
Journal of Modern Applied Statistical
Methods

Volume 2 | Issue 1 Article 4

5-1-2003

The Way Ahead In Qualitative Computing
Tom Richards
QSR International

Lyn Richards
QSR International

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Invited Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Richards, Tom and Richards, Lyn (2003) "The Way Ahead In Qualitative Computing," Journal of Modern Applied Statistical Methods:
Vol. 2 : Iss. 1 , Article 4.
DOI: 10.22237/jmasm/1051747440
Available at: http://digitalcommons.wayne.edu/jmasm/vol2/iss1/4

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2/iss1/4?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Stat istical Methods Copyright 2003 JMASM, Inc.
May, 2003, Vol. 2, No. 1 , 16- 26 1538 – 9472/03 /$30.00

16

The Way Ahead In Qualitative Computing

Tom Richards

QSR International
Melbourne, Australia

Lyn Richards

Specialized computer programs for Qualitative Research in social sciences have greatly changed ways of
doing QR, the reliability and comprehensiveness of results, the ability to inspect and challenge a researcher’s
working, and the relationship with quantitative methods in social research. This article explores these claims
in the context of N6 (NUD*IST) and NVivo, the two programs designed by the authors; and considers
possible future developments in the field.

Key words: NUD*IST, NVivo, qualitative research, qualitative computing

Introduction

Qualitative Research (QR) has always centered on
the analysis of conversational interviews, field
notes and recorded conversations. Its raw data are
people talking, and the people can be the
researchers with their field notes and
conversational turns, as much as the interviewees
or subjects. Interviews may be one-on-one, or in
groups, the records may be live transcripts or
historical recollections. Questionnaires may be
used, but mainly as topic prompts expecting prose
responses not ticked boxes.

Tom Richards is Chief Scientist at QSR
International, and designer of NUD*IST and
NVivo. He has a D. Phil. in Logic from Oxford
University, and many publications on logic,
computer science and methodology. Lyn Richards
is founder and Director of Research Services at
QSR. She has published books and papers on
family sociology, qualitative research and QSR’s
software. This article is based on a presentation
given to the American Educational Research
Association, SIG Professors of Educational
Research, Chicago, April 21, 2003.

 The methods and techniques of doing QR
are often corralled into a number of schools,
Ethnography, Grounded Theory, Phenomenology,
and others. From our point of view these are seen
as laying stress on different parts of the research
process, and the aim of a developer of software for
QR is to ensure there are enough tools to keep
them all happy. Their actual practices, viewed as
tool-users, have much in common: they just prefer
to make different products or build them in
different ways because they have different
research goals.
 QR was done manually until about twenty
years ago with the rise of the word processor.
Preferred techniques involved typing up the
interviews or other raw data, and coding or
flagging passages about topics of interest with the
goal of gathering together all the passages on a
given topic. Coding was done by making marginal
notes, or photocopying into file folders, or making
notes on system cards. This usually required a
messy desk or a large living-room floor as a
sorting ground. Needless to say these practices
were rickety: clerical and management processes
were onerous and scarcely fail-safe. Whilst you
might do your initial coding thoroughly, it
becomes hard to be sure, for example, that you’d

THE WAY AHEAD IN QUALITATIVE COMPUTING 17

compared thoroughly how a particular viewpoint
is presented by people with different
demographics or sets of opinions – just because
sorting the data into multiple such groups, often
cross-cutting, then trying to do side-by-side
comparisons, is so hard. Even trying to find
vaguely remembered passages about this or that
was a matter of luck. These and many other such
difficulties we could call the access problem.
 Moreover there is the revision problem.
Revising your coding in the light of experience
was virtually impossible because of the rigidity of
handling coding imposed by paper records and
coding management. Using manual methods also
meant it was impossible to link the data
systematically with quantitative research.
Demographic data about respondents, or ticked
response boxes, could be analyzed in SPSS; but
studying interesting qualitative issues arising in
conversational interviews with the respondents, in
a way that sorted and compared those discussions
using the demographic data, was very difficult.
Only simple relations could be effectively
investigated. Call this the qual-quant problem.
 All of this meant that effective QR was
best done with small data sets (by no means a bad
thing, n is not often an important parameter in
QR), or conclusions were impressionistic and
bolstered by “juicy quotes” rather than
dispassionate analyses. Checkability and the
reaching of agreement suffered too: disputes over
the conclusions reached by a researcher were hard
to resolve since there was no way of reviewing the
analysis steps. It was more a matter of starting
again with the raw data.

The Rise of Qualitative Computing
 If the above characterized QR without
computers, how did computing help? Early
experiments with electronic files in a word
processor improved on the manual situation.
Codes could be inserted [like this] in the text, and
word search would find all the instances of a code,
enabling inspection of their passages. This greatly
ameliorated the access problem, but clerical
organization of codes, and their comparison,
remained elusive. These problems led to the rise of
the early dedicated QR programs, which basically
provided tools for coding text documents, storing
the coding references (usually to lines), and using
them to find and display all passages referred to by

a given code such as ‘playground bullying’. From
the first dedicated QR programs, simple Boolean
searches were supported, thus you could find all
passages coded by both ‘playground bullying’ and
‘fear of going to school’. These features were
much prized, because researchers could explore,
with confidence of completeness, hunches about
relationships between different situations or
concerns or attitudes; and that is the way
qualitative theories are built and tested.
 This process came to be known as code-
and-retrieve, and because it was computationally
simple to program, became the hallmark of
computer-based QR. As we shall see however, this
was a somewhat limiting approach to QR. For one
thing, researchers couldn’t edit the text of their
data any more, because to do so would invalidate
the coding references made to the text passages;
yet flexibility of amending, adding to, fleshing out,
the text was a desirable tool for qualitative
researchers that word-processing had provided.
 Nevertheless code-and-retrieve has
formed the core of all QR programs to date. Many
of the current software offerings however provide
much more than that. This, and the future, is what
the rest of this paper will look at, in the context of
QSR’s two QR programs.

Methodology
QSR has two products for qualitative researchers,
NVivo and NUD*IST (Non-numerical
Unstructured Data Indexing Searching and
Theorizing, a name given when it was being
programmed by one of us (TJR) for sole use by the
other of us). Its latest version is known as N6 in an
attempt to suppress a name, which, however
memorable, definitely should not be searched for
using a Web search engine! NUD*IST was first
used by LR in the early 1980s, and went
commercial in 1986 with the sale of one license
(on a university mainframe and with scroll-mode
display!). NVivo was launched in 2000. These are
very different products, and aimed to support
different work practices, as will be described
below. Right now however, our aim is to set out
how these products both go beyond the code-and-
retrieve paradigm just described.

Edit-While -You-Code
 We pointed out above that a restriction
imposed by code-and-retrieve was that you

TOM & LYN RICHARDS

18

couldn’t edit a document – it was frozen. The
reason: editing would, by adding or removing text,
invalidate the references made by coding to
passages in the document. Add a hundred
characters at a given point and every reference by
every code to passages later in the document will
now pick up text a hundred characters before what
it used to. Back in the days of paper the problem
was different and not so bad. If you coded by
photocopying passages to folders of codes, then if
you altered the original the coded copy in the
folder was unaltered, but might no longer be
faithful to the altered original.
 Researchers do want to make corrections
to interview transcripts, to do partial transcription
and flesh it out later as the direction of research
indicates, to edit out privacy-infringing material,
to add clarifications and greater detail to field
notes. Researchers also want to code while they
are typing up the transcription, because that’s
often when they have their best thoughts about
what the text is saying and implying and hinting
and suggesting. The restriction that all your data
documents must be complete and final before you
dare to add one code, is a strait-jacketing QR
cannot accept.
 Aside from the ability to add text at the
end of document, which doesn’t upset any existing
coding, N4 and onwards has provided the ability
to edit individual lines or paragraphs – the text
units that are the smallest chunks of text that can
be coded. NVivo however codes all the way down
to individual characters, and moreover supports
rich text documents, not just plain text as in N6.
Despite this, NVivo supports full editability. Its
Document Browsers, where you look at the text of
a document, have full editing controls plus
controls over the “richness” of the text – font,
letter style and color and size, etc. And using the
text editor does not in any way invalidate existing
coding: NVivo’s way of recording coding keeps
up with editing changes. So for the first time ever,
researchers can feel completely free to modify
their documents, and to code them while writing
them up.

Nodes – Going Beyond Code-and-Retrieve
 The world of QR, including QR
computing, talks of codes as the labels attached to
and describing the contents of, passages of text.
The process of coding is the labeling of the text,

and retrieval of a code involves presenting,
somehow or other, the passages referenced by the
code.
 But both of QSR’s products store coding
at nodes. These are containers for topics, ideas,
places, people, and attitudes, indeed anything that
may be relevant to the QR project at hand. There
may, for example, be a node ‘Schools’ which has
under it sub-nodes for the schools in the project
‘Valley High’ and ‘Hilltop Primary’ for example.
‘Valley High’ might contain just a memo written
by the researcher describing the school and its
problems, and ‘Schools’ contain nothing – it’s
there just as a generic locator for the nodes for
individual schools (this demonstrates why we
chose the word ‘node’ for these entities, and why
the two programs can organize nodes in a tree-
structured hierarchy like a library catalog or a
taxonomy).
 Many nodes will however contain coding.
If an interviewee talked about Hilltop Primary, it’s
appropriate to code that passage at the ‘Hilltop
Primary’ node. And of course some nodes are
intended primarily for coding, such as ‘angry’
(marking where interviewees displayed anger) or
‘reports of bullying’.
 Nodes can also be used to mark cases. If
we have ten interviewees, who got interviewed
individually a couple of times then in groups, it is
useful to collect everything each individual said in
one place. This gives rise to case nodes ‘Mary’,
‘Joe ’, etc., instances of the case type ‘Interviewee’.
 It’s a small step beyond that to use trees of
nodes to represent demographic data – called base
data trees in N6. (NVivo represents demographic
data in tables of so-called attributes). Thus we can
have a ‘Religion’ node, with sub-nodes
‘Christian’, ‘Hindu’, ‘Jewish’, etc. Then if Joe is
Jewish, we copy all the coding at the ‘Joe’ case
node to the ‘Jewish’ node. And the same goes for
any other Jewish interviewee case. Why do this?
Because now, using the ability to make Boolean
combinations of coding at nodes, we can
immediately find everything said by Jewish
interviewees. And if we have coding at ‘Hilltop
Primary’ and ‘reports of bullying’ we can find all
reports by Jewish interviewees about bullying at
Hilltop Primary.
 Both N6 and NVivo support importing
and exporting such demographic data as tables.
For example an SPSS table, whose rows are the

THE WAY AHEAD IN QUALITATIVE COMPUTING 19

Interviewee cases ‘Joe’ etc, and whose columns
are variables such as ‘Religion’ etc., can be
imported into N6 to create and code up an entire
base data tree. Conversely such a tree (which may
be created inside N6 rather than imported) can be
exported as a table to any table -handling program.
NVivo does this more directly with its attribute
tables; but in either program a researcher might
create a base data type of tree that records research
results, perhaps various categories of social,
political or educational opinion the researcher has
labeled the interviewees with as a result of careful
analysis of what they’ve said. An example would
be, for parents or teachers discussing ideal
curricula: ‘Curriculum priority/vocational',
‘Curriculum priority/all-rounder’ and ‘Curriculum
priority/none’. The exported table would record
which case (interviewee) belongs to each category.
 Nodes with coding represent views onto
the textual data of a project that are orthogonal to
that provided by documents. Any QR program will
let you view the contents of a document, e.g. the
first interview with Joe. In NVivo and N6, a
Document Browser, like an edit window in
Microsoft Word, shows you all the text in that
document. A node by contrast refers to all
passages that have been coded at it. How do you
see such passages? In both N6 and NVivo, and
unique to these programs, you can view everything
coded at a node (in a browser window) in just the
same way as you can view a document. This
contrasts with being taken to each document in
turn with the coded passage highlighted, or a
series of cards holding the different passages. In
the Node Browser, you can ask to see not only the
passages coded, but as much of the context of
those passages as you wish, if that helps to
understand them.
 Now when you’re browsing a document,
you can of course code it. Both products provide
comprehensive tools for making, viewing and
modifying coding in their Document Browsers.
But uniquely, they also provide exactly the same
coding facilities in their Node Browsers. Since
Node Browsers are the place to find and compare
nuances in what the node is about, and the place to
find what people are or are not talking about in the
context of the topic of that node; the Node
Browser is the place to code up those nuances and
found topics – leading to lots of rich and deep
analysis that might well be unrealizable otherwise.

This process is called Coding On, and is made
possible by “live” Node Browsers that display
their text in context and support coding.
 Difficult in the days of paper, the advent
of the live Node Browser has made Coding On a
simple and universally available tool for
qualitative researchers, who are still exploring the
power it gives them.

Linking: Making the Web of Associations
 Edit-while-you-code and the live Node
Browser are, in the end, ways of removing fetters
from coding. Now we will look at a bunch of tools
that are not about coding at all, although the Node
system and coding can certainly interact with
them. These tools are about making links or
associations, involving documents, nodes and
other things.

Memos and Links
 Most qualitative researchers want to keep
notes, commonly called memos, about their data
and idea. If you have a one-on-one interview with
Joe, you may want to have a memo about how Joe
behaved in the interview, your thoughts about Joe,
and the like. Most QR programs will support
writing such a memo, attaching it to Joe’s
interview, and adding to it and revising it later.
 Such memos can be a valuable source, or
indeed explicit repository, of research insights –
where the researcher records their evolving
thinking about aspects of the project, for instance
the rise of a climate of fear and the many ways it
interferes with self-esteem. In such a case it seems
obvious to link such a memo not to some
interview, but to the nodes on fear and self-esteem.
N6 and NVivo support that. But more importantly,
there is a felt need to code such memos, at
anything of research importance they may say. N6
supports this by allowing a memo to be turned into
a data document where it can be coded. Obtaining
first-class status, if you like. In NVivo, all memos
have first-class status anyway. They are no
different from any interview document – except
that they are called memos.
 A memo can be linked to several nodes
and documents, so that when you are browsing
them you can see they have memos and you can
open them in new Browsers. In addition a memo
can be linked to any point in the text of a
document where it may be relevant, so you see a

TOM & LYN RICHARDS

20

little link icon in the text and can access it from
there. These in-text links, and others we will be
talking about, are all visible in Node Browsers too,
and can be accessed from there. And if a memo is
rather general in nature, such as a research plan or
summary, it needn’t be linked anywhere at all, but
will still be listed along with all other documents
in NVivo’s user interface. After all, it is a
document. And since it’s a document, it can
contain links of its own. In this way we can build
up a web of links between documents and
documents, memos and other documents, nodes
and memos or documents. For many researchers,
these provide a new way, different from coding,
for associating and exploring ideas, topics and
themes.
 Links can also be to nodes, which
provides a sort of converse of coding. If a passage
in an interview refers to Joe’s peculiar views about
sport in the school curriculum, we can insert a link
right there in the text, called an extract, to the
passage in Joe’s interview where he expresses
those views. When you set up an extract, the
passage being extracted gets put into a node, the
extract node, which is what the link in the text
jumps you to.

Hyperlinking to Other Data
 So now in NVivo we can put into the text
a fabric of links, joining documents (whether
memos or not) to each other, nodes to each other,
and between documents and nodes. In addition to
such links, marked by little icons in the text, there
are more standard hyperlinks to short comments
or, significantly, to computer files and web
documents. This means that material of any sort at
all can be referenced at any place in a document –
pictures, web pages, spreadsheets, movies, … and
opened there in its appropriate program. This
provides the ability to code such linked items as
wholes, by simply coding the hyperlink in the
document. In the case of audio and video files, by
judicious use of programs that will “snip up” such
files, you can attach just the relevant part of a
video, for example where Joe is getting worked up
about school sport, to the hyperlink. For many
researchers, this way of handling the coding of
videos is preferable to coding the video file
directly. Moreover such links, like document and
node links, are always visible and live when
presented in Node Browsers, not just in the

editable Document Browser. The ability to make
associations, and to link the web of associations
with nodes and coding, is now comprehensive.

Beyond Retrieval: Asking Questions
 Retrieving the text coded at a node may be
interesting and illuminating, and lead to a lot of
valuable coding-on; but it doesn’t show you
anything new – you did all that coding. But
finding simple Boolean combinations of coding
does offer new knowledge. Simple intersection
(and) is particularly effective: Given a
demographic code such as ‘gender/male’ and a
“thematic” node such as ‘bullying’ intersection
will show us everything the males have said about
bullying. We can by the same procedure put that
result alongside what the female interviewees have
said about bullying – a contrast likely to be
productive of insights to code-on.
 A couple of thematic nodes such as
‘playground’ and ‘bullying’ can be intersected to
see what’s said about bullying in the playground,
and a similar search will lead to a contrast with
bullying in the classroom. Using the Node
Browser facility to see retrievals in context will
counteract the way that intersection narrows down
its finds.
 Several nodes need to be intersected to
answer some questions, such as “What do Jewish
fathers have to say about playground bullying?”
(intersecting four nodes).
 N6 and NVivo handle all these searches
using a facility called a Search Tool. This supports
all other Boolean search operators, so that for
example you can ask “What is said about bullying
that is not in the playground?” A large range of
proximity searches are also provided so that you
can ask questions like “Amongst the people who
talk about bullying, what do they say about fear of
attending school?” – a simple example. The fact
that nodes can be organized hierarchically for
cataloguing purposes is not forgotten either. So if
the ‘curriculum priority’ node has sub-nodes
‘vocational’, ‘all-rounder’ and ‘ none ’, you can ask
to retrieve all the curriculum priority views (nodes
below the ‘curriculum priority’ node) and see
them together.
 Well, where, how, do you see them
together? From the earliest versions of NUD*IST,
and in NVivo, the results of any search for any
combination of coding has always been stored at a

THE WAY AHEAD IN QUALITATIVE COMPUTING 21

node. This sort of reflexivity, where results of
analyses get stored as new data, is called system
closure. It allows the researcher to view the results
in a Node Browser, and hence code on – a very
fruitful activity with the results of interesting
searches. It also allows new questions to be asked
involving the search results at any later date. For
instance, having stored the answer to “What do
Jewish fathers have to say about playground
bullying?” as a node, you might ask “Amongst the
Jewish fathers who spoke out on playground
bullying, what do they have to say about other
forms of bullying?” – a proximity search. Such
questions are crucial in QR, but how would you
get answers to them in a paper-and-file-cabinet
research project?
 System closure can have significant
effects. Consider text search for example, which is
supported in comprehensive ways in both
products; involving pattern specifications as well
as search strings, and in the case of NVivo,
approximation searches to allow for misspellings
and the like. Given system closure, text search is
presented not merely as a way of displaying the
next match in the next document; but as a way of
collecting all the finds together, optionally in their
sentence or paragraph context, and storing them at
a node. This not only allows for the sort of coding-
on described above, but also means that text
search can be brought into the sort of
combinatorial searching just described, since the
node holding text search results can be input to a
Boolean, proximity or other search. It also means
that text search can be used as the first rough pass
for coding. You make a node holding the passages
found by searching for ‘Napoleon’ and
‘Bonaparte’, then add to that by coding when you
find indirect references to him.
 When you have such comprehensive
search tools available, enabling you to ask just
about any question expressed in terms of nodes in
the project, the task of designing a coding system
becomes very much easier, and the resulting
system far more flexible. Without such tools,
you’d need to ensure you’ve got all the different
responses well catalogued by coding ‘Joe on
playground bullying’, ‘Joe on classroom bullying’,
‘Henry on playground bullying’, ‘Jewish fathers
on classroom bullying’; and so on repetitively to
create a morass of combinations of topics and
demographics. And all you could do in the end

would be to retrieve them, and asking novel
questions like “Do older parents have different
views on the effect of teacher discipline on the
control of playground bullying than younger
parents?” would not be possible. You’d simply
have to go back to your documentary data and
code for that from the beginning.
 Whereas, aware of the power of the search
tools, you need to code only for some
demographics amongst parents interviewed, and
for ‘parent’, ‘bullying’, ‘discipline’, ‘teacher’,
‘playground’, ‘classroom’; then you can ask the
questions in the previous paragraph and many
others. For instance you find everything said on
playground bullying by intersecting ‘playground’,
holding everything said about playgrounds and
happenings in them, with ‘bullying’, holding
everything said about bullying. This makes for
simple-to-code, clean, easily organizable node
systems that lend themselves to powerful
searching, and the crucial ability to make
unforeseen searches.
 A final but very powerful feature of
searches needs to be mentioned. Most of the
search operators such as intersection can be
applied to not just a pair of nodes (to find their
intersection) but to two groups of nodes to create a
table or qualitative matrix of their pairwise
intersections. For example, to find the views of
parents of different religious persuasion on the
different curriculum priorities, you take the node
‘Religion’, (below which are ‘Jewish’ etc.) and the
node ‘Curriculum priority’ (below which are
‘vocational’ etc.) and you get a table whose cells
show what everyone of each religion has said
about each curriculum priority. The matrix is
stored as coded data, with each cell effectively a
node that can be viewed in a Node Browser, where
it can be coded-on, used as input to some other
search, and so on. A table of numerical data on the
cells such as amount of text coded, can be
exported to a table -handling program such as
SPSS (if the researcher thinks that might be
statistically useful data!).
 The above outline gives an insight into
what N6 and NVivo can do, and a taste of what
it’s like to work in such a program. There is a
great deal more that can be said, but these are
complex and powerful programs, and it would be
best to visit the literature on them.

TOM & LYN RICHARDS

22

How Do N6 and NVivo Differ? Two Worlds of
Work.
 In spite of all the common features and
tools described above, N6 and NVivo are two
rather different products that address two rather
different ways of working. One simple example
has been mentioned: demographics in N6 are
handled in base data trees, but in NVivo in tables
of attributes of documents or nodes.
 The best way to sum up the differences
between the two is that N6 and its forebears are
designed for rapid access to textual data via
coding, whereas NVivo can handle very complex
data with a large variety of tools. Think of NVivo
as flexible and subtle, suited for deep analyses as
in a typical university PhD project; and N6 as
containing a single workmanlike tool that
nevertheless provides powerful analyses. Let us
spell these out.
 N6 requires its data documents to be plain
ANSI text, whereas NVivo handles rich text in any
font at all. Rich text is more attractive than plain,
and is needed of course to display hyperlinks and
link icons, but aside from that it gives the user the
opportunity to mix languages in a document, to do
“visual coding” by highlighting, and to use up to
nine level of heading to divide a document into
nested subsections. While this presents more
opportunities to the researcher, it comes at the
price of increased storage demands and slower text
handling. In large volumes that can matter,
whereas the plain text of N6 makes minimal
demands.
 For purposes of coding, N6 requires all
text to be divided sequentially into text units,
which the user can define as sentences, lines or
paragraphs. These are the smallest passages of text
that can be coded, whereas NVivo supports coding
right down to the character level. Fine coding
presents better opportunities for researchers
interested in the details of what people say,
enabling them to pick up words, phrases, and
stylistic quirks. At the other extreme, coding at the
paragraph level in N6 means it is easy to provide
coarse coding economically to enormous volumes
of text; and typically for large projects with
thousands of interviewees, paragraphs are quite
small enough thank you.
 The above two features, combined with its
ability to automate data handling (see below on
Command File scripting), mean that N6 can

handle enormously large projects, limited in
general only by the computer’s speed and storage.
We know of projects containing tens of thousands
of multi-page interview documents, handled well
by N6. NVivo would slow down unacceptably on
such a big dataset – the recommended maximum is
hundreds of documents if they are large and coded
to a reasonable level. Of course, even that is no
small project.
 N6 essentially uses one data type, nodes
and their coding, to handle everything – aside
from having documents of course. And there’s
only one analysis tool, the combinatorial Search
Tool described above. NVivo on the other hand
has not just nodes and their coding, but
comprehensive links as described earlier. It also
has sets for grouping documents or nodes in any
ways at all. And as mentioned, NVivo avoids the
need to use nodes and node trees to handle base
data by having a comprehensive attribute/value
data type. This is used to set up attributes for
documents or nodes, and to assign values to
individual documents and nodes – string, Boolean,
numeric or date.
 As to analysis tools in NVivo, sets have a
very comprehensive filtering editor, and attributes
have live table displays. In addition there is a
Show Tool, for finding lists of related items – all
the documents with a particular attribute value for
example, or all the nodes coding a given
document. And there’s an Assay Tool for looking
at the numbers of documents or nodes in a set that
have any selected feature – all presented in tabular
format with marginals, ready for export to SPSS or
other table-handling package.
 Moreover Nvivo’s Search Tool is more
complex than N6’s. Information can be located not
just by coding at a node, but in values of attributes,
and of course in text search finds. So NVivo’s
Search Tool supports Boolean, proximity and
Matrix searches, as in N6, but can take as input
attribute values and text-search patterns as well as
nodes with their coding. In N6 a question like
‘What do Jewish fathers say about classroom
bullying’ is framed as intersecting three or four
nodes (depending on whether you’ve coded
‘classroom bullying’ as one node or preferably
two inviting intersection). In NVivo the
intersection would be of attribute-values
‘Religion=Jewish’, ‘Role=father’, and nodes for
classroom bullying as before. And if you want to

THE WAY AHEAD IN QUALITATIVE COMPUTING 23

find where parents talk about the curriculum you
don’t have to do a ‘curriculum’ text search first,
save the node then intersect with a node or
attribute for being a parent. You just intersect the
latter with paragraphs containing the word
‘curriculum’.
 N6 has a scripting tool called command
files, allied with a Command Assistant that helps
researchers construct complex series of commands
to handle large jobs. These can be used over and
over again (with editing if need be to change
parameters) to cover repetitive work – in the one
project or in a series of essentially similar projects.
This provided great speedups for many parts of
project work. It can even be used to analyze the
comparative performance of many coders in a
collaborative or multi-site project. NVivo has no
scripting, but provides more interactive tools to
assist with some complex routines.
 NVivo contains a graphical tool for visual
exploration of a project’s data and their relations.
Nodes, documents, sets, attributes and their values
can be placed in layers of a graphical model, each
being live to its contents (click on a node in a
model to open its browser). In addition to the links
and groupings a researcher might draw in a model,
links can automatically be added to show which
nodes code a given document, which documents
have a particular attribute value, and the like.
Social scientists use “box-and-line” drawings to
display a theory or some process or organization in
the world, and the graphical modeler is designed
to give them great freedom in preparing such
diagrams, live to the underlying data. It makes for
a great presentation tool! The workmanlike N6
contains no such graphics.
 Both products have an associated “Merge”
program designed for combining two separate but
essentially similar projects into one. They look, for
example to see if two same-named documents in
the projects are in fact the same in which case their
coding can be combined, otherwise treat them as
different and change the name of one on merging.
N6 treats this merging as essentially a hands -off
“batch” process. You set the parameters and let it
run. Merge for NVivo however works far more
interactively. Before the merging you are taken
through an interactive alignment process of
examining all potential clashes (like same-named
documents) and deciding what to do. At the end of
alignment you can stop, having “sorted out” the

two parallel projects so they compare correctly in
their document, node and attribute systems, or you
can proceed to merge the two of them.
 N6, then, is simpler – in its plain text, in
its types of data (nodes only) and in its tools and
displays. However people working on deep subtle
projects, usually in a university research
environment, find that compared to N6, NVivo
really helps them to soar. It is exhilarating in its
richness and flexibility and ways of comparing
and showing information. People with simpler
needs prefer N6 – there is less to learn and the
power remains great. N6 is also the product to use
for large projects, which are becoming quite
common especially in government or semi-
government research organizations, where they are
closely allied with extensive quantitative surveys.
 These two types of work – simple but
powerful and scalable versus complex, flexible
and subtle, do effectively divide the field so that
most people moving into QR computing recognize
which program suits their needs best. These two
ways of working, two types of project, are so
different that it is unsatisfactory to try to provide
one program that handles both excellently –
instead you end up with a lowest-common-
denominator program.

How Qualitative Research is Changing
 One of the privileges of being the
designers of these programs is to travel the world
visiting universities and institutions in very many
countries to conduct workshops with users and
consult on their projects. This gives a unique
insight into how qualitative research is changing
under the impact of these computing tools over the
last decade. Here are some of the headline changes
we have observed since about 1990.
 The areas employing QR, especially by
computer, as a fundamental tool are broadening.
Initially projects and people seemed to come from
sociology, educational research, and (intriguingly)
areas of engineering. Now there is far more
qualitative research in business and organizational
studies and consulting, demographics-oriented
disciplines such as epidemiology, health sciences
(which itself has been a burgeoning discipline over
this period), and business-based survey research
e.g. market research. Interestingly, history and
literary studies remain somewhat aloof.

TOM & LYN RICHARDS

24

 QR by computer (especially if you’re
using NVivo) is used to handle a research project
end-to-end, not just to analyze filed notes or
interviews. All project documentation – project
plans, progress summaries, and importantly the
research summaries and reports and presentations
– are kept inside the NVivo project. This reflects
the murky dividing line between data and analysis,
and the value of using the linking and coding tools
in particular to relate “research” to “data”.
 Size of project has increased enormously.
Whilst the median size, perhaps a hundred
documents at most, remains unchanged, there is a
growing tail of huge projects driven by the desire
to provide some sort of qualitative analysis of
studies with very large n, and to inform
quantitative analysis with such data. Common
fields here are government studies, epidemiology
and population-wide health studies, global studies
by international organizations, and the like. Some
specific examples are learning-effectiveness
studies of students of a given age across all
schools in a state or country, district-by-district
analysis of the effects of a new country-wide
public safety system, and customer feedback
worldwide (where customers are governments) of
utilization of major infrastructural capital goods.
These may not excite the NVivo-using sociologist
who uses QR to develop a theory of social
behavior, but their importance, and their need for
QR, is great and usually of immediate relevance to
communities. They are also all projects suited for
N6.
 Qualitative-quantitative wars have largely
been replaced by collaboration. Some recalcitrant
pockets remain, but the change has been
remarkable. Of course for many projects on either
“side”, there is no need for collaboration; but the
incidence of collaborative or mixed-method
projects as they are being called, is increasing
sharply. The presence of software, particularly the
NUD*IST line over the years, seems to have been
quite instrumental here. Two reasons. One, the
qual-quant problem mentioned at the start of this
paper has been considerably ameliorated by table -
handling facilities within qualitative packages
combined with table import/export facilities. Thus
for example intriguing numerical patterns arising
from a matrix search pitching some demographic
attribute-values (themselves imported from survey
data) against a range of viewpoints elucidated in

interview conversations, can be investigated
statistically to test significance or to graph a
correspondence analysis.
 Reliability is being taken seriously. When
the access problem loomed large, researchers
tended to erect a number of “monster-barring”
defenses here – it’s a matter of insight and
experience irreplaceable by mere machines, for
example. Some defenses by qualitative researchers
were quite correct though, for example QR doesn’t
require a large n to give it reliability or validity
(though some funding committees still think so).
After all a biography (n=1) can provide
tremendous insight into a personality type, a
period of history, or a social situation. What
matters more is that a QR project carried out in say
N6 provides far more auditing of the conclusions a
researcher makes. The use of the Search Tool to
find the insightful “core” concepts that give an
understanding of the problem at hand, can be
traced as the results are preserved as nodes.
Another researcher can get into the same project
and use the Search Tool on the very nodes the
original researcher built, to find counter-examples
or problematic cases that challenge the original
conclusions. Coding patterns can be studied quite
directly to see how even they are across the data,
and N6’s Command Assistant can even produce a
script which will compare the coders in a team to
find similarities and differences in their coding
patterns.
 Analysis is going far deeper. Even with
smallish projects, the access problem and the
clerical time consumed used to put a close limit on
the results discoverable and on their exploration.
Now however there is little time cost in exploring
a large number of hunches and approaches, of
combining them and extending them in many
ways; in short in encouraging serendipity then
putting the discoveries through rigorous analysis.

Readings
 There is a surprisingly small literature on
computational QR, given its ubiquity and the
effect it has had to change methods. The series of
conferences since 1999 at the University of
London, Institute of Education on doing research
with QSR’s software have led to a special journal
issue: International Journal of Social Research
Methodology (2002a), 5:3.

THE WAY AHEAD IN QUALITATIVE COMPUTING 25

 Amongst its many articles there is a most
important discussion of mixed methods by
Bazeley (2002a). The evolution of NUD*IST and
NVivo is described in T. Richards (2002). An
examination of the effect computing has had on
QR methods is set out in L. Richards (2002a;
2002b, 1998). Mixed methods are also discussed
in Bazeley (2002b). Bazeley & Richards (2000),
Morse & Richards (2002), and (Gibbs, 2002) are
three books about how to do QR by computer. The
first has a gentle mentoring approach for someone
new to qualitative computing; the second is more
methodology-oriented (ethnography,
phenomenology and so on), while the third takes a
more standard text-book approach to the subject.
 There are no recent survey books of this
fast-changing field. The latest Alexa and Zuell
(1999). For a much more comprehensive
bibliography of books and articles in the field,
visit the following url:
http://www.qsrinternational.com/resources/literatu
re/reading.htm.

Conclusion

The world of computing and software is
notoriously unpredictable, which is probably why
it has such a huge number of gurus doing the
predicting. What shape qualitative research
programs will take in ten, or even five years’ time
is very indeterminate. Arrival in the market by a
large established software vendor, or the
development by some genius of an unforeseen
way of doing QR with computers, can upset any
prediction. After all the development of new ways
of working has been the hallmark of computing in
QR in the past, so why not in the future?
 On the other hand, the pressures that
might shape QR program revisions in the nearer
future can be spelled out. Here are some:
 The rise of mixed methods, the demand for
better qual-quant interaction. This is unlikely to
lead to a program that does both, but will lead to
innovative thinking on how qualitative programs
can better hold up their half of mixed methods.
The shape this will take is unforeseeable –
something new in research methods may well arise
here.
 The application of “intelligent” heuristics.
Using natural language semantics automatically to
code documents to the level of intelligence of a

trained researcher, can safely be said to be a very
long way off. But there are plenty of more modest
artificial intelligence and statistical routines that
can be applied to find inductive relationships, to
find various sorts of associations between the
coding of nodes, and to do data mining as a way of
suggesting new and fruitful nodes.
 The pressure to handle large projects with
large datasets. These can be projects where one
person or a small local team is studying huge
amounts of data. Or there can be multiple
researchers gathering data, or joint projects
running in several different sites requiring a
unified organization and various levels of
comparison of site data.
 Handling repetitive or multiple similar
projects. Particularly in the business-driven
research world, a successful project will modeled
for re-application in similar situations, and hence
require the easy definition of its model “skeleton”
then easy fleshing-out to the new projects. This
can include aggregating the repetitions to an
“overall” project.
 Exploiting the Internet. This is not just
finding project data in emails and web pages. The
Internet provides a ready-made remote networking
and data storage system for people collaborating
on projects from multiple sites, and for providing
remote and special or customized processing of
project data.
 New modes of user interaction. QR
famously makes huge demands on organizing and
displaying data, having huge amounts of
disorganized data. Early versions of NUD*IST
relied on the scrolling 24 x 80 character display of
“glass Teletypes” – which still held sway only 20
years ago. High-resolution color graphics screens,
windowing and mousing are all quite recent
arrivals, and certainly by no means the last word in
user interaction and control. When the next
breakthrough arrives it is likely to desert the
desktop-and-paper metaphor that the current
windowing interface is based on, and provide
unforeseen opportunities for novel organization
and display of qualitative data.
 Given all this, the last word is that we
have not yet reached the last word.

TOM & LYN RICHARDS

26

References
 Alexa, M., & Zuell C. (1999). A review of
software for text analysis. Mannheim: ZUMA.
 Bazeley, P. (2002a). The evolution of a
project involving an integrated analysis of
structured qualitative and quantitative data: from
N3 to NVivo. International Journal of Social
Research Methodology, 5(3), 229-243.
 Bazeley, P. (2002b). Computerized data
analysis for mixed methods research. In A.
Tashakkori, & C. Teddlie (Eds.), Handbook of
mixed methods for the social and behavioural
sciences. Thousand Oaks, CA: Sage.
 Bazeley, P. & Richards, L. (2002). The
NVivo qualitative project book. London &
Thousand Oaks CA, Sage.
 Gibbs, G. (2002). Qualitative data
analysis: explorations with NVivo. Buckingham,
Open University Press.

 Morse, J., M., Richards, L. (2002).
Readme first for a user’s guide to qualitative
methods. Thousand Oaks & London, Sage.
 Richards L. (1998). Closeness to data: The
changing goals of qualitative data handling.
Qualitative Health Research, (8),3, 319-328.
 Richards, L. (2002a). Rigorous, rapid,
reliable and qualitative? Computing in qualitative
method. American Journal of Health Behavior,
26(6), 425-430.
 Richards, L. (2002b). Qualitative
computing – a methods revolution? International
Journal of Social Research Methodology, 5(3),
263-276.
 Richards, T. (2002). An intellectual
history of NUD*IST and NVivo. International
Journal of Social Research Methodology, 5(3),
199-214.

	Journal of Modern Applied Statistical Methods
	5-1-2003

	The Way Ahead In Qualitative Computing
	Tom Richards
	Lyn Richards
	Recommended Citation

	jnk.dvi

