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Variants of Levene’s and O’Brien’s procedures not investigated by Keselman, Wilcox & Algina (2008) 
were examined. Simulations indicate that a new O’Brien variant provides very good Type I error control 
and is simpler for applied researchers to compute than the method recommended by Keselman, et al. 
 
Key words: Levene test of spread, O’Brien test of spread, Type I error. 
 
 

Introduction 
Keselman, Wilcox, Algina, et al. (2008) 
compared a number of tests for spread that were 
based on either least squares or trimmed 
estimates of central tendency and variability. 
These estimators were based on either the 
original data or transformations suggested by 
Levene (1960) and O’Brien (1981). The 
adaptive trimming estimators they used were 
defined by Reed and Stark (1996), estimators 
which rely on procedures that determine whether 
data should be trimmed symmetrically, 
asymmetrically, or not at all. The transformed 
scores were used in an analysis of variance 
(ANOVA) F-test, a Welch (1951) test, and a 
robust ANOVA test due to Lee and Fung (1985). 
Based on their extensive simulation study, 
Keselman,  et  al.  recommended  a  Levene-type 
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transformation based on empirically determined 
20% asymmetric trimmed means, involving a 
particular adaptive estimator, where the 
transformed scores are then used with an 
ANOVA F test. 

In their investigation, Keselman, et al. 
only examined a limited number of variations of 
the Levene (1960) and O’Brien (1979) methods 
– variations where, by-in-large, the transformed 
variables were obtained via the application of 
asymmetrically trimmed means involving one of 
the seven hinge estimators defined by Reed and 
Stark (1996). However, there are many other 
ways in which the transformed variables may be 
created. For example, the transformed variables 
may be based on symmetrically trimmed means 
and then these transformed variables may be 
symmetrically/asymmetrically transformed with 
one of the seven hinge estimators. Thus, the 
purpose of this study was to examine other 
variants of the Levene and O’Brien methods not 
examined by Keselman, et al. (2008). 
 
Background 

As Keselman, et al. (2008), and others, 
have noted, the traditional test for equality of 

variances, e.g., 
2
1
2
2

s
F

s
= , where 2

js  is the usual 

unbiased sample variance for the jth group, is 
affected adversely when the data in the groups 
are not normally distributed (i.e., it is sensitive 
to kurtosis). That is, the actual level of 
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significance can differ substantially from the 
nominal significance level. In addition, power 
can be low.  

Levene (1960) suggested an alternative 
test statistic that can be used to assess equality of 
spread across independent treatment groups. For 
the one-way layout with model ij j ijX = μ + ε  

j(i 1, ,n ;  j 1, , J)= … = … , where jμ  is the 

population mean for the jth group and ijε  is 

random error, Levene suggested that the scores 
could be modified with the transformation 

ij ij . jz X X= − , where . jX  is the jth sample mean, 

and then these scores can be used in an ANOVA 
test. That is, the test suggested by Levene is 
 

j

J
2

j j. ....
j 1

0 nJ J
2

ij j. j
j 1 i 1 j 1

n (z z ) (J 1)

W ,

(z z ) (n 1)

=

= = =

− −
=

− −



 
         (1) 

 
where 

j

j

nJ

ijn
ij j 1 i 1

j J
1 1 j

j
j 1

z
z

z and z
n

n

= =

=

=

= =





  . 

 
Critical values for 0W  are obtained from the F-

distribution based on 
J

j
j 1

J -1 and (n 1)
=

−   

degrees of freedom. Another statistic relevant to 
this article is 

tXW . This statistic replaces the 

group mean in obtaining the transformed ijZ s  

with the group trimmed mean. 
Other methods have also appeared in the 

literature in addition to Levene’s (1960) 
procedure. Lee and Fung (1985) presented a 
robust ANOVA F-test based on trimmed means. 
Keselman, et al. (1979) and others (e.g., 
O’Brien, 1981) have indicated that a Welch 
statistic can be adopted instead of the usual 
ANOVA F-test to assess spread across 
independent groups. O’Brien (1979) also 
suggested that a Welch test can be used with his 
transformation of the data, Xij, namely 
 

2 2
j j ij . j j j

ij
j j

(n 1.5)n (X X ) .5s (n 1)
r .

(n 1)(n 2)

− − − −
=

− −
 

(2) 
 
Adaptive Trimming Methods 

Keselman, et al. (2008) provided a 
detailed description of adaptive trimming 
methods. Reed and Stark (1996) defined seven 
adaptive location estimators based on measures 
of tail-length and skewness for a set of n 
observations based on the work of Hogg (1974, 
1982). To define these estimators, measures of 
tail-length and skewness must first be defined. 
Using the notation of Hogg (1974, 1982) and 
Reed and Stark (1996) and based on the ordered 
values, let Lα =  the mean of the smallest [ nα ] 

observations, where [ nα ] denotes the greatest 
integer less than nα  and Uα =  the mean of the 

largest [ nα ] observations. When .05α = , ( ).05L  

is the mean of the smallest [0 .05n ] 
observations, B is the mean of the next largest  
0 .15n  observations, C  is the mean of the next 
largest 0.30n observations, D  is the mean of the 
next largest 0 .30n  observations, E  the mean of 
the next largest 0 .15n  observations, and (.05)U

the mean of the largest 0 .05n  observations.  
 
Tail-Length Measures 

Hogg (1974) defined two measures of 
tail-length, Q and 1Q , where 
 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

.05 .05 .5 .5

1 .2 .2 .5 .5

Q U L U L

and

Q U L U L .

= − −

= − −

        (3) 

 
Q and 1Q  are location free statistics, are 
uncorrelated with location statistics and can be 
used to classify symmetric distributions as light-
tailed, medium-tailed or heavy-tailed (Reed & 
Stark, 1996). According to Hogg (1974) and 
Reed and Stark (1996), values of Q 2<  imply a 

light-tailed distribution, 2.0 Q 2.6≤ ≤  a 

medium-tailed distribution, 2.6 Q 3.2≤ ≤  a 

heavy-tailed distribution, and Q 3.2>  a very 
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heavy-tailed distribution. The cutoffs for 1Q  are: 

1Q 1.81<  (light-tailed), 11.81 Q 1.87≤ ≤  

(medium-tailed) and 1Q 1.87>  (heavy-tailed). 
Hogg (1982) introduced yet another 

measure of tail-length: 
 

( ) ( )( )
( )
.05 .05

3

U L
H .

E B

−
=

−
                    (4) 

 
With this measure, values of 3H 1.26<  suggest 
that the tails of the distribution are similar to a 
uniform distribution; values of 1.26 through 1.76 
suggest a normal distribution, and values greater 
than 1.76 suggest the tails are similar to those of 
a double exponential distribution. 
 
Measures of Skewness 

Reed and Stark (1996) defined four 
measures of skewness as:  
 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

2 .05 .25 .25 .05

1 .05 .05

2 1 n

5 1 n

Q U T T L ,

H U D C L ,

SK X XMD XMD X

and

SK X XM XM X ,

= − −

= − −

= − −

= − −

 

 

(5) 
 
where XMD is the median, XM is the arithmetic 
mean, (.25)T  is the 0.25-trimmed mean ( Tα ) and 

( )1X  and ( )nX  are the first and last ordered 

observations, respectively. Reed (1998) defined 
the α -trimmed mean as: 
 

( ) ( )( )
n-k

i k n-k 1
i k 1

1
T X k n X X .

n 1 2α +
= +

 = + − α + − α  


(6) 
 
In this definition a proportion, α , has been 
trimmed from each tail and the accompanying 
Winsorized variance 2S  is defined as: 
 

( )( )
( ) ( )

( )

2

2 2
n k

i k

2 2
i k 1

n-k 1

S

X T k X T1
,

n 1 1 2 k X T

−
α α

= + + α

=

  − + −
  

  − − α + −  


(7) 
 
where k [ n] 1= α + . 

Based on the definitions of tail-length 
and skewness, Reed and Stark proposed a set of 
adaptive linear estimators “that have the 
capability of asymmetric trimming” (1996, p. 
13). They defined a general scheme for their 
approach as follows: 
 
1. Set the value for the total amount of 

trimming from the sample, α . 
 
2. Determine the proportion to be trimmed 

from the lower end of the sample ( lα ) by 
the following proportion:

( )l X X XUW UW LWα = α  +   , where 

XUW  and XLW  are the numerator and 
denominator of the defined selector statistics 
(i.e., tail-length and skewness). 

 
3. The upper trimming proportion is: α2 = α – 

α1. 
 

Based on this general schema, Reed and 
Stark (1996) defined seven hinge estimators, 
which are trimmed means, as: 
 

( )
( )
( )
( )
( )

( )

( )

1 1 1

3 3 3

2 2 2

1 1 1

2 2 2

5 5 5

l Q Q Q

1 l Q Q Q

3 l H H H

2 l Q Q Q

1 l H H H

2 l SK SK SK

5 l SK SK SK

1. HQ UW UW LW ,

2. HQ UW UW LW ,

3. HH UW UW LW ,

4. HQ UW UW LW ,

5. HH UW UW LW ,

6. HSK UW UW LW ,

and

7. HSK UW UW LW .

 α = α + 
 α = α + 
 α = α + 
 α = α + 
 α = α + 
 α = α + 

 α = α + 
(8) 
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Keselman, et al. (2008), investigating 
Type I error rates of procedures for testing 
spread, examined the Reed and Stark (1996) 
procedure with various values for α  because the 
literature varies on the amount of recommended 
(symmetric) trimming. Rosenberger and Gasko 
(1983) recommend 25% when sample sizes are 
small (although they state that 20% generally 
suffices), Wilcox (2005) recommends 20% and 
Mudholkar, Mudholkar and Srivastava (1991) 
suggest 15%. Ten percent has been considered 
by Hill and Dixon (1982), Huber (1977), Stigler 
(1977) and Staudte and Sheather (1990); results 
reported by Keselman, et al. (2002) also support 
10% trimming. In addition, Keselman, et al. 
(2005) obtained good results with 5% symmetric 
trimming. 

According to Keselman, et al. (2007), 
Reed and Stark’s (1996) tail-length and 
skewness measures may be modified for the 
multi-group problem and applied to the modified 
multi-group measures to the hinge estimators. In 
particular, they indicated that each of the 
measures can be modified by taking weighted 
averages in a manner analogous to the 
modifications of tail-length and symmetry 
measures suggested by Babu, Padmanaban and 
Puri (1999) of each numerator and denominator 
term. For example, for the multi-group problem, 
where jn  represents the number of observations 

in each group, 1Q  and 2Q  can be defined as: 
 

( ) ( )( )

( ) ( )( )

( )( )

( )( )

j j.2 .2
j j

1

j j.5 .5
j j

j (.25) j.05
j j

2

j (.25) j.05
j j

n U L n

Q ,

n U L n

and

n U T n

Q .

n T L n

 
− 

 =
 

− 
 

 
− 

 =
 

− 
 

 

 

 

 

         (9) 

 
The other measures would be similarly modified 
and it is these multi-group measures of tail-
length and skewness that are applied to the 
general scheme proposed by Reed and Stark 

(1996), treating the transformed ijZ s  as the 

original variables  
One could go a step further than merely 

applying the transformed ijZ s  in a Welch test. It 

is suggested that the transformed ijZ s  be treated 

as the original random variable in a test statistic 
that has been found to be generally insensitive to 
nonnormality, namely a Welch test based on 
trimmed means, that is, Yuen’s (1974) test). 

Thus, consider the following. The α  
trimmed means and Winsorized variances can be 
defined in a number of different ways (see 
Hogg, 1974; Reed, 1998; Keselman, et al., 2007; 
Wilcox, 2003). Let ( ) ( ) ( )j

1 j 2 j n j
Z Z Z≤ ≤ …≤  

represent the ordered observations associated 
with the jth group. Reed’s (1998) approach is 
based on the work of Hogg (1974). Hogg 
defined the α -trimmed mean as: 
 

( ) ( ) ( )

jn -g

i
i g 1

m 1 h Z ,
= +

α =                 (10) 

 
where α  is selected so that jg n = α   and 

j j jh n 2g n 2[n ]= − = − α . The standard error of 

( )m α  Hogg suggests is based on the works of 

Tukey and McLaughlin (1963) and Huber 
(1970) and is estimated by: 
 

( )
( )

( )m

SS
S ,

h h 1α

α
=

−
                  (11) 

 
where ( )SS α  is the Winsorized sum of squares 

defined as: 
 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

j

j

2

g 1

2

g 2

2

n -g-1

2

n -g

g 1 Z m

   Z m

   ...

   Z m

  g 1 Z m .

+

+

 + − α 

 + − α 
+

 + − α  

 + + − α  

       (12) 
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When allowing for different amounts of 
trimming in each tail of the distribution, Hogg 
(1974) defines the trimmed mean as: 
 

( ) ( )

2j

1

n g

1 2 i
i g 1

1
m α ,α z ,

h

−

= +

 
 
 

=            (13) 

 
where 1 j 1g n = α  , 2 j 2g n = α   and 

j j 1 2h n - g - g= . Hogg suggests that the standard 

deviation of ( )1 2m ,α α  can be estimated as: 

 

( )
( )
( )1 2

1 2
m ,

SS ,
S ,

h h 1α α

α α
=

−
              (14) 

 
where ( )1 2SS ,α α  can be calculated as  

 

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

j 2

j 2

1

j 2

2

1 1 2g 1

2

1 2g 2

2

1 2n -g -1

2

2 1 2n g

2

1 1 2g 1

2 1 2n g

j

1 2

g 1 Z m ,

Z m ,

...

Z m ,

g 1 Z m ,

g Z m ,

g Z m ,

n
SS ,

+

+

−

+

−

+ − α α

+ − α α

+

+ − α α

+ + − α α

− α α
−

+ − α α

    
    
 
 
  

  
 

    
      

        α α =

(15) 
 
Test Statistics 

Let 
jn

j ij j
i 1

ˆ Z / n
=

μ =  and 

n
2 2
j i j j

i 1

s (Z Z ) / (n 1)
=

= − −  where jμ̂  is the 

estimate of jμ  and 2
js  is the unbiased estimate 

of the variance for population j. A 
heteroscedastic statistic (Welch, 1951) can be 
defined as: 
 

J
2

j j
j 1

W 2J
j

2
j 1 j

ˆ ˆw ( ) /(J 1)

F ,
(1 w / W)2(J 2)

1
(J 1) n 1

=

=

μ − μ −
=

−−+
− −




      (16) 

where 
J

j j
j 1

ˆ ˆw / W
=

μ = μ , 

 
J

j
j 1

W w a,
=

=  . 

and 
2

j j jw n / s .=  

 
The test statistic is approximately distributed as 
an F variate and is referred to the critical value 

WF[(1 );(J 1), ]− α − ν , the (1 )− α  quantile of the 
F distribution, where error degrees of freedom 
are obtained from 
 

( )
2

w 2
J

j

j 1 j

J 1
.

1 w / W
3

n 1=

−υ =
−

−
               (17) 

 
A Robust ANOVA F-Test 

Lee and Fung (1985) defined an 
ANOVA F-test based on trimmed means. 
Because the ANOVA F-test can be more 
powerful than the Welch F-test, this statistic was 
chosen for this investigation. The Lee and Fung 
(1985) statistic is defined as: 
 

J
2

j tj t
j 1

t J

j 1 2
j 1

ˆˆh (m M ) / (J 1)

F
SS (a  , a ) / (H J)

=

=

− −
=

−




             (18) 

where  
J

j
j 1

H h
=

= , 

 
J

t j tj
j 1

ˆ ˆM h m / H
=

= ,  

and 

j 1 2SS (  , )α α =  the 1 2(  , ).α α  
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The Winsorized sum of squared deviations for 
the jth group; jh  and tjm̂  are defined the same as 

previously. Note that, when 1 2 0α = α = , tF F=  
(O’Brien, 1979).  

O’Brien (1979) indicated that the ijr s  

can be used in the Welch test. Accordingly, the 
trimmed mean version is given by: 
 

( ) ( ) ( )
( )( )ij

2 2
j j ij tj mj j

t

j j

ˆh 1.5 n X m .5s h 1
r .

h 1 h 2

− − − −
=

− −
 

(19) 
 
where j j 1 2h n g g= − − , tjm̂ = the 1 2(  , )α α  

trimmed mean of the jth group and 
1 2

2 2
mj m( , )s s α α=  

for group j. The ijr s  and 
ijtr s  were also used with 

the Lee and Fung (1985) test. 
 

Methodology 
A total of 170 new Levene (1960) type 
procedures were created. These procedures were 
(see Table 2 for a summary of the Levene 
methods examined):  
 

(A1) Let ij ij . jZ X X= − . The ijZ s  were then 

trimmed symmetrically α % and the 

robust F-test, tαF  was computed. There 

are 4 variants with this designation 
because there are four symmetric 
trimming percentages: 5%, 10%, 15% 
and 20%. For example, A115 signifies 

ij ij . jZ X X ,= −  the ijZ s  were trimmed 

symmetrically 15% and tFα was 
computed. 

 

(A2) Let ij ij . jZ X X ,= −  the ijZ s  were 

trimmed asymmetrically β % with a 
hinge estimator H and the robust F-test, 

tFβ  computed. A210HSK5 signifies 

transformation ij ij . jZ X X= −  and these 

values were subjected to 10% 
asymmetric trimming with hinge 
estimator HSK5 before computing tFβ . 

Because there are four asymmetrical 
trimming percentages and seven hinge 
estimators, there are 28 variants with 
this designation. 

 

(A3)  Let ij ij . jZ X X= − . The ijZ s  were used 

with the Welch test, WF .  
 

(B3)  Let ij ij jZ X M= − . The ijZ s  were used 

with the Welch test, WF . 
 
(E1) These variants are designated E1 α H, 

where 
αij ij tZ |X X |,= −  

αt
X  are group 

α%  symmetric trimmed means. The 

ijZ s  were used with the usual F-test, W, 

hence variant E120 signifies transformed 
values 

20ij ij tZ |X X |,= −  where 
20tX  are 

group 20% symmetrically trimmed at 
tail, computed with W. Because there 
are four symmetric trimming 
percentages (5%, 10%, 15% and 20%), 
there are four variants with this 
designation. 

 
(E2) In variants 2 1 2E α α  let 

α1ij ij tZ |X X |= − . 
The transformed values were trimmed 
symmetrically 2α % and used with 

2tαF . 

Therefore, variant E21520 signifies 
transformation 

15ij ij tZ |X X |,= −  where 

15tX  are group 15% symmetric trimmed 

means and these values were subjected 
to 20% symmetric trimming before 
being used with 

2taF . Because there are 

four different 
α1tX ’s and four symmetric 

trimming percentages, there are 16 
variants with this designation. 

 
(E3) In variants 3E Hαβ , let 

αij ij tZ |X X |= − . 
The transformed values were 
asymmetrically trimmed at β % 
involving seven hinge estimators (HQ, 
HQ1, HH3, HQ2, HH1, HSK2, HSK5) and 
used with tβF . Hence, E31025HH3 
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signifies transformation 
10ij ij tZ |X X |,= −  

where 
10tX  are group 10% symmetric 

trimmed means; these values were 
subjected to 25% asymmetric trimming 
calculated using the HH3 hinge 
estimator before applying tβF . Because 

there are four different 
αt

X ’s and four 

asymmetric trimming percentages with 
seven different hinge estimators, there 
are 112 variants for this designation. 

 
(E4) Variants 4E Hα  use 

αt
X in place of .jX

(A3) or jM (B3), in getting the ijZ  

values. The ijZ s  were then used with the 

Welch test, FW. Hence E410 signifies 
transformed values 

10ij ij tZ |X X |,= −  

where 
10tX  are group 10% symmetric 

trimmed means and used with FW. Since 
there are four symmetric trimming 
percentages, there are four variants with 
this designation. 

 
A total of 165 O’Brien-type procedures 

were created (see Table 2 for a summary of the 
O’Brien methods examined): 
 
(J) O’Brien transformation based upon 

group means and variances used with 
the usual F-test, W (that is, ijr  in W). 

 
(Q1) Variants are designated 1Q α . The 

O’Brien transformation based upon 
symmetric trimmed means and 
Winsorized variances of ijX . These 

trimmed means were calculated at α =  
5%, 10%, 15% and 20%. The 
transformed values, ijr , were used with 

the usual F-test (that is, ijr  in W). 

Because there are four symmetrical 
trimming percentages, there are four 
variants with this designation. 
Therefore, variants 1Q 10  signifies 

transformation of ijX  with 10% 

symmetric trimmed mean before used 
with W.  

 
(Q2) Variants are designated 2 1 2Q α α . The 

O’Brien transformation based upon 
group symmetric trimmed means and 
Winsorized variances of ijX . These 

trimmed means and Winsorized 
variances were calculated at symmetric 
trimming percentages (5%, 10%, 15% 
and 20%). The resultant transformed 
values, ijr , were symmetrically trimmed 

based on the same percentages used for 

ijX  and used with the robust ANOVA 

tF   test (that is, symmetrically trimmed 

ijr  in tF ). Because there are four 

symmetric trimming percentages used 
twice, there are 16 variants with this 
designation. Hence, variant Q2515 
signifies transformation of ijX  with 5% 

symmetric trimmed mean and 15% 
symmetric trimmed mean for the 
transform value, ijr , before used with 

tF .  
 
(Q3) Variants are designated 3Q Hαβ . The 

O’Brien transformation based upon 
symmetric trimmed means and 
Winsorized variances of ijX . These 

trimmed means were calculated with the 
four symmetric trimming percentages 
(5%, 10%, 15% and 20%). The resultant 
transformed values, ijr , were then 

asymmetrically trimmed at β = 10%, 
15%, 20% and 25% involving seven 
hinge estimators and used with the 
robust ANOVA Ft-test (that is, 
asymmetrically trimmed ijr  in tF ). 

Because there are four symmetric 
trimming percentages, on ijX , four 

asymmetric trimming percentages on ijr  

with seven hinge estimators, there are 
112 variants with this designation. 
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(Q4) Because variants are designated 4Q α . 
The O’Brien transformation based upon 
symmetric trimmed means Winsorized 
variances of ijX . These trimmed means 

were calculated at the four symmetric 
trimming percentages (5%, 10%, 15% 
and 20%). The transformed values, ijr , 

were then used with the Welch test, FW 
(that is, ijr  in FW). Because there are four 

symmetrical trimming percentages, 
there are four variants with this 
designation. Hence, variants Q405 
signifies transformation of ijX  with 5% 

symmetric trimmed mean before used 
with WF . 

 
Variants are designated K Hβ . The 

O’Brien transformation based upon asymmetric 
trimmed means Winsorized variances of ijX . 

These trimmed means were calculated at β =
10%, 15%, 20% and 25% involving seven hinge 
estimators (HQ, HQ1, HH3, HQ2, HH1, HSK2, 
HSK5). The transformed values, ijr , were used 

with the usual F-test (that is, ijr  in W). Because 

there are four asymmetrical trimming 
percentages and seven hinge estimators, there 
are 28 variants with this designation. Hence, 
variants K15HSK2 signifies transformation of 

ijX  with 15% asymmetric trimmed mean 

calculated using the HSK2 hinge estimator 
before used with W. 
 
Study Conditions 

Four variables were employed in the J = 
3 study: (a) total sample size; (b) degree of 
sample size inequality; (c) shape of the 
population distribution; and (d) type and amount 
of total trimming.  
 
Total Sample Size 

The effect of sample size on the 
performance of the various procedures was 
evaluated by varying the total sample size (N). 
The total sample size was manipulated, setting 
the average group size to jn 20 and 40= . The 

average group-sizes correspond to total sample 
sizes of N = 60 and N = 120. 
 
Degree of Sample Size Inequality 

Three conditions of sample size 
equality/inequality were investigated which are 
referred to as: equal jn , moderately unequal jn

and extremely unequal jn  (see below for 

values). These conditions were evaluated 
because Keselman, et al. (1998) found that 
unbalanced designs were more common than 
balanced designs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shape of the Population Distribution 

This study investigated distributions 
ranging from symmetric to skewed and 
platykurtic to normal-tailed to leptokurtic 
distributions. In total, seven distributions were 
employed to compare the procedures. The 
distributions used were: (i) the Fleishman (1978) 
transformation of the standard normal 
distribution into a skewed platykurtic 
distribution with skewness, 1γ  = 0.5 and 

kurtosis, 2γ = −0.5; (ii) a second Fleishman 
transformation of the standard normal 
distribution into a skewed normal-tailed 
distribution with 1γ = 0.75 and 2γ = 0; (iii) the 
Beta (0.5, 0.5) distribution representing 
symmetric platykurtic distributions; (iv) a g and 
h distribution (Hoaglin, 1985) where g = h = 0, 
which is the standard normal distribution with 

1 2 0γ = γ = ; (v) a g = 0 and h = 0.225 long-tailed 

distribution with 1 0γ =  and 2 154.84γ = , 
representing symmetric leptokurtic distributions; 
(vi) a g = 0.76 and h = −0.098 distribution with 
skew and kurtosis equal to that of an exponential  
 

Sample Size Values 

jn s  

20, 20, 20 

15, 20, 25 

10, 20, 30 

40, 40, 40 

35, 40, 45 

30, 40, 50 
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Table 1: Description of the Levene (1960) Transformations Used In the Simulations 
 

Designation Description Cases 

A1 
Xij → Zij: use group means from Xij. 

Zij: symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 
0.20, apply robust ANOVA F-test. 

4 

A2 

Xij → Zij: use group means from Xij. 
Zij: asymmetrically trimmed at total proportions: 0.10, 0.15, 0.20, 
0.25 and 7 hinge estimators: Q, Q1, H3, Q2, H1, SK2, SK5, apply 

robust ANOVA F-test. 

28 

A3 Xij → Zij: use group means from Xij. 
Zij: apply Welch F-test. 

1 

B3 Xij → Zij: use group medians from Xij. 
Zij: apply Welch F-test. 

1 

E1 
Xij → Zij : use group symmetric trimmed means from Xij. Xij 

symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 0.20, 
Zij: apply usual ANOVA F-test. 

4 

E2 

Xij → Zij: use group symmetric trimmed means from Xij.  Xij 
symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 0.20, 
Zij: symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 

0.20, apply robust ANOVA F-test. 

16 

E3 

Xij → Zij: use group symmetric trimmed means from Xij.  Xij 
symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 0.20, 
Zij: asymmetrically trimmed at total proportions: 0.10, 0.15, 0.20, 
0.25, keeping hinge estimator constant, apply robust ANOVA F-

test. 

112 

E4 
Xij → Zij: use group symmetric trimmed means from Xij.  Xij 

symmetrically trimmed at tail proportions: 0.05, 0.10, 0.15, 0.20, 
Zij: apply Welch F-test. 

4 

 Total 170 
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Table 2: Description of the O’Brien (1979) Designations Used In the Simulations 
 

Designation Description Cases 

J Xij → Rij: use group means and variances from Xij. 
Rij: apply usual ANOVA F-test. 

1 

Q1 
Xij → Rij: use group symmetric trimmed means and Winsorized 

variances from Xij. Xij symmetrically trimmed at tail proportions: 
0.05, 0.10, 0.15, 0.20, Rij: apply usual F-test. 

4 

Q2 

Xij → Rij: use group symmetric trimmed means and Winsorized 
variances from Xij. Xij symmetrically trimmed at tail proportions: 

0.05, 0.10, 0.15, 0.20, Rij: symmetrically trimmed at tail 
proportions: 0.05, 0.10, 0.15, 0.20, apply robust ANOVA F-test. 

16 

Q3 

Xij → Rij: use group symmetric trimmed means and Winsorized 
variances from Xij. Xij symmetrically trimmed at tail proportions: 

0.05, 0.10, 0.15, 0.20, Rij: asymmetrically trimmed at total 
proportions: 0.10, 0.15, 0.20, 0.25 and 7 hinge estimators: Q, Q1, 

H3, Q2, H1, SK2, SK5. Apply robust ANOVA F-test. 

112 

Q4 
Xij → Rij: use group symmetric trimmed means and Winsorized 

variances from Xij. Xij symmetrically trimmed at tail proportions: 
0.05, 0.10, 0.15, 0.20, Rij: apply Welch F-test. 

4 

K 

Xij → Rij: use group asymmetric trimmed means and Winsorized 
variances from Xij. Xij asymmetrically trimmed at total proportions: 
0.10, 0.15, 0.20, 0.25 and 7 hinge estimators: Q, Q1, H3, Q2, H1, 

SK2, SK5. 
Rij: apply usual F-test. 

28 

 Total: 165 
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distribution ( 1 22, 6γ = γ = ); and (vii) a g = 
0.225 and h = 0.225  distribution, which is also a 
long-tailed skewed distribution 
( )1 24.90, 4673.80γ = γ = . The last two 

distributions represent skewed leptokurtic 
distributions, with (vii) more severe than (vi). 
These distribution conditions were selected in 
order to evaluate the operating characteristics of 
the procedures across a variety of distributions 
and because they have been examined in other 
studies (e.g., Algina, Keselman & Penfield, 
2007).  

The Fleishman (1978) power 
transformation is of the form Y = a + bZ + cZ2 + 
dZ3, where Z are standard normal variates. 
Fleishman provided a table of values for the 
coefficients, b, c, and d that enables the standard 
normal distribution to be transformed into a 
nonnormal distribution, also having mean zero 
and variance one, but with different degrees of 
skewness and kurtosis. The extra coefficient a is 
obtained through the relation a c= −  as a direct 
result of constraining (Y) 0Ε = . Two sets of 
coefficients (b, c, d) were selected from 
Fleishman (1978) and used in the preceding 
equation to generate ijZ s  from the RANDGEN 

function (SAS, 2006) with the normal 
distribution option to produce distributions (i) 
and (ii). This RANDGEN SAS subroutine 
allows a user to generate 20 known distributions, 
both discrete and continuous. Data from the 
third distribution was also generated using the 
RANDGEN function but with the beta 
distribution option. Beta (0.5, 0.5) is a 
symmetric u-shaped distribution, hence the 
negative kurtosis. 

To generate data from a g and h 
distribution, standard unit normal variables ( ijZ ) 

were converted to g and h distributed random 
variables via  
 

( ) 2
ij ij

ij

exp g Z 1 h Z
Y exp ,

g 2

−  
=   

 
       (20) 

 
where both g and h are non-zero. When g is zero 
 

2
ij

ij ij

h Z
Y Z exp .

2

 
=   

 
                  (21) 

 
The ijZ  scores were generated using the 

generator RANDGEN with the normal 
distribution option.  

Observations generated for distributions 
(iii), (v), (vi) and (vii), where the variances were 
not equal to one, were standardized so that they 
were one, to reflect the null hypothesis, H0: 

2 2 2
1 2 3σ σ σ= = ; that is, in the simulations, 
2 2 2
1 2 3σ σ σ 1= = = . 

 
Percentages of Total Trimming 

Four values of total trimming, namely 
10%, 15%, 20% and 25% were examined when 
data were asymmetrically trimmed, whether to 
obtain the values used in the transformation of 
the ijX  data or when trimming was carried out 

on the Levene transformed values ijZ  or 

O’Brien’s transformed values, ijr  and 
ijtr . 

Symmetric trimming values of 5%, 10%, 15% 
and 20% were also investigated. As noted, the 
literature varies on the amount of recommended 
(symmetric) trimming and thus these values 
were chosen to cover the range of values 
recommended. For each condition 5,000 
replications were conducted and the nominal 
levels of significance for all tests were 0.05 and 
0.10.  

Results 
Tables 4 and 5 summarize the ten best results for 
the modified Levene (1960) tests for spread. 
Table 4 shows the average rates of Type I error, 
the absolute values of the difference between the 
average rates and 0.05, and the percent of cases 
falling in three intervals – (0.025, 0.050), (0.045, 
0.055), and (0.045, 0.050). The last column 
indicates total percentage of cases falling in 
(0.025, 0.055); using simple set theory algebra, 
this is just percent of cases in (0.025, 0.050) and 
in (0.045, 0.055) minus percent of cases in 
(0.045, 0.055). Based on these findings the 
following are noted: 
 
1. All ten methods examined provided very 

good Type I error control. Indeed, the 
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empirical rates ranged from 0.046 to 0.0579; 
and 

 
2. In order to identify the best method(s) the 

percentages reported in the last column were 
relied upon. From this information, 3B  was 
identified as the best of the Levene (1960) 
modifications defined and examined. 

 
Table 5 presents Type I error rates for each 
characteristic of the distributions investigated, as 
well as the overall rate, indicates that the method 
that selected as best, contains average Type I 
errors of 0.048. 

The same information is presented in 
Tables 6 and 7 for the ten best modified O’Brien 
(1981) tests for spread. Based on these findings, 
the ten best O’Brien variants provided tight 
Type I error control ranging from 0.490 to 
0.0508. The last column of Table 6 identifies 
two of the modified procedures, Q31025HQ1 and 
K20HH3, as the best of the O’Brien (1981) 
modifications. Table 7 presents Type I error 
rates for each characteristic of the distributions 
investigated, as well as the overall rate, and 
indicates that the both methods that selected as 
best contain Type I errors averaging 0.050. 
 

Conclusion 
This study examined the Type I error rate (for α 
= 0.05) of various modifications of Levene’s 
(1960) and O’Brien’s (1981) procedures that 
could be used to compare variability across 
groups in independent groups designs, 
specifically variations not examined by 
Keselman, et al. (2008). The procedures 
examined used Levene (1960) or O’Brien (1981) 
type transformations of the original scores or 
transformed scores, except as opposed to using 
the measures of central tendency and variability 
suggested by Levene and O’Brien, robust 
measures of central tendency and/or variability 
were adopted. 

The robust values of central tendency 
and variability (i.e., the trimmed means and 
Winsorized variances) were based on symmetric 
or asymmetric trimming rules, that is, rules that 
either set a priori the amount of total trimming 
or determined empirically the amount to be 
trimmed from the tails (if at all) based on varied 

recommendations for total trimming. These 
approaches were also applied to various test 
statistics: the ANOVA F-test, a robust F-test 
(Lee & Fung, 1985), the Welch (1951) test, and 
bootstrapped versions of these statistics. The 
procedures were compared under seven 
distributions when group sizes were equal, 
moderately, or very unequal. The skewness and 
kurtosis of the distributions examined varied 
from the normal distribution ( 1 2γ 0,  γ 0= =  

respectively) to distributions that were 
nonnormal, 1γ 4.9=  and 2γ 4673.80= , 
respectively).  

The procedures were compared on four 
measures: the average rate of Type I error across 
the 42 conditions examined, the percentage of 
empirical Type I errors that fell within the 
intervals (0.025, 0.05), (0.045, 0.055) and 
(0.045, 0.05), and the absolute value of the 
difference between the mean Type I error rate 
and 0.05. Finally, it should be noted that though 
it was intended to examine bootstrapped 
versions of these procedures, this was not 
pursued because very good Type I error control 
was achieved without resorting to bootstrapping.  
Results indicated that the results reported by 
Keselman, et al. (2008) could not be improved 
upon with respect to the Levene (1960) test. 
That is, though the new Levene modifications all 
worked very well in controlling Type I error 
rates, they did not result in as many cases falling 
into the three intervals defined for good Type I 
error control as reported by Keselman, et al. 
(2008). 

Conversely, two of the O’Brien (1960) 
modifications did perform well, at least as well 
as the variants examined by Keselman, et al. 
(2008) and their recommended Levene variant. 
These were Q31025HQ1 and K20HH3 with 
tighter Type I error control and a decent number 
of cases falling into the three intervals defined 
for good Type I error control by Keselman, et al. 
(2008). 
 

Acknowledgements 
This research was supported by grants provided 
by the Social Sciences and Humanities Research 
Council of Canada and the Fundamental 
Research Grant Scheme of Malaysia. 
 



ROBUST MODIFICATIONS OF THE LEVENE AND O’BRIEN TESTS FOR SPREAD 

66 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Type I Error Rates for the 10 Best Performing New Levene’s Variants and Percentages of Type I 
Error Rates within Various Intervals 

 

No. Variant 
Average 
p-Values 

Mean-0.05  
Percent 
Within 
2.5,5.0 

Percent 
Within 
4.5,5.5 

Percent 
Within 
4.5,5.0 

Total % 

1 B3 .0476 .0024 54.76 30.95 14.29 71 
2 E120 .0531 .0031 47.62 40.48 23.81 64 
3 E30525HH1 .0555 .0055 33.33 28.57 14.29 48 
4 E31025HH1 .0564 .0064 26.19 21.43 4.76 43 
5 E30525HH3 .0566 .0066 38.10 23.81 16.67 45 
6 E30525HHQ2 .0566 .0066 28.57 26.19 9.52 45 
7 E30525HHQ .0568 .0068 33.33 23.81 9.52 48 
8 E31025HHQ2 .0577 .0077 28.57 19.05 7.14 41 
9 E115 .0579 .0079 35.71 47.62 28.57 55 
10 E31025HHQ .0579 .0079 26.19 40.48 21.43 45 

 
Table 5: Type I Error Rates for the 10 Best Performing Variants of Levene’s Procedure 

 

No. Variant Overall Skewed Symmetric Leptokurtic 
Normal 
Tailed 

Platykurtic 

1 B3 .048 .053 .042 .055 .048 .038 
2 E120 .053 .057 .048 .052 .055 .052 
3 E30525HH1 .056 .060 .050 .052 .058 .058 
4 E31025HH1 .056 .059 .053 .052 .058 .062 
5 E30525HH3 .057 .061 .051 .055 .058 .058 
6 E30525HHQ2 .057 .061 .051 .053 .059 .059 
7 E30525HHQ .057 .062 .050 .054 .060 .058 
8 E31025HHQ2 .058 .061 .053 .053 .059 .063 
9 E115 .058 .064 .050 .058 .059 .057 

10 E31025HHQ .058 .063 .051 .058 .058 .058 

 
Table 6: Type I Error Rates for the 10 Best Performing O’Brien (1979) Variants and Percentages of Type I 

Error Rates within Various Intervals 
 

No. Variant 
Average 
p-Values 

Mean-0.05  
Percent 
Within 
2.5, 5.0 

Percent 
Within 
4.5, 5.5 

Percent 
Within 
4.5, 5.0 

Total % 

1 Q32015HH3 .0499 .0001 35.71 11.90 9.52 38 
2 Q31515HH3 .0498 .0002 35.71 19.05 9.52 45 
3 K10HQ1 .0503 .0003 54.76 23.81 16.67 62 
4 Q31025HQ1 .0503 .0003 57.14 26.19 11.90 71 
5 Q20515 .0504 .0004 52.38 19.05 9.52 62 
6 K20HH3 .0496 .0004 54.76 28.57 14.29 69 
7 K10HH3 .0506 .0006 54.76 23.81 16.67 62 
8 Q31010HQ .0507 .0007 42.86 28.57 16.67 55 
9 Q32015HQ .0508 .0008 33.33 16.67 9.52 40 
10 K25HQ1 .0490 .0010 54.76 9.52 9.52 55 
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