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Gamma-Pareto Distribution and Its Applications 
 

Ayman Alzaatreh Felix Famoye Carl Lee 
Austin Peay State University, 

Clarksville, TN 
Central Michigan University, 

Mount Pleasant, MI 
 

 
A new distribution, the gamma-Pareto, is defined and studied and various properties of the distribution 
are obtained. Results for moments, limiting behavior and entropies are provided. The method of 
maximum likelihood is proposed for estimating the parameters and the distribution is applied to fit three 
real data sets. 
 
Key words: Estimation, moments, T-X family, unimodality. 
 
 

Introduction 
The Pareto distribution was named after Swiss 
economist Vilfredo Pareto (1848-1923) who 
discovered it while studying distributions for 
modeling income in Switzerland. Since that 
time, the Pareto distribution has been widely 
used in modeling heavy-tailed distributions, 
such as income distribution. Many applications 
of the Pareto distribution in economics, biology 
and physics can be found throughout the 
literature. Burroughs and Tebbens (2001) 
discussed applications of the Pareto distribution 
in modeling earthquakes, forest fire areas and oil 
and gas field sizes, and Schroeder, et al. (2010) 
presented an application of the Pareto 
distribution in modeling disk drive sector errors. 
To add flexibility to the Pareto distribution, 
various generalizations of the distribution have 
been derived, including: the generalized Pareto 
distribution (Pickands, 1975), the beta-Pareto 
distribution (Akinsete, et al., 2008), and the beta 
generalized Pareto distribution (Mahmoudi, 
2011). 
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Let ( )F x  be the cumulative distribution 

function (CDF) of any random variable X and 
( )r t  be the probability density function (PDF) 

of a random variable, T, defined on [0, )∞ . The 
CDF of the T-X family of distributions defined 
by Alzaatreh, et al. (2012) is given by 
 

( ) log 1 ( )

 0
( ) ( )

F x
G x r t dt

− −
=  .         (1.1) 

 
Alzaatreh, et al. (2012) named this family of 
distributions the Transformed-Transformer 
family (or T-X family). When X is a continuous 
random variable, the probability density function 
of the T-X family is 
 

( )( )
( )

( )
( ) log 1 ( )

1 ( )

( ) ( ) .

f xg x r F x
F x

h x r H x

= − −
−

=
 

(1.2) 
 
If a random variable T follows the gamma 
distribution with parameters α  and β , then 
 

( ) 1 1 /( ) ( ) , 0tr t t e tα α ββ α
− − −= Γ ≥ , 

 
and the definition in (1.2) leads to the gamma-X 
family with PDF 
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( )( ) ( )
11 1

( )

( ) log 1 ( ) 1 ( )
.

( )

g x

f x F x F x
α

β

αα β

− −

=

− − −
Γ  

(1.3)
 
 

 
When 1β = , the gamma-X family in (1.3) 
reduces to 
 

( )( ) 11
( ) ( ) log 1 ( ) .

( )
g x f x F x

α

α
−

= − −
Γ

 

(1.4) 
 
Alzaatreh, et al. (2012) noted that, when nα =  
where n is a positive integer, the distribution in 
(1.4) can be written as 
 

( )( ) 11
( ) ( ) log 1 ( )

( 1)!

n
g x f x F x

n
−

= − −
−

, 

 
which is the density function of the upper record 

values, ( )U nX , arising from a sequence { }
1

n
i i

X
=

 

of identically independent random variables with 
PDF ( )f x  and CDF ( )F x  (Johnson, et al., 
1994). 
 
The Gamma-Pareto Distribution 

If X is a Pareto random variable with 

density function 1( ) / ,k kf x k x xθ θ+= > , 
then (1.3) results in 

 
1/

( ) log ,
( )

.

kk xg x
x x

x

αβα

α
θ

α β θ
θ

−
    =     Γ     

>

 

(2.1) 
 
Setting / k cβ = , (2.1) reduces to 
 

11/
1

( ) log ,
( )

, , 0;  .

c xg x
x c x

c x

α

α
θ

α θ
α θ θ

−
    =     Γ     

> >

 

(2.2) 
 

A random variable X with the PDF g(x) 
in (2.2) is said to follow the gamma-Pareto 
distribution. When 1α =  the gamma-Pareto 
distribution reduces to the Pareto distribution 
with parameters 1/c and θ , and when 1nα = + , 
it reduces to the upper record value distribution 
arising from Pareto identically independent 
random variables (Ahsanullah & Houchens, 
1989). From (2.2), the CDF of the gamma-
Pareto distribution is obtained as 
 

( ){ }1( ) , log / / ( )G x c xγ α θ α−= Γ , 

 (2.3) 
 

where 
 1

 0
( , )

t ut u e duαγ α − −=   is the incomplete 

gamma function. 
Johnson, et al. (1994) discussed 

different types of Pareto distributions and their 
CDFs. These are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using equation (1.3), the corresponding PDF of 
gamma-Pareto II, gamma-Pareto III, and 
gamma-Pareto IV can be written as shown in 
Table 1. 

Some relationships among these 
distributions are: 
 
• If Y follows the gamma-Pareto distribution 

in (2.2), then the translation X Y θ= −  
follows the gamma-Pareto II distribution. 

 
• When a = 1 and b = 0, the gamma-Pareto III 

distribution reduces to the gamma-Pareto II 
distribution. 

 

Pareto 
II: 

( ) 1 , 0.
( )

a

aF x x
x

θ
θ

= − >
+

 

Pareto 
III: 

( ) 1 , 0.
( )

bx

a

eF x x
x
θ

θ

−

= − >
+

 

Pareto 
IV: 

1/

( ) 1 1 , .

a
xF x x

γμ μ
σ

−
 − = − + >  

   
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• When 1γ =  and μ σ θ= = , the gamma-

Pareto IV distribution reduces to the 
gamma-Pareto distribution in (2.2) with 
parameters α , c and θ . 

 
• When 1γ =  and 0μ = , the gamma-Pareto 

IV distribution reduces to the gamma-Pareto 
II distribution. 

 
Properties of the gamma-Pareto distribution 

The following Lemma shows the 
relationship between the gamma-Pareto 
distribution and the gamma distribution. 
 
Lemma 1 

If a random variable Y follows the 
gamma distribution with parameters α  and c, 

then the random variable YX eθ=  follows the 
gamma-Pareto distribution with parameters α , 
c and θ . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lemma 1 Proof 

The result follows by using the 
transformation technique. 

The hazard function associated with the 
gamma-Pareto distribution is 

 

( ){ }
1/ 1

1 1/ 1

( )
( )

1 ( )

(log( / ))
,

( ( ) , log / )

,

c

c

g xh x
G x

x
x c c x

x

α

α

θ θ
α γ α θ

θ

−

+ −

=
−

=
Γ −

>

 

(3.1) 
 
and the limiting behaviors of the gamma-Pareto 
PDF and the hazard function are given in the 
following theorem. 
 
Theorem 1 

The limit of the gamma-Pareto density 
function and the gamma-Pareto hazard function 

Table 1: Corresponding PDFs of gamma-Pareto Distributions 
 

gamma-Pareto II: 
1/

1 1/ 1( ) ( ) [log(1 / )] ,  0,  where .
( )

c
cg x x x x c

c a
α

α
θ βθ θ

α
− − −= + + > =

Γ  
(2.4)

gamma-Pareto III: 

11/
1

( ) log , 0.
( ) ( ) ( )

bx bx

a a
a e eg x b x

x x x

αβ

α
θ θ

β α θ θ θ

−− −     = + − >     Γ + + +      
 (2.5)

gamma-Pareto IV: 

11 1/1 1/ 1/ 1/
1

( ) 1 log 1 ,
( )

,  where / .

c
x x xg x

c

x c a

αγ γ γ

α
μ μ μ

γσ α σ σ σ

μ β

−− −− +     − − −     = + +            Γ           
> =

(2.6)
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as x → ∞  is 0 and the limit as x θ +→  is given 
by 

 

0, 1

lim ( ) lim ( ) 1/ ( ), 1

, 1.
x x

g x h x c
θ θ

α
θ α

α
+ +→ →

>
= = =
∞ <

 

(3.2) 
 
Theorem 1 Proof 
First it can be shown that lim ( )

x
g x

→∞
 = 0. If 

1α ≤ , then from definition (2.2) lim ( ) 0
x

g x
→∞

= , 

and if 1α > , then  
 

11/

1

1/( 1)

lim ( )

( / ) 1
  lim lim log

( )

  0 lim log / .

x

c

x x

x

g x

x x
c x

x x

α

α

α
α

θ
α θ

θ

→∞

−

→∞ →∞

−
−

→∞

  = ×   Γ   

  = ×   
  

 

 
Using L’Hôpital’s rule, it can be shown that 
 

( ) 11/( 1)lim log( / ) / 0
x

x x
ααθ

−−

→∞
= . 

 
To show that lim ( ) 0

x
h x

→∞
= , we have 

lim ( ) lim ( ) / (1 ( ))
x x

h x g x G x
→∞ →∞

= − . Because 

lim ( ) 0
x

g x
→∞

= , L’Hôpital’s rule can be applied 

and implies that 
 

lim ( ) lim ( ) / ( )

1 1
lim

log( / )

0.

x x

x

h x g x g x

c
x x cx

α
θ

→∞ →∞

→∞

′=

 − += − 
 

=

 

 
The result in (3.2) follows directly from the 
definition of (2.2) and ( ) ( ) / (1 ( ))h x g x G x= − . 
The following theorem shows that the gamma-
Pareto distribution is unimodal. 
 
 

Theorem 2 
The gamma-Pareto distribution has a 

unique mode at 0x x= . When 1α ≤  the mode 

is 0x θ=  and when 1α >  the mode is 
( 1)/( 1)

0 ec cx αθ − += . 

 
Theorem 2 Proof 

The derivative with respect to x of 
equation (2.2) is given by 

 
1/ 2 1/

2

( ) ( )

  log ( 1) ( 1) log .

c cg x x

x xc c
α

θ α

α
θ θ

−

−

′ = Γ

      × − − +     
      

(3.3) 
 
From (3.3) the critical points of ( )g x  are x = θ 

and ( 1)/( 1)ec cx αθ − += . For 1α ≤ , it may be 
observed from (3.3) that ( ) 0g x′ < , therefore 

( )g x  is strictly decreasing. Also, from Theorem 

1, lim ( ) 1/ ( )
x

g x c
θ

θ
+→

=  when 1α =  and 

lim ( )
x

g x
θ +→

= ∞  when 1α < . Thus, ( )g x  has a 

unique mode at x = θ. Using Theorem 1, for 
1α > , lim ( ) 0

x
g x

θ +→
=  implies that x θ=  

cannot be a modal point, hence the mode is
( 1)/( 1)

0 ec cx αθ − += . 

Graphs of ( )g x  and ( )h x  are 
displayed in Figures 1-3. The plots show that the 
gamma-Pareto PDF has a very long right tail and 
also that when parameters c and θ  increase, the 
peak of the distribution decreases. In addition, 
the graphs of the gamma-Pareto PDF indicate 
that ( )g x  is a right skewed distribution. The 
plots in Figure 3 illustrate that the gamma-Pareto 
hazard function is either monotone decreasing or 
upside-down bathtub. 

The entropy of a random variable X is a 
measure of variation of uncertainty (Rényi, 
1961). Shannon entropy (Shannon, 1948) for a 
random variable X with PDF g(x) is defined as 

( ){ }log ( )E g X− . Shannon showed important 

applications of this entropy in communication 
theory and many applications have been used in  
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Figure 1: The gamma-Pareto PDF for Various Values of α, c and θ 
 

 
 
 

Figure 2: The gamma-Pareto PDF for Various Values of α, c and θ 
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different areas such as engineering, physics, 
biology and economics. 
 
Lemma 2 

The Shannon entropy of the gamma-X 
family of distributions is given by 

 

( )( ){ }1log 1 (1 )

        log log ( ) (1 ) ( ),

T
X E f F eη α β

β α α ψ α

− −= − − + −

+ + Γ + −
 

 
where ψ  is the digamma function and T is the 

gamma random variable with parameters α  and 
β . 
 
Lemma 2 Proof 

See Alzaatreh, et al. (2012) for proof 
details. 
 
Theorem 3 

The Shannon entropy for the gamma-
Pareto distribution is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

log log log ( )

      ( 1) (1 ) ( ).
X c

c
η θ α

α α ψ α
= + + Γ

+ + + −  
(3.4) 

 
Theorem 3 Proof 

First it is necessary to find 

( )( ){ }1log 1 TE f F e− −− − , where 

1( ) / .k kf x k xθ +=  It can be shown that 
1 1/( ) (1 ) kF x xθ− −= − , thus  

 

( )( ){ }1log 1

     log log (1 1/ ) ( )

TE f F e

k k E Tθ

− −− − =

− + +
 

 
The result follows from Lemma 2 by noting that 

( )E T αβ=  and /c kβ=  (see equation 2.1). 
The Rényi (1961) entropy for the 

random variable X with PDF ( )g x  is defined as 
 

Figure 3: The gamma-Pareto Hazard Function for Various Values of α, c and θ 
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{ }1
( ) log ( ) , 0,  1.

1
s

RI s g x dx s s
s

= > ≠
−   

(3.5) 
 
By using the gamma-Pareto PDF in (2.2), we 
have 
 

( 1)/

( ) ( )

           log .

s s s

ss c
s

g x dx c

xx dx
x

α
θ

α

θ

α

θ
θ

∞ − −

−
∞ −

= Γ

    ×         




 

(3.6) 
 
Substituting log( / )u x θ= , (3.6) can be re-
written as 
 

1

( 1) 1

( ( 1) 1)
( )

( )[ (1 1/ ) 1]

s
s

s s s

sg x dx
c s cα αθ

θ α
α

−∞

− +

Γ − +=
Γ + − . 

(3.7) 
 
Using equation (3.7), the Rényi entropy in (3.5) 
can be written as 

 

1
1 1

log log ( )
( ) log

log ( ) log( (1 )
R s

s c s
I s

s c
α α

θ
ξ ξ− −

+ Γ 
= −  

− Γ + + 
 

(3.8) 
 
where ( 1) 1sξ α= − + . Shannon entropy is a 
special case of Rényi entropy obtained by taking 
the limit of Rényi entropy as 1s → . The result 
in (3.4) follows by using the L’Hôpital’s rule for 
evaluating the limit of equation (3.8) as 1s → . 
 
Moments and Mean Deviations 

The non-central moments for the 
gamma-Pareto distribution in (2.2) can be 
written as 

 
1

11/
 1

 

( ) ( )

            log .

r

c
r

E X c

xx dx
x

α

α

θ

α

θ
θ

− −

−
∞ −

= Γ

    ×         


 

(4.1) 
 

Substituting log( / )u x θ=  reduces (4.1) to  
 

( ) (1 ) , 1/r rE X rc c rαθ −= − < .     (4.2) 
 
Hence, the mean for the gamma-Pareto 
distribution is 
 

(1 ) , 1c cαμ θ −= − < . 
 
Note that when 1α =  in equation (4.2), 

1( ) (1 )r rE X rcθ −= −  which represents the non-
central moments for the Pareto distribution with 
parameters 1/c and θ . 

Using the binomial expansion for 

( )rX μ− , the central moments ( )rE X μ−  for 
any random variable X can be written as 
 

0

( ) ( 1) ( )
r

r r k r k k

k

r
E X E X

k
μ μ− −

=

 
− = − 

 
 . 

(4.3) 
 
Using equations (4.2) and (4.3), the central 
moments for the gamma-Pareto random variable 
X can be simplified to  
 

( )

0

( )

   ( 1) (1 ) (1 ) .

r

r
r r k k r

k

E X
r

c kc
k

α α

μ

θ − − −

=

− =

 
− − − 

 


 

(4.4) 
 
Note that equation (4.4) indicates that the central 
moments of the gamma-Pareto distribution is an 
increasing function of θ . Using (4.4), the 
variance, the skewness and the kurtosis for the 
gamma-Pareto distribution are respectively 
expressed as 
 

2 2 2[(1 2 ) (1 ) ], 0.5c c cα ασ θ − −= − − − <  
(4.5) 

 
3

2 3/1 2

(1 3 ) 2(1 ) 3(1 2 ) (1 )

((1 2 ) (1 ) )

c c c c
c c

α α α α

α αγ
− − − −

− −

− + − − − −
− − −

=

(4.6) 
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 {2 2
2 [(1 2 ) (1 ) (1 4 )]c c cα α αγ − −− −− −= − −   

   4 23(1 ) 6(1 2 ) (1 )c c cα α α− − −− − + − −   

   }4(1 3 ) (1 )c cα α− −− − − . (4.7) 

 
Equations (4.6) and (4.7) show that the skewness 
and the kurtosis are free of θ . Theorem 4 shows 
that when 1α ≥  (or 1α < ), the non-central 
moments of gamma-Pareto distribution is 
bounded below (or above) by the non-central 
moments of the Pareto distribution. 
 
Theorem 4 

Let X be a random variable that follows 
the gamma-Pareto distribution. If 1α ≥ , then 

( ) / (1 )s rE X rcθ≥ −  and if 1α < , then 

( ) / (1 )s rE X rcθ< − . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem 4 Proof 

Because 0 1rc< <  or 0 1 1rc< − <  

this implies that for 1α ≥ , (1 ) 1rc rcα− ≤ −  

and for 1α < , (1 ) 1rc rcα− > − . Thus, if 

1,α ≥  then 1(1 ) (1 )r rrc rcαθ θ− −− ≥ −  and if 

1α < , then 1(1 ) (1 )r rrc rcαθ θ− −− < − . 
Table 2 provides the mode, mean, 

variance, skewness and kurtosis of the gamma-
Pareto distribution for various values of α  and 
c when θ = 1. For fixed α and θ , the mean, 
variance, skewness and kurtosis are increasing 
functions of c. For fixed c and θ , the mean, 
median and variance are increasing functions of 
α . When α  > 1, the following trends for the 
mode are observed: (1) it increases as c 
increases with fixed α  and θ , and (2) it 
increases as α  increases with fixed c and θ . 
Table 2 also shows that the skewness is always 
positive and for fixed α  and it increases rapidly 
as c increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Mode, Mean, Variance, Skewness and Kurtosis 
for Some Values of α  and c with 1θ =  (*: Undefined) 

α  c Mode Mean Variance Skewness Kurtosis 

0.5 

0.1 1 1.0541 0.0069 3.6850 27.6334 

0.2 1 1.1180 0.0410 5.5537 95.1825 

0.3 1 1.1952 0.1526 15.2326 * 

0.4 1 1.2910 0.5694 * * 

1 

0.1 1 1.1111 0.0154 2.8111 17.8286 

0.2 1 1.2500 0.1042 4.6476 73.8000 

0.3 1 1.4286 0.4592 16.4438 * 

0.4 1 1.6667 2.2222 * * 

2 

0.1 1.0952 1.2346 0.0383 2.2819 13.2512 

0.2 1.1814 1.5625 0.3364 4.4009 77.3004 

0.3 1.2596 2.0408 2.0851 26.1507 * 

0.4 1.3307 2.7778 17.2840 * * 

3 

0.1 1.1994 1.3717 0.0714 2.1075 12.0304 

0.2 1.3956 1.9531 0.8149 4.6209 98.2327 

0.3 1.5865 2.9155 7.1251 47.9991 * 

0.4 1.7708 4.6296 103.5670 * * 



GAMMA-PARETO DISTRIBUTION AND ITS APPLICATIONS 

86 
 

The deviation from the mean and the 
median are used to measure the dispersion and 
spread in a population from the center. If the 
median is denoted by M, then the mean 
deviation from the mean , ( )D μ , and the mean 

deviation from the median, ( )D M , can be 
written as  

( ) ( ) ( ) ( ) ( )

2 ( ) ( )

2 ( ) 2 ( ) .

D x g x dx x g x dx

x g x dx

G xg x dx

μ

θ μ

μ

θ

μ

θ

μ μ μ

μ

μ μ

∞
= − + −

= −

= −

 





 

(4.6) 
 

( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( )

2 ( ) 2 ( )

2 ( ) .

M

M

M

M

M

D M M x g x dx x M g x dx

M x g x dx E X M

MG M M xg x dx

xg x dx

θ

θ

θ

θ

μ

μ

∞
= − + −

= − + −

= + − −

= −

 






(4.7) 

 
Consider the integral 

1/ 1

( )

1
   ( / ) (log( / )) .

( )

m

m c

xg x dx

x x dx
c

θ

α
α θ

θ θ
α

−

=

Γ




 

(4.8) 
 
Using the substitution log( / )u x θ= , the 
equation (4.8) can be written as 
 

1( ) [ , ( 1) log( / )]
( )

m
xg x dx c m

θ

μ γ α θ
α

−= −
Γ , 

(4.9) 
 
and by using equations (2.3) and (4.9), the mean 
deviation from the mean is  
 

{ 1

1

[ , log( / )]
2

[ , ( 1) log( / )]
( ) ,  1,

( )

c

c
D c

γ α μ θ
μ

γ α μ θμ
α

−

−

  
 

− −  = <
Γ

 
and the mean deviation from the median is 
 

2 1
( ) 1 , 1 log , 1.

( )

MD M c
c

μ γ α
α θ

     = − − <     Γ      
 

Parameter Estimation 
When 1α < , the likelihood function for 

the gamma-Pareto distribution goes to infinity as 
θ  approaches the sample minimum (1)x ; thus, 

when 1α <  and θ  is estimated by (1)x , no MLE 

for α and c exists. A similar problem was 
studied by Smith (1985) who proposed an 
alternative approach for estimating the 
parameters as follows: If sample data 

1 2, ,..., nx x x  are observed, estimate the 

parameter θ  by the sample minimum (1)x  and 

then use the MLE method to estimate α  and c 
by excluding the sample minimum.  

Applying Smith’s method to obtain the 
MLE for the gamma-Pareto parameters, the log-
likelihood function for the gamma-Pareto 
distribution is given by 
 

{

( )}

(1)

(1)

(1)

1
(1)

(1) (1)

log ( , ) log ( ; , , )

log log ( ) log (1 )

  log( / ) ( 1) log log( / ) .

i

i

i
x x

x x

i i

L c g x x c

c x c

x x x x

α α

α α

α

≠

−

≠

=

= − − Γ − − +

× + −





(5.1) 
 
The derivatives of (5.1) with respect to α  and c 
are given by 
 

(1) (1)

log
log ( ) log log

i

i

x x

xL c
x

ψ α
α ≠

   ∂  = − − −      ∂     


(5.2) 
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(1)

2
(1)

log 1
log

i

i

x x

xL
c c c x

α
≠

  ∂ − = +    ∂    
 . 

(5.3) 
 
Setting (5.3) to zero and simplifying results in 
 

(1)

(1)

1
log( / )

( )
i

i
x x

c x x
n n α ≠

=
′−  , 

(5.4) 
 
where n′  is the frequency of (1)x . Equation 

(5.4) can be written as 
 

*
1

1c m
α

= ,                       (5.5) 

 

where 
(1)

*
1 (1)log( / ) / ( )

i

i
x x

m x x n n
≠

′= −  is the 

sample mean for (1)log( / )ix x  after excluding 

(1)x . 

Setting (5.2) to zero and using equation 
(5.5) results in  
 

* *
1 2( ) log( ) log( ) 0m mψ α α− + − = , 

(5.6) 
 

where 
(1)

*
2 (1)log(log( / )) / ( )

i

i
x x

m x x n n
≠

′= −  is 

the sample mean for (1)log(log( / ))ix x  after 

excluding (1)x . The MLE α̂  of α  is the 

solution of equation (5.6) and the MLE ĉ  of c 
can be determined by substituting the estimate 
α̂  in equation (5.5). 

The initial values for the parameters α  
and c can be obtained by assuming the random 
sample (1)log( / ), 1,...,i iY X x i n= =  are taken 

from the gamma distribution with parameters α  
and c. By equating the population mean and the 
population variance of gamma distribution (with 
parameters α  and c) to the corresponding 
sample mean and sample variance of 

, 1,...,iy i n=  and then solving for α  and c, 

the initial values are 2
0 /yc s y=  and 

2 2
0 / yy sα = , where 2

ys  and y  are the sample 

variance and the sample mean for 1y , 2y , …, 

ny . 

 
 
Lemma 3 

The Fisher information matrix for the 
gamma-Pareto distribution when θ is known is 
given by 

2

( ) 1/

1/ /

c
I n

c c
ψ α

α
′ 

=  
 

.                (5.7) 

 
Lemma 3 Proof 

The Fisher information matrix is defined 
by [ ]ijI I=  with 

( )
2

log ( , )ij i
i j

I E L x τ
τ τ

 −∂ =  ∂ ∂  


, where 1τ α=  

and 2 cτ = . To find I, the second derivatives of 

1
log ( , ) log ( ; , , )

n
ii

L c g x cα θ α
=

= , are 

needed. These can be obtained from the 
derivatives of (5.2) and (5.3), where (1)x  is 

replaced by θ  and the sums are taken form 
1i =  to n. The second derivatives of 

log ( , )L cα  can be written as  
2 2log / ( )L nα ψ α′∂ ∂ = − ,  

 
2 log / /L c n cα∂ ∂ ∂ = − ,  

and  
2 2 2 3

1
log / 2 log( / ).

n
ii

L c n c c xα θ− −
=

∂ ∂ = −   
 
From Lemma 1, it may be concluded that

(log( / ))E X cθ α= . The results of (5.7) follow 
from taking the negative expected values of the 
second derivatives. 
 
Theorem 5 

The variance-covariance matrix for the 
gamma-Pareto distribution when θ  is known is 
given by  
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2

1

( ( ) 1) ( )

c
n c c

α
αψ α ψ α

− 
Σ =  ′ ′− − 

. 

(5.8) 
 
Theorem 5 Proof 

The result follows by taking the inverse 
of the Fisher information matrix in (5.7). From 
(5.8), the variance of the ML estimates α̂  and 
ĉ are respectively given by 
 

2

ˆvar( )
( ( ) 1)

and

( )
ˆvar( ) .

( ( ) 1)

n

cc
n

αα
αψ α

ψ α
αψ α

=
′ −

′
=

′ −

            (5.9) 

 
From (5.9), the variance of α̂  does not depend 
on the parameter c. Also, as c increases the 
variance of ĉ  increases. Using the 

approximation 1 2 31 1
( )

2 6
ψ α α α α− − −′ + +  

(Johnson, et al., 1994, page 357), equations (5.9) 
can be approximated as 
 

3

2 2

6
ˆvar( )

(3 1)

and

(6 3 1)
ˆvar( ) .

(3 1)

n

cc
n

αα
α

α α
α α

+

+ +
+





      (5.10) 

 
 
Based on the Central Limit Theorem, 

ˆ ˆ( ) / ( ) (0,  1)dse Nα α α− ⎯⎯→  and 

ˆ ˆ( ) / ( ) (0,  1)dc c se c N− ⎯⎯→  where ˆ( )se α  and 

ˆ( )se c  are the standard errors of α̂  and ĉ  
respectively. 

In the following, the uniformly 
minimum variance unbiased estimator 
(UMVUE) is derived for the parameter c 
assuming that the parameters α  and θ  are 
known. The following theorem by Lehmann & 
Scheffé (1950) is needed in order to find the 
UMVUE for the parameter c. 

 
Theorem 6 

Let 1 2, ,..., nX X X  be a random sample 

from PDF ( , ), .g x β β ∈ Ω  Let T be a sufficient 

statistic for β  and let the family 

{ ( , ), }g T β β ∈ Ω  of probability density 
functions be complete. If there is a function of T 
that is an unbiased estimator of β , then this 

function of T is the UMVUE of β . 
 
Lemma 4 

If α  and θ  are known for the gamma-

Pareto distribution, then 
1
log( / )

n
ii

T x θ
=

=  is 

a sufficient statistic for the parameter c. 
 
Lemma 4 Proof 

Let 1 2, ,..., nX X X  be a random sample 

from the gamma-Pareto distribution, the joint 
density function is then given by 

 
1/ 1

1 2
1

1 2

( / ) (log( / ))
( , ,..., | )

( )

                          ( , ) ( , ,..., )

cn
i i

n
i i

n

x xg x x x c
x c

k c T h x x x

α

α
θ θ

α

−

=

=
Γ

=

∏
 

where { }1( , ) exp log (1 )k c T n c c Tα −= − + + , 

{
}

1 2( , ,..., ) exp log( ( ))

                                 ( 1) log(log( / ))

n

i

h x x x

x

θ α
α θ

= − Γ

+ −

 and 
1
log( / )

n
ii

T x θ
=

= . Thus, by using the 

factorization theorem, the statistic T is sufficient 
for the parameter c because the parameters α  
and θ  are known. 
 
Theorem 7 

If α  and θ  are known for the gamma-
Pareto distribution, then 

1
1 1

( ) log( / )
n

ii
m n xα θ−

=
=   is the UMVU 

estimator for the parameter c. 
 
Theorem 7 Proof 

By using Lemma 4, 

1
log( / )

n
ii

T x θ
=

=  is a sufficient statistic for 

c. It follows from Lemma 1 that 
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1
log( / )

n
ii

T x θ
=

=  has a gamma distribution 

with parameters nα  and c . Because gamma 
density belongs to the exponential family, this 
implies that { ( , ), 0}g T c c >  is a complete 

family where ( )g x  is the gamma-Pareto 

density. Also from Lemma 1, 1( )E m c= , hence 

1m  is an unbiased estimator for parameter c. By 

applying Theorem 6, the statistic 1m  is the 

UMVUE of c. From equation (5.5), it is 
interesting to note that when θ  ( (1)x= ) and α  

are known, the MLE of c is the UMVUE of 
parameter c. 
 
Applications 

The gamma-Pareto is applied to three 
data sets: The first data set (see Table 3) was 
analyzed by Akinsete, et al. (2008) and 
represents Floyd River flood rates for the years 
1935-1973 in Iowa, USA. The second data set 
(see Table 5) is from Mahmoudi (2011) and it 
represents the fatigue life of 6061-T6 aluminum 
coupons cut parallel with the direction of rolling 
and oscillated at 18 cycles per second. The third 
data set (see Table 7) was analyzed by Eugene 
(2001) and represents the observed frequencies 
for Tribolium Confusum Strain #3. The 
maximum likelihood estimates, the log-
likelihood value and the AIC (Akaike 
Information Criterion) values for the fitted 
distributions are reported in Tables 4, 6 and 8. 

Akinsete (2008) fitted the data in Table 
3 to the beta-Pareto distribution and compared 
the result with the Pareto and the generalized 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pareto distribution (Pickands, 1975). Results are 
shown in Table 4, along with the result obtained 
by fitting the gamma-Pareto distribution to the 
data. The results show that both beta-Pareto and 
gamma-Pareto distributions provide adequate fit 
to the data. Because the gamma-Pareto 
distribution has only three parameters, this is an 
advantage for using it over the four-parameter 
beta-Pareto distribution. In examining the 
distribution of this data, observe that the data has 
a reversed J-shape distribution; this suggests that 
the gamma-Pareto distribution performs well in 
modeling reversed J-shape distribution. Figure 4 
displays the empirical and the fitted cumulative 
distribution functions and supports the results 
shown in Table 4. 

Mahmoudi (2011) proposed a five-
parameter beta generalized Pareto distribution. 
He fitted the data (shown in Table 5) and 
compared the result with beta-Pareto, three-
parameter generalized Pareto, Weibull and 
Pareto distributions. To conserve space, only the 
results of fitting beta generalized Pareto and 
beta-Pareto from Mahmoudi (2011) are reported 
in Table 6 along with the result of fitting the 
gamma-Pareto distribution to the data. The 
results in Table 6 indicate that the gamma-Pareto 
distribution provides the best fit among the 
distributions. The distribution of this data 
indicates that the data is approximately 
symmetric. This example suggests that the 
gamma-Pareto distribution does very well in 
fitting the distribution of data which is 
approximately symmetric. Figure 5 displays the 
empirical and the fitted cumulative distribution 
functions and supports the results shown in 
Table 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Annual Flood Discharge Rates of the Floyd River Data 
 

Years Flood Discharge (ft3/s) 

1935-1944 1460 4050 3570 2060 1300 1390 1720 6280 1360 7440 

1945-1954 5320 1400 3240 2710 4520 4840 8320 13900 71500 6250 

1955-1964 2260 318 1330 970 1920 15100 2870 20600 3810 726 

1965-1973 7500 7170 2000 829 17300 4740 13400 2940 5660  
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Table 4: Parameter Estimates for the Floyd River Flood Data 
 

Distribution 
Parameter 
Estimates 

Log 
Likelihood 

AIC 

Pareto 
k̂ = 0.4125 

q̂ = 318 
-392.81 789.62 

Generalized 
Pareto 

k̂ = -0.3071 

q̂ = 4520 
-379.55 763.09 

Beta-Pareto 

â = 6.1550 

b̂ = 24.2434 

k̂ = 0.0926 

q̂ = 318 

-365.45 738.9 

Gamma-
Pareto 

â = 5.1454 
ĉ =0.4712 

q̂ = 318 
-365.81 734.9 

 
 
 

Figure 4: CDF for Fitted Distributions for Floyd River Flood Data 
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Table 5: Fatigue Life of 6061-T6 Aluminum Coupons Data 
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Table 6: Parameter Estimates for the Fatigue Life of 6061-T6 Aluminum Coupons Data 

Distribution 
Parameter 
Estimates 

Log Likelihood AIC 

Pareto 
â =1.579 

q̂ = 70 
-548 1100 

Beta Pareto 

â = 485.47 

b̂ = 162.06 

k̂ = 0.3943 

q̂ = 3.91 

-458.65 925.3 

Beta- Generalized Pareto 

â = 12.112 

b̂ =1.702 

m̂ = 40.564 

k̂ = 0.273 

q̂ = 54.837 

-457.85 925.7 

Gamma-Pareto 
â = 15.0209 
ĉ =0.04258 

q̂ = 70 
-448.53 900.6 
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Eugene (2001) proposed the beta-normal 
distribution and termed it the generalized normal 
distribution. Eugene (2001) fitted the data in 
Table 7 and compared the result with gamma 
distribution and Lagrange-gamma distribution 
proposed by Famoye and Govindarajulu (1998). 
These results are reported in Table 8 along with 
the result of fitting the data to the gamma-Pareto 
distribution. The results from the log-likelihood 
and AIC values indicate that the gamma-Pareto 
and the generalized normal distributions fit the 
data best. Figure 6 displays the empirical and the 
fitted cumulative distribution functions. Figure 6 
shows that the generalized normal distribution 
does not fit the left tail very well, however, the 
gamma-Pareto distribution does provide a good 
fit. The distribution shows that the data has a 
long right tail. This example suggests that the 
gamma-Pareto distribution does very well in 
fitting the distributions of data with a long right 
tail characteristic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
This article defined the gamma-X family and 
studied a special case of the gamma-X family, 
the gamma-Pareto distribution. Various 
properties of the gamma-Pareto distribution 
were investigated, including moments, 
deviations from the mean and median, hazard 
function, unimodality, entropies and Fisher 
information matrix. Results of the uniformly 
minimum variance unbiased estimator was 
obtained for one of the shape parameters of the 
gamma-Pareto distribution. Three real data sets 
were fitted to the gamma-Pareto distribution and 
compared with other known distributions. 
Results show that the gamma-Pareto distribution 
provides a good fit to each data set and suggests 
that the gamma-Pareto distribution can be a 
good model to fit data with a reversed J-shape, 
approximately symmetric and long right tail 
characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: CDF for Fitted Distributions for Fatigue Life of 6061-T6 Aluminum Data 
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Table 7: Observed frequencies for Tribolium Confusum Strain # 3 

x-Values Frequency x-Values Frequency x-Values Frequency 

55 3 125 51 195 1 

65 20 135 20 205 2 

75 53 145 11 215 0 

85 78 155 6 225 1 

95 86 165 4 235 1 

105 86 175 7 245 1 

115 68 185 5   

 
 
 

Table 8: Parameter Estimates for the Tribolium Confusum Strain # 3 Data 

Distribution 
Parameter 
Estimates 

Log 
Likelihood 

AIC 

Gamma 
â = 15.15 

b̂ = 6.92 
-2335.31 4674.62 

Lagrange-
gamma 

r̂ = 31 
l̂ =0.36842 

q̂ = 0.02913 

-2314.2 4640.41 

Generalized 
Normal 

â = 28.68 

b̂ = 0.20 

m̂ = 30.65 
ŝ = 22.04 

-2290.85 4597.71 

Gamma-
Pareto 

â = 6.3513 
ĉ =0.09743 

q̂ = 55 
-2297.7 4599.4 
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