variable represents the 
latent variable mean and its effects on observed 
indicator variables represent observed variables’ 
intercepts (Kline, 2011). An added constraint 
must also be imposed for identification of the 
means portion of the model. Namely, the latent 
mean in one group, treated as the reference 
group, must be constrained to zero whereas the 
latent means in the remaining G – 1 comparison 
groups are estimated. Therefore, the test of the 
latent mean of the G – 1 comparison groups 
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corresponds to a test of the latent mean 
difference between each of the G – 1 
comparison group’s and the reference group’s 
latent mean (Hancock, 1997). For simplicity, a 
two-group comparison of the latent means in a 
single-factor model will be assumed for the 
ensuing discussion of latent mean comparisons 
in SMM. 

Because the expected value of the latent 
variable is given by: 
 

( ) ,=g gE ξ κ                         (4) 

 
the latent variable mean in the reference group 
for a two-group comparison of a single-factor 
model is: 
 

( ) 1 0,E ξ κ= =                      (5) 

 
and the latent variable mean in the comparison 
group (group two) is: 
 

( ) 2 1 2.E ξ κ κ κ= − =                 (6) 

 
Accordingly, the null hypothesis tested in SMM 
is that the two groups’ means are equal: 
 

0 1 2: .H κ κ=                        (7) 

 
The z test statistic is commonly used to evaluate 
the statistical significance of the latent mean 
difference estimate in SMM. If the z test statistic 
associated with the estimated latent mean 
difference is statistically significant, then it is 
inferred that there is a significant difference 
between the two groups’ latent variable means. 
Unfortunately, the z test statistic is not invariant 
to the choice of factor scaling method. 
Consequently, the likelihood ratio test, LRT ,κ

has been suggested to evaluate the statistical 
significance of the latent mean difference 
estimate in SMM because it is invariant to factor 
scaling procedures (Gonzalez & Griffin, 2001; 
Hancock, Lawrence & Nevitt, 2000).  

When calculating the LRTκ , two 

models must be estimated: The parameter of 
interest (the latent variable mean difference) is 
freely estimated in group two in one model but 

is constrained to be equal to the reference 
group’s latent variable mean value of zero in the 
second model. The LRTκ  is calculated as the 

difference between the two nested models’ Chi-

square ( )2χ  statistics, and the LRTκ  is 

asymptotically distributed as a non-central 2χ  

statistic: 
 

2 2 2
 L ,RT restricted baseline modelκ χ χ χ= Δ = −  

(8) 
 

where 2
restrictedχ  is the 2χ  statistic associated 

with the model in which the latent variable mean 
difference is constrained to a value of zero and 

2
 baseline modelχ  is the 2χ  statistic associated with 

the model in which the latent mean is freely 
estimated in group two. The LRTκ  has 

corresponding degrees of freedom equal to the 
difference in the degrees of freedom associated 
with each model and is calculated to evaluate 
whether there is a statistically significant drop in 
model fit when constraining a particular 
parameter (the latent variable mean difference) 
to zero. A significant LRTκ  indicates that the 

parameter of interest differs significantly from 
zero. 

Although the LRTκ  may be used to 

evaluate whether there is a statistically 
significant difference between two groups’ latent 
means, it does not provide any information 
about the practical significance of the latent 
mean difference. Hancock (2001) suggested 

using a standardized effect size measure, ˆ ,κδ  to 

describe the practical difference between two 
groups’ latent means. When using the SMM 
approach, the standardized latent mean 

difference effect size, ˆ ,κδ  is estimated as 

follows: 
 

( ) 1/2 1/2
1 2 2

1/2 1/2
1 2 2

ˆ ˆ ˆˆ ˆ ˆ ,

ˆ ˆ ˆˆ

/   /

/ ˆ ˆ/k

k k k

k k k

= − =

= − =

κδ φ φ

δ φ φ
         (9) 
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where 1k̂  and 2k̂  represent groups one and two 

latent mean estimates, respectively. For model 
identification purposes, the latent mean of the 
reference group (group one) is typically 
constrained to a value of zero, but the latent 
mean of the comparison group (group two) is 
estimated (Hancock, 1997), resulting in the 
rightmost expression of Equation 9. The pooled 

factor variance estimate, φ̂ , is determined as 
follows: 
 

1 1 2 2 1 2
ˆ ˆ ˆ( ) / ( )n n n nφ φ φ= + +           (10) 

 

where 1̂φ  and 2̂φ  are the estimated factor 

variances for groups one and two, respectively, 
and n1 and n2 represent the sample sizes for 
groups one and two, respectively. It is important 
to note that the calculation and use of the pooled 
factor variance involves an assumption of 
homogeneity of the two groups’ factor 

variances. The interpretation of κ̂δ  is similar to 

that in conventional univariate analyses. For 

example, ˆ 0.5κδ =  can be interpreted as 

indicating that the two groups’ latent mean 
estimates differ by half a standard deviation 
(Hancock, 2001). 
 
Factor Scaling Method Implications and Related 
Research 

Both factor scaling methods may be 
used to scale the latent variable in a structured 
means model and both involve strict 
assumptions. For example, the factor-variance-
based scaling method is grounded on the 
assumption that the factor variance is invariant 
across groups. If the factor variances are not 
equal across groups, the scale of the factor 
loadings will be changed, possibly making truly 
invariant factor loadings falsely appear non-
invariant across groups. This could also make 
the metric invariance test less accurate (Cheung 
& Rensvold, 1999; Kline, 2011; Yoon & 
Millsap, 2007).  

The reference indicator (RI) strategy is 
based on the assumption that the RI’s loading is 
invariant across groups. If this assumption is 
violated, all other factor loadings in a structured 

means model will be rescaled. Constraining the 
RI’s non-invariant factor loadings to a value of 
one across groups will result in different metrics 
for the two groups’ factor loadings and can lead 
to incorrect inferences about the changed 
loadings’ invariance; therefore, it is important to 
select an item that has invariant factor loadings 
across groups to serve as the RI in a structured 
means model (Johnson, Meade & DuVernet, 
2009).  

Although assumptions associated with 
the two factor scaling methods are important, 
researchers have not examined the issue to a 
great extent. For example, Johnson, Meade and 
DuVernet (2009) conducted a literature review 
of studies published between 2005 and 2007 that 
involved measurement invariance (MI) tests; 
only 17 out of 153 studies referenced Cheung 
and Rensvold’s (1999) study in which a new 
technique to select invariant item sets to serve as 
the RI was recommended. Most research simply 
assumed that the selected RI variable had 
invariant factor loadings across groups; 
consequently, it is essential that the impact of 
violating the assumptions associated with the 
two factor scaling methods be inspected in order 
to better inform applied users of SMM. 

Previous studies germane to this study 
include those in which the effect of partial 
metric invariance on latent mean difference 
testing was assessed. For example, Kaplan and 
George (1995) conducted a population study to 
assess the power to detect latent mean 
differences between two groups in the SMM 
approach while manipulating the magnitude of 
the latent mean difference, group sample size 
ratio, frequency of non-invariant factor loadings, 
factor loading size, factor loading pattern and 
the number of observed indicators per factor. 
Because factor loadings were varied in the 
study, the determinant of the covariance matrix 
[det(Σ)] was also varied. The determinant 
corresponds to the generalized variance, which 
indicates the amount of variance shared among a 
set of variables. Two combinations of ratios of 
larger sample size (nLarger) to generalized 
variance [det(Σ)] conditions were examined, 
including a positive, nLarger:det(Σ),  condition in 
which the group with the larger sample size was 
paired with the larger generalized variance, and 
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a negative, nLarger:det(Σ), condition in which the 
group with the larger sample size was paired 
with the smaller generalized variance.  

The findings demonstrated that when the 
magnitude of the latent mean difference 
increased, the power of the latent mean 
difference test increased and the sample size 
ratio between the two groups tended to influence 
the power of the latent mean difference test. 
When the group sample sizes were equal, the 
power of the latent mean difference test was less 
affected by non-invariant factor loadings. 
However, when unequal sample sizes were 
present, the power associated with the latent 
mean difference test was low even though factor 
loading invariance held. A large drop in power 
was observed as the group sample size ratio 
increased which was observed in both positive 
and negative conditions. Nonetheless, higher 
power always occurred in the positive 
nLarger:det(Σ) condition as compared to the 
negative nLarger:det(Σ) condition. Finally, the 
power of the latent mean difference test 
increased when the model consisted of more 
indicator variables per factor.  

Hancock, Lawrence and Nevitt (2000) 
conducted both a Monte Carlo simulation study 
and a population study investigating how partial 
metric invariance affected the Type I error rates 
and the power, respectively, of the latent mean 
difference test between two groups using SMM, 
multiple-indicator multiple-cause (MIMIC) 
modeling, and MANOVA approaches. 
Manipulated conditions included latent mean 
difference magnitude, total sample size, group 
sample size ratio, frequency of non-invariant 
factor loadings, factor loading size and factor 
loading pattern. Factor loading pattern 
manipulations resulted in four scenarios: (1) 
metric invariance with equal factor loadings 
across and within two groups; (2) metric 
invariance with equal factor loadings across two 
groups but unequal within groups; (3) metric 
non-invariance with approximately equivalent 
generalized variances for the two groups; and (4) 
metric non-invariance with different generalized 
variances for the two groups.  

Type I error rates of the latent mean 
difference tests in all three approaches were well 
controlled under metric invariance, 
approximately equivalent group generalized 

variance, and equal group sample size 
conditions. When both the sample size and the 
generalized variance were unequal between the 
two groups, however, Type I error rates of the 
latent mean difference test in the three 
approaches varied. The SMM approach was the 
only one in which Type I error rates were well 
controlled under all manipulated conditions. The 
Type I error rates when using the MIMIC 
approach were too low under the negative 
nLarger:det(Σ) condition (larger sample size paired 
with smaller generalized variance) and were too 
high under the positive nLarger:det(Σ) condition 
(larger sample size paired with larger 
generalized variance). The opposite pattern of 
Type I error rates were observed when using the 
MANOVA approach.  

The power of the latent mean difference 
test in the three approaches increased when the 
sample size, magnitude of the factor loadings, 
and magnitude of the latent mean difference 
increased. When the sample size ratio between 
the two groups became larger, the power of the 
latent mean difference test in the three 
approaches decreased. Overall, the power of the 
latent mean difference test when using the 
MIMIC technique tended to be approximately 
equal to, or marginally higher than, the power 
when using the SMM technique, but the power 
associated with the MANOVA approach was the 
lowest. When different generalized variances 
were paired with unequal sample sizes, results 
indicated that the SMM approach had greater 
power in the negative nLarger:det(Σ) condition 
whereas the MIMIC approach had greater power 
in the positive nLarger:det(Σ) condition.  

Hancock et al. (2000) reported that both 
SMM and MIMIC approaches were acceptable 
under equal group sample sizes. The SMM 
approach, however, was recommended under 
unequal group sample sizes. The choice of the 
SMM approach was based on its flexibility in 
accommodating non-invariant factor loadings. 
Additionally, the SMM approach had 
satisfactory power without sacrificing the Type I 
error rate. In contrast, the MIMIC approach’s 
slightly higher power was marred by the 
potential cost of Type I error inflation (Hancock, 
et al., 2000).  
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Previous studies investigating the effects 
of partial measurement invariance on latent 
mean difference detection under various 
conditions have found that group sample size 
ratio, factor loading pattern, loading difference 
magnitude, and latent mean difference 
magnitude can affect both or either the Type I 
error rate and power of latent mean difference 
tests. However, previous simulation studies have 
not devoted much attention to the assumption 
underlying the RI strategy and – to the authors’ 
knowledge – no published study has investigated 
the effect of violating the assumption underlying 
the factor-variance scaling method. The purpose 
of this Monte Carlo simulation study is to 
investigate the performance of the likelihood 
ratio test ( LRTκ ) and the standardized latent 

mean difference effect size measure ( )κ̂δ  when 

violating the assumptions fundamental to the 
two factor scaling methods and using the SMM 
approach to test latent mean differences. 
 

Methodology 
The impact of violating the assumptions 
associated with the two factor scaling methods 

on the performance of the LRTκ  and κ̂δ  were 

examined under varied conditions, including 
group sample size ratio, factor loading pattern, 
loading difference magnitude, latent mean 
difference magnitude and group factor variance 
ratio. For each generated sample of data, two 
factor scaling methods (constraining one loading 
per factor to a value of one for both groups and 
assigning a value of one to each factor’s 
variance for both groups) were implemented. 
The performance of the LRTκ  was evaluated 

via an assessment of its Type I error rates and 
power under specified conditions. The 

performance of the κ̂δ  in terms of the parameter 

bias and relative parameter bias under certain 
conditions was also evaluated.  

For simplicity, two groups’ latent 
variable means were compared using the SMM 
approach. The model used for data generation 
and estimation was a simple, single-factor model 
with six observed indicator variables. The choice 
of the six observed indicator variables was based 
on designs of previous simulation studies (e.g., 

Kaplan & George, 1995) and reflects what has 
been found in applied research (Hinkin, 1995). 
The values of all invariant factor loadings were 
set to 0.4 to represent factor loadings commonly 
observed in applied studies (Enders & Finney, 
2003) and because a relatively large loading 
difference value across groups was included and 
resulted in markedly large non-invariant factor 
loadings.  

All observed variable intercepts were set 
to zero across groups in the generating models. 
Residual variances associated with the observed 
variables were calculated as one minus the 
squared condition-specific standardized factor 
loading. Error covariances were not modeled in 
the generating or estimating models. Total 
sample size was 500 and was not varied. This 
sample size was used because it is in the range 
of sample sizes utilized in previous simulation 
research in which adequate power was obtained 
(e.g., Hancock, et al., 2000) and permits the 
examination of reasonably disparate group 
sample sizes.  
 
Manipulated Conditions: Group Sample Size 
Ratio 

Three group sample size ratio conditions 
(n1: n2) were used when generating the data. The 
equal sample size condition (1:1) served as a 
baseline condition in which the sample size in 
each group was equal to 250. Two unequal 
sample size ratio conditions (1:4 and 4:1) were 
also used to generate the data: data in the 1:4 
condition were generated such that the sample 
size was 100 and 400 in group one and in group 
two, respectively, and data in the 4:1 condition 
were generated in which the two groups’ sample 
sizes were reversed. 
 
Manipulated Conditions: Factor Loading Pattern 

Five factor loading patterns were 
manipulated in this study. In the equal factor 
loading pattern condition, all factor loadings 
were generated to be invariant across groups to 
serve as a baseline condition. In the 1st loading 
unequal pattern condition, the RI’s (here, the 
first observed indicator variable’s) factor loading 
was set to be higher in group two than in group 
one by the condition-specific factor loading 
difference. In the 2nd loading unequal pattern 
condition, the factor loading of a non-RI 
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variable (here, the second observed indicator 
variable) was set to be higher in group two than 
in group one by the condition-specific factor 
loading difference. In the all lower pattern 
condition and the mixed pattern condition, both 
the RI and the second observed indicator 
variable had non-invariant factor loadings across 
groups in the generating models. In the all lower 
pattern condition, both of the non-invariant 
factor loadings had lower true values in group 
one. In the mixed pattern condition, the true 
factor loading value for the RI was higher in 
group one and the true factor loading value for 
the second observed indicator variable was 
higher in group two. 
 
Manipulated Conditions: Loading Difference 
Magnitude 

Two factor loading difference values 
(|λ1 − λ2| = 0.1 and |λ1 − λ2| = 0.4) were 
investigated in the current simulation study to 
represent small and large differences. These two 
values are in the range of factor loading 
difference values investigated in previous 
simulation research (Hancock, et al., 2000; 
Kaplan & George, 1995). These factor loading 
differences were added to the invariant factor 
loading value of 0.4, resulting in factor loading 
non-invariance across groups (with loading 
values of 0.5 and 0.8, respectively).  
 
Manipulated Conditions: Latent Mean 
Difference Magnitude 

This study considered two latent mean 
difference values ( 2 1κ κ−  = 0 and 2 1κ κ−  = 

0.5). The condition of equal latent means            
( 2 1κ κ−  = 0) across groups was included 

because this permits an assessment of the Type I 
error rates associated with the LRTκ and the 
performance of the ߜመ in terms of parameter 
bias. Scenarios with unequal latent means across 
groups were also investigated in order to assess 
the power of the LRT and the performance of 

the κ̂δ  in terms of relative parameter bias. A 

moderately large latent mean difference value     
( 2 1κ κ−  = 0.5) was included because previous 

simulation studies found sufficient power with 
this latent mean difference value (Hancock, et 
al., 2000; Kaplan & George, 1995).  

Manipulated Conditions: Group Factor Variance 
Ratio 

In the simulation study, three factor 

variance ratio conditions ( )1 2Φ :Φ  were 

considered. In the first factor variance ratio 
condition, the factor variances for the two 
groups were set to be equal (1:1). In the second 
and third factor variance ratio conditions, the 
factor variances for the two groups were set to 
be unequal with a ratio of 0.8:1.2 and 1.2:0.8. 
These two unequal factor variance conditions 
represent a realistic yet moderate difference 
(Kim, Cramond & Bandalos, 2006) between the 
two groups’ factor variances which provides a 
starting point for this line of research.  
 
Data Generation 

Raw data for the two groups were 
generated in SAS (Version 9.2; SAS Institute 
Inc., 2008) according to the specified population 
parameters for a single-factor, six-indicator CFA 
model using the Kaiser and Dickman (1962) 
matrix decomposition procedure (Fan & Fan, 
2005). Thus, each generated sample of data 
consisted of n1 × 6 and n2 × 6 matrices for group 
one and group two, respectively, where n1 and n2 
represent the condition-specific sample size for 
each of the two groups. One thousand (1,000) 
raw data sets were generated for each of the 162 
combinations of manipulated conditions. After 
raw data for the two groups were generated, 
SAS 9.2 was programmed to call DOS to run 
Mplus (Version 6.1; Muthén & Muthén, 2010), 
as described by Gagné and Furlow (2009), to 
estimate the models. Maximum likelihood (ML) 
estimation was used to estimate all model 
parameters. 

When estimating the model parameters, 
cross-group constraints were imposed on all 
factor loadings and observed variable intercepts 
whereas error variances were freely estimated in 
both groups. When using the RI strategy to scale 
the factor, the RI’s loading was constrained to a 
value of one in both groups. Two different 
structured means models were estimated. The 
traditional structured means model was 
estimated in which the latent mean of group one 
was constrained to be equal to zero but the latent 
mean of group two was estimated freely (the 
SMMκ* model) and another model in which the 
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latent means for both groups were constrained to 
zero (the SMMκ0 model) was estimated. Also, 
two factor scaling methods were used to set the 
scale of the latent variable for each generated 
data set. When using the RI strategy, the first 
factor loading was constrained to a value of one 
across groups, all other factor loadings were 
constrained to be equal across groups, and factor 
variances for the two groups were freely 
estimated. When the factor-variance-based 
scaling method was implemented, the factor 
variance was instead constrained to a value of 
one across groups and all factor loadings were 
estimated yet constrained to be equal across 
groups. Thus, for each generated data set, four 
models (two factor scaling methods × two latent 
mean constraints) were estimated. It is important 
to note that the models using the factor-variance 
scaling method had one degree of freedom more 
than the models using the RI strategy.  
 
Data Analysis 

The 2χ  statistic associated with each 
estimated model from each replication was 
saved to calculate the κLRT  (see Equation 8) 

between the two estimated models (SMMκ* and 
SMMκ0) when using each of the two factor 
scaling methods. The performance of the κLRT  

was evaluated by summarizing its Type I error 
rates and power. Type I error rates of the κLRT , 

defined as the proportion of incorrect rejections 

of the null hypothesis ( )0 1 2:H κ κ=  out of the 

1,000 replications in equal latent mean 

conditions ( )2 1 0κ κ− = , were evaluated using 

Bradley’s (1978) liberal criterion of α ± 1/2α 
(where α = 0.05) such that rates less than 2.5% 
were considered overly conservative and rates 
greater than 7.5% were considered overly 
liberal.  

The power of the κLRT  is defined as 

the proportion of correct rejections of the null 

hypothesis ( )0 1 2:H κ κ=  out of the 1,000 

replications in unequal latent mean conditions 

( )2 1 0.5κ κ− = . A minimum power criterion of 

0.8 is traditionally recommended as a reasonable 
level of power (Cohen, 1988), whereas others 

have recommended a minimum power criterion 
of 0.95 as a more appropriate level of power 
(Cashen & Geiger 2004; Rossi, 1990). In this 
study, a minimum power criterion of 0.9 was 
selected to gauge the adequacy of the power 
associated with the κLRT  as a compromise 

between the traditional and more stringent 
power recommendations.  

The latent mean estimate in group two 
and the factor variance estimates in both groups 
were saved from the SMMκ* model, which were 
used to estimate the standardized latent mean 

difference effect size, κ̂δ  (see Equations 9 and 

10). The performance of the κ̂δ  was examined 

through an assessment of its parameter bias and 
relative parameter bias under specific latent 
mean difference magnitude conditions. In 
conditions in which the latent mean difference 

was equal to zero ( )2 1 0κ κ− = , the parameter 

bias of κ̂δ  was calculated as follows: 

 

( )ˆ ˆ 0,B κκδ δ= −                     (11) 

 

where ˆκδ  is the mean of the κδ  estimates 

across the 1,000 replications in each relevant 
condition (Hoogland & Boomsma, 1998). The 

relative parameter bias of the κ̂δ  was calculated 

with conditions in which the latent mean 

difference was equal to 0.5 ( )2 1 0.5κ κ− =  as: 

 

( ) 0.5

0.
ˆ

5

ˆ
RPB κ

κ
δδ −=                  (12) 

 
(Hoogland & Boomsma, 1998). According to 
Hoogland and Boomsma (1998), conditions in 

which the ( )ˆB κδ  or the ( )ˆRPB κδ  is less 

than 0.05 indicates acceptable levels of bias in 

the κ̂δ . 
 

Results 
The results describing the performance of the 

κLRT  are presented first, including Type I error  
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rates and power. The results describing the 

performance of the κ̂δ , including parameter and 

relative parameter bias, are subsequently 
presented. Table 1 provides the explanations of 
abbreviations used in all the Tables illustrating 

the performance of the κLRT  and the κ̂δ . 

 
Performance of the κLRT : Type I Error Rates 

Table 2 presents the observed Type I 
error rates associated with the κLRT  under 

equal latent mean conditions ( )2 1 0κ κ− = . 

Values above the dashed line in Table 2 are the 
Type I error rates in the equal/invariant factor 
loading conditions and, thus, for scenarios in 
which the covariance structures are 
appropriately modeled. Values below the dashed 
line in Table 2 are the Type I error rates in the 
unequal/non-invariant factor loading conditions 
and, thus, for scenarios in which the covariance 
structures are not modeled appropriately. In each 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
design cell, Type I error rates when 
implementing the RI strategy and when 
implementing the factor-variance (FV) scaling 
method are both reported. Employing Bradley’s 
(1978) criterion, Table 2 shows overly 
conservative Type I error rates (i.e., less than or 
equal to 2.5%) denoted with boldface and italics; 
overly liberal rates (i.e., greater than or equal to 
7.5%) are underlined.  

In the equal/invariant factor loading 
conditions, all observed Type I error rates when 
using the RI strategy were within the criterion of 
0.05 ± 0.025. Type I error rates did not appear to 
vary substantially or systematically as a function 
of group sample size ratio or group factor 
variance ratio. Upon implementing the factor-
variance scaling method, one Type I error rate 
was found to be overly liberal (0.079) in the 
condition with the group sample size ratio of 1:4 
and the group factor variance ratio of 1.2:0.8. 

In the unequal/non-invariant factor 
loading conditions, the Type I error rates when 
the RI strategy was implemented were within the 

Table 1: Explanations of Abbreviations Used in the Tables of Results 
 

Abbreviation Explanation 

RI Reference indicator strategy implemented 

FV Factor-variance-based scaling method implemented 

Equal Loading All factor loadings were equal/invariant across groups 

1st Loading Unequal 
The first factor loading (RI) was higher in group two than in group one 

with the condition-specific loading difference 

2nd Loading Unequal 
The second (non-RI) factor loading was higher in group two than in 

group one with the condition-specific loading difference 

All Lower 
Both the first (RI) and second (non-RI) factor loading were higher in 

group two than in group one with the condition-specific loading 
difference 

Mixed 
The first factor loading (RI) was higher in group one than in group two 

and the second (non-RI) factor loading was higher in group two 
than in group one with the condition-specific loading difference 
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acceptable range of 0.05 ± 0.025. When the 
factor-variance scaling method was used, 
however, twelve observed Type I error rates 
were beyond the criterion of 0.05 ± 0.025. These 
unacceptable Type I error rates all occurred in 
the unequal sample size conditions such that 
liberal rates tended to occur in the 4:1 group 
sample size ratio scenarios and conservative 
rates tended to occur in the 1:4 group sample 
size ratio scenarios. Further, the majority (83%) 
of these unacceptable Type I error rates were 
found in the large loading difference (|λ1 − λ2| = 
0.4) magnitude conditions (see Table 2). 
 
Power of the κLRT  

Table 3 presents the observed power 
rates associated with the κLRT  under 

conditions in which the latent mean difference 

was unequal across groups ( )2 1 0.5κ κ− = . A 

criterion of 0.90 was used to evaluate the power 
of the κLRT ; hence, power rates below 0.90 

were deemed too low (see Table 3). In the equal 
factor loading conditions, three power rates fell 
below the 0.90 cutoff when the RI strategy was 
implemented. These occurred in the 1:1 group 
factor variance ratio with the 4:1 group sample 
size ratio condition, in the 1.2:0.8 group factor 
variance ratio with the 1:4 group sample size 
ratio condition, and in the 0.8:1.2 group factor 
variance ratio with the 4:1 group sample size 
ratio condition. Although these values were 
lower than the cutoff criterion, they were not 
substantially lower than a value of 0.90, ranging 
from 0.866 to 0.888. Power tended to be higher 
in the equal group sample size conditions, but it 
did not vary substantially or systematically as a 
function of the group factor variance ratio under 
the RI strategy. 

When the factor-variance scaling 
method was implemented under equal factor 
loadings, five out of nine power rates were lower 
than 0.90. Nonetheless, these values did not 
deviate substantially from 0.90 (range was from 
0.891 to 0.894) and all were found in the 
unequal sample size conditions. Power rates 
were higher in the equal sample size conditions 
than in the unequal sample size conditions. 
Additionally, power rates when using the factor-
variance scaling method did not differ markedly 

as a function of the group factor variance ratio 
(see Table 3).  

In the unequal factor loading conditions, 
five power rates were lower than 0.90 when 
using the RI strategy which all occurred in 
conditions in which the loading difference was 
small (|λ1 − λ2| = 0.1) and the group sample sizes 
were unequal (1:4 or 4:1). Again, these power 
rates were not substantially lower than the cutoff 
criterion, ranging from 0.890 to 0.898 (see Table 
3). Power tended to be marginally higher when 
the loading difference was large (|λ1 − λ2| = 0.4) 
than when small (|λ1 − λ2| = 0.1). Across the 
three group sample size ratios, power rates were 
slightly higher when sample sizes were equal 
across groups than when they were unequal. 
Further, power rates under the RI strategy did 
not vary substantially as a function of the group 
factor variance ratios or the factor loading 
patterns.  

When the factor-variance scaling 
method was implemented under unequal factor 
loadings, two observed power rates were lower 
than the cutoff criterion, although they did not 
differ substantially from the 0.90 criterion 
(0.890 and 0.892). These two low power rates 
were found in conditions in which the loading 
difference was small (|λ1 − λ2| = 0.1) with the 
0.8:1.2 group factor variance ratio and 1:4 group 
sample size ratio (see Table 3). Power when 
using the factor-variance scaling method was 
consistent with the power found when using the 
RI strategy. Specifically, power rates were 
marginally higher when the loading difference 
was large than when it was small and when 
sample sizes were equal across groups than 
when unequal. In addition, power rates did not 
vary considerably as a function of group factor 
variance ratio or the factor loading pattern when 
implementing the factor-variance scaling 
method. 
 

Performance of the κ̂δ : Parameter Bias of the 

κ̂δ  

Parameter bias of the standardized latent 

mean difference effect size measure ( κ̂δ ) was 

calculated in conditions in which the true latent 
mean difference was equal to zero  
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Table 2: Type I Error Rates Associated with the Likelihood Ratio Test as a Function of Manipulated 

Conditions ( )2 1 0κ κ− =  

Loading 
Difference 

Loading 
Pattern 

Group 
Sample 

Size Ratio 

Group Factor Variance Ratio 

1:1 1.2 :0.8 0.8:1.2 

RI FV RI FV RI FV 

0 
Equal 

Loading 

250:250 0.056 0.057 0.049 0.051 0.058 0.058 

100:400 0.062 0.052 0.060 0.079 0.059 0.044 

400:100 0.068 0.067 0.051 0.037 0.055 0.070 
         

0.1 

1st Loading 
Unequal 

250:250 0.047 0.045 0.050 0.049 0.057 0.058 

100:400 0.047 0.043 0.046 0.052 0.068 0.046 

400:100 0.043 0.044 0.062 0.054 0.056 0.068 

2nd Loading 
Unequal 

250:250 0.046 0.046 0.046 0.046 0.050 0.051 

100:400 0.052 0.051 0.047 0.058 0.059 0.047 

400:100 0.038 0.045 0.052 0.040 0.064 0.083 

All Lower 

250:250 0.068 0.067 0.057 0.060 0.071 0.071 

100:400 0.056 0.049 0.054 0.064 0.045 0.029 

400:100 0.058 0.070 0.049 0.038 0.051 0.068 

Mixed 

250:250 0.048 0.048 0.054 0.055 0.047 0.046 

100:400 0.050 0.049 0.049 0.059 0.052 0.037 

400:100 0.053 0.054 0.056 0.040 0.059 0.081 

0.4 

1st Loading 
Unequal 

250:250 0.044 0.043 0.058 0.059 0.044 0.042 

100:400 0.048 0.030 0.053 0.044 0.060 0.019 

400:100 0.058 0.070 0.054 0.054 0.061 0.096 

2nd Loading 
Unequal 

250:250 0.053 0.050 0.054 0.054 0.055 0.053 

100:400 0.055 0.027 0.053 0.050 0.049 0.025 

400:100 0.050 0.064 0.045 0.043 0.051 0.085 

All Lower 

250:250 0.055 0.050 0.048 0.044 0.050 0.040 

100:400 0.044 0.016 0.066 0.046 0.061 0.016 

400:100 0.045 0.082 0.047 0.059 0.051 0.113 

Mixed 

250:250 0.055 0.056 0.052 0.052 0.042 0.041 

100:400 0.050 0.041 0.045 0.058 0.040 0.021 

400:100 0.038 0.029 0.045 0.024 0.046 0.052 

Note: Type I error rates less than 0.025 are bold and italicized. Type I error rates greater than 0.075 
are underlined. Abbreviations used in this table are described in Table 1. 
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Table 3: Power Associated with the Likelihood Ratio Test as a Function of Manipulated Conditions 

( )2 1 0.5κ κ− =  

Loading 
Difference 

Loading 
Pattern 

Group 
Sample 

Size Ratio 

Group Factor Variance Ratio 

1:1 1.2 :0.8 0.8:1.2 

RI FV RI FV RI FV 

0 
Equal 

Loading 

250:250 0.979 0.979 0.983 0.983 0.982 0.982 

100:400 0.906 0.906 0.866 0.892 0.911 0.893 

400:100 0.888 0.891 0.920 0.894 0.873 0.893 
         

0.1 

1st Loading 
Unequal 

250:250 0.987 0.988 0.983 0.982 0.980 0.981 

100:400 0.924 0.926 0.927 0.937 0.941 0.921 

400:100 0.898 0.905 0.929 0.916 0.897 0.927 

2nd Loading 
Unequal 

250:250 0.984 0.984 0.988 0.988 0.982 0.982 

100:400 0.925 0.917 0.890 0.911 0.920 0.890 

400:100 0.904 0.912 0.947 0.936 0.912 0.937 

All Lower 

250:250 0.991 0.991 0.993 0.993 0.994 0.994 

100:400 0.935 0.928 0.939 0.942 0.953 0.926 

400:100 0.919 0.931 0.938 0.927 0.916 0.929 

Mixed 

250:250 0.983 0.984 0.985 0.986 0.986 0.986 

100:400 0.906 0.901 0.890 0.903 0.908 0.892 

400:100 0.911 0.908 0.942 0.924 0.892 0.910 

0.4 

1st Loading 
Unequal 

250:250 0.998 0.998 1.000 1.000 0.999 0.999 

100:400 0.971 0.967 0.975 0.978 0.989 0.971 

400:100 0.964 0.973 0.973 0.979 0.940 0.962 

2nd Loading 
Unequal 

250:250 0.997 0.997 0.999 0.999 0.998 0.998 

100:400 0.984 0.967 0.976 0.979 0.984 0.966 

400:100 0.965 0.974 0.974 0.974 0.944 0.962 

All Lower 

250:250 1.000 1.000 0.999 0.999 1.000 1.000 

100:400 0.993 0.980 0.993 0.989 0.995 0.981 

400:100 0.982 0.995 0.993 0.995 0.971 0.990 

Mixed 

250:250 0.995 0.996 0.995 0.997 0.998 0.998 

100:400 0.961 0.957 0.953 0.964 0.972 0.959 

400:100 0.925 0.920 0.931 0.906 0.924 0.932 

Note: Power rates below 0.90 are underlined. Abbreviations used in this table are described in 
Table 1.  
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( )2 1 0κ κ− = . A cutoff value of 0.05 was used 

to evaluate the acceptability of the parameter 
bias, meaning that absolute parameter bias 
values less than 0.05 indicated acceptable bias 
(Hoogland & Boomsma, 1998). No substantial 
parameter bias was found across conditions 
examined with bias values ranging from −0.010 
to 0.013. Although both negative and positive 
parameter bias was observed, no clear trend was 
noticed.  
 

Performance of the κ̂δ : Relative Parameter Bias 

of the κ̂δ  

In conditions where the true latent mean 

difference was equal to 0.5 ( )2 1 0.5κ κ− = , 

relative parameter bias of the κ̂δ  was calculated. 

Table 4 presents the relative parameter bias of 

the κ̂δ  for each combination of manipulated 

conditions. Following Hoogland & Boomsma 
(1998), a minimum cutoff of 0.05 was used to 
represent a substantial degree of bias (see Table 
4). 

In the equal factor loading conditions, 
relative parameter bias was acceptable, 
regardless of the factor scaling method used. 
Relative parameter bias when using the RI 
strategy and the factor-variance scaling method 
showed consistent trends. Negative relative 
parameter bias values occurred in conditions in 
which the group factor variance ratio was 1:1 or 
0.8:1.2 and positive relative parameter bias 
values emerged in conditions in which the group 
factor variance ratio was 1.2:0.8 (see Table 4). 
Although the relative parameter bias values were 
in opposite directions, their absolute values did 
not differ substantially as a function of group 
factor variance ratio or group sample size ratio.  

Unacceptable relative parameter bias 
was found when implementing the RI strategy in 
33 conditions under the unequal factor loading 
scenarios. Unacceptable and substantial relative 
parameter bias was found more often in 
conditions in which the loading difference was 
large (|λ1 − λ2| = 0.4) than when it was small (|λ1 
− λ2| = 0.1). Relative parameter bias varied as a 
function of factor loading pattern as well. For 
example, relative parameter bias was more 

substantial in the all lower factor loading pattern 
conditions than in the remaining three factor 
loading scenarios (i.e., 1st loading unequal, 2nd 
loading unequal and mixed pattern conditions) 
whereas relative parameter bias was the least 
substantial in the mixed pattern scenarios (see 
Table 4). Relative parameter bias values were 
the smallest in the 1:4 group sample size ratio 
scenarios whereas they were more substantial in 
the 4:1 group sample size ratio scenarios. In 
addition, no clear trend was exhibited across the 
three group factor variance ratios when using the 
RI scaling method. When the factor-variance 
scaling strategy was implemented, relative 
parameter bias trends closely resembled those 
found when using the RI scaling strategy as 
previously described (see Table 4).  
 

Conclusion 
The primary question addressed in this study 
was whether violating the assumptions 
underlying the RI strategy and/or the factor-
variance scaling method (i.e., using a RI with 
non-invariant factor loadings or constraining 
unequal factor variances to a value of one across 
groups) would affect the testing and description 
of the latent mean difference across groups. 
When implementing the RI strategy, the Type I 
error rates associated with the LRTκ  were not 

adversely affected by factor loading difference 
magnitude, factor loading pattern, group sample 
size ratio, or group factor variance ratio. This 
result indicates that violating the assumption of 
equivalent reference indicator loadings 
underlying the RI strategy did not affect Type I 
error rates associated with the LRTκ  for 

conditions and models examined here. This is 
consistent with the findings from the study 
conducted by Hancock, et al. (2000).  

Previous research on SMM has not 
thoroughly investigated the factor-variance 
scaling method. The study found that when 
implementing the factor-variance scaling 
method, group factor variance ratio, group 
sample size ratio and loading difference 
magnitude did affect the Type I error rates 
associated with the LRTκ . More specifically, 

when factor loadings were non-
invariant/unequal, all Type I error rates that  
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Table 4: Relative Parameter Bias of the Standardized Latent Mean Difference Effect Size Measure as a 

Function of Manipulated Conditions ( )2 1 0.5κ κ− =  

Loading 
Difference 

Loading 
Pattern 

Group 
Sample 

Size Ratio 

Group Factor Variance Ratio 

1:1 1.2 :0.8 0.8:1.2 

RI FV RI FV RI FV 

0 
Equal 

Loading 

250:250 -0.008 -0.008 0.012 0.012 -0.004 -0.003 

100:400 -0.011 -0.011 0.004 0.005 -0.013 -0.012 

400:100 -0.006 -0.006 0.004 0.004 -0.004 -0.008 
         

0.1 

1st Loading 
Unequal 

250:250 0.017 0.016 0.022 0.024 0.033 0.033 

100:400 0.019 0.019 0.050 0.051 0.013 0.014 

400:100 0.050 0.050 0.049 0.051 0.037 0.037 

2nd Loading 
Unequal 

250:250 0.013 0.013 0.034 0.035 0.008 0.009 

100:400 0.010 0.010 -0.004 -0.003 -0.014 -0.013 

400:100 0.041 0.041 0.050 0.051 0.057 0.057 

All Lower 

250:250 0.046 0.045 0.059 0.061 0.037 0.036 

100:400 0.015 0.014 0.042 0.043 0.010 0.010 

400:100 0.066 0.066 0.074 0.076 0.070 0.068 

Mixed 

250:250 0.0004 0.0002 -0.013 -0.011 0.015 0.015 

100:400 -0.002 -0.002 -0.017 -0.017 -0.015 -0.014 

400:100 0.009 0.009 0.016 0.017 0.014 0.011 

0.4 

1st Loading 
Unequal 

250:250 0.111 0.103 0.155 0.154 0.097 0.088 

100:400 0.039 0.034 0.052 0.051 0.043 0.037 

400:100 0.215 0.204 0.229 0.229 0.175 0.155 

2nd Loading 
Unequal 

250:250 0.129 0.121 0.147 0.145 0.092 0.083 

100:400 0.025 0.021 0.077 0.076 0.038 0.032 

400:100 0.198 0.187 0.213 0.214 0.180 0.162 

All Lower 

250:250 0.184 0.153 0.230 0.212 0.130 0.091 

100:400 0.060 0.046 0.068 0.059 0.033 0.019 

400:100 0.344 0.313 0.390 0.374 0.299 0.255 

Mixed 

250:250 -0.005 -0.006 -0.011 0.008 0.030 0.022 

100:400 0.008 0.006 0.050 0.058 -0.007 -0.012 

400:100 -0.064 -0.058 -0.087 -0.072 -0.015 -0.026 

Note: Relative parameter bias values equal to or greater than 0.05 are underlined which represent 
unacceptable bias. Abbreviations used in this table are described in Table 1. 
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were deemed unacceptable occurred when group 
sample sizes were unequal. Additionally, the 
majority of unacceptable Type I error rates were 
found in conditions in which the group factor 
variance ratio was lower in group one than in 
group two and the loading difference was large. 
However, when the sample sizes were equal 
across groups, violating the equal factor-
variance assumption did not have any substantial 
impact on Type I error rates associated with the 
LRTκ . 

Power associated with the LRTκ  was 

affected by group sample size ratio and loading 
difference magnitude. For example, when factor 
loadings were either equal or unequal across 
groups, power rates below the cutoff criterion of 
0.90 were found only in the unequal sample size 
conditions; this finding is consistent with Kaplan 
and George (1995). Both group sample size ratio 
and loading difference magnitude influenced the 
power of the LRTκ  when factor loadings were 

unequal. That is, power was low only in unequal 
sample size scenarios and low factor loading 
difference scenarios. These low power rates, 
nonetheless, were not considerably lower than 
0.90 and would in fact be deemed as acceptable 
if the traditional, less stringent 0.80 power 
criterion had been used as the benchmark. High 
power was particularly observed in the large 
latent mean difference conditions, as would be 
expected. 

Previous studies have not investigated 
the performance of the standardized effect size 

measure, κ̂δ , under varying conditions, 

particularly when the assumptions underlying 
the RI strategy and the factor-variance scaling 
method are violated. The findings in this study 

demonstrate that the κ̂δ  is not biased in 

conditions in which there was no latent mean 
difference between the two groups. Thus, 
violating the assumptions associated with the RI 
strategy and the factor-variance scaling method 
did not have any substantial or systematic 

impact on the parameter bias of the κ̂δ . Further, 

the parameter bias of the κ̂δ  was not affected by 

loading difference magnitude, group sample size 

ratio, group factor variance ratio, or factor 
loading pattern.  

When there was a latent mean difference 

between the two groups, the κ̂δ  was not biased 

in the baseline conditions in which factor 
loadings were equal/invariant. However, 

substantial relative parameter bias of the κ̂δ  was 

found in the partial metric invariance conditions 
in which factor loadings were unequal. In 

addition, the relative parameter bias of the κ̂δ in 

these partial invariance conditions varied as a 
function of loading difference magnitude, factor 
loading pattern, and group sample size ratio, 
regardless of the factor scaling method used. 
Overall, the relative parameter bias was more 
unacceptable when the factor loading difference 
magnitude was large, when the non-invariant 
factor loadings were higher in group two, and 
when sample size in group one was larger than 
sample size in group two.  
 
Study Limitations 

The assumptions underlying the RI 
strategy and the factor-variance scaling method 
have not been widely investigated in previous 
simulation studies. Thus, as a starting point for 
this line of research, this study included a 
relatively simple model and investigated latent 
mean difference comparisons under relatively 
ideal conditions. Due to the preliminary nature 
of the research, there are several limitations 
inherent in this study. For example, only a 
moderately large latent mean difference was 
included when investigating the power of the 
LRTκ .  

As a result, power associated with the 
LRTκ  was high in these conditions and did not 

differ systematically as a function of the factor 
loading pattern or group factor variance ratio. It 
was found that violating the assumptions 
underlying the two factor-scaling methods did 
not influence the power of the LRTκ . However, 

it is not clear whether the same findings would 
be obtained with smaller latent mean differences 
(e.g., 0.1 and 0.3). In future simulation studies, 
researchers could include smaller latent mean 
differences and examine how violating the 
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assumptions underlying the two factor-scaling 
methods may affect the power of the LRTκ . 

Neither model size nor model 
complexity was varied in this study. For 
simplicity, a two-group, one-factor CFA model 
with six indicator variables was the true 
generating model. Future researchers could 
consider more complex models (for example, 
more observed indicators and/or additional latent 
variables) to investigate whether varying the 
model size and/or model complexity would 
affect the testing and description of the latent 
mean difference across groups. Future research 
that includes models with more observed 
indicators could likewise investigate more 
severe loading non-invariance conditions. 
Further, mean comparisons between more than 
two groups are not uncommon and, hence, the 
impact of including more than two groups on 
latent mean comparisons could be examined in 
future investigations. In addition, multivariate 
normal data were generated. Future studies 
could also explore the implications of violating 
the assumption of normality when using the 

LRTκ  and the κδ̂ to test and describe groups’ 

latent mean differences.  
The results of this study suggest that 

researchers do not necessarily need to be 
concerned about violating the assumption 
underlying the RI strategy given that it does not 
adversely affect the performance of the LRTκ . 

The results also suggest that researchers do not 
necessarily need to be concerned about violating 
the assumptions underlying either of the two 

factor scaling methods when using the κδ̂  in 
order to describe the latent mean difference 
across groups.  

The findings concerning the RI factor 
scaling method are notable because the 
assumption underlying the RI strategy may be 
frequently violated given the difficulty of 
identifying an item with truly invariant factor 
loadings (Hancock, Stapleton & Arnold-
Berkovits, 2009). Nonetheless, more research is 
necessary in order to assuredly know that 
violating the RI assumption does not impact 
latent mean difference testing and that violating 
either of the factor scaling method assumptions 
does not impact latent mean difference 

descriptions. By contrast, the results clearly 
indicate that researchers should be aware of the 
assumption underlying the factor-variance 
scaling method. In particular, when the sample 
sizes for the two groups being compared are 
unequal, constraining unequal factor variances 
to a value of one across groups is likely to 
produce overly conservative or liberal Type I 
error rates associated with the latent mean 
difference test ( LRTκ ). Additionally, 

researchers should cautiously interpret the κδ̂  
when factor loadings are non-invariant across 
groups in combination with unequal group 
sample sizes, regardless of factor scaling method 
employed. 
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