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Estimation of Multinomial Proportions using Higher Order Moments of 
Scrambling Variables in Randomized Response Sampling 

 
Cheng C. Chen Sarjinder Singh 

Texas A&M University, 
Kingsville, TX 

 
 
An extension to estimating multinomial proportions of potentially sensitive attributes in survey sampling 
is proposed using higher order moments of scrambling variables at the estimation stage to produce 
unbiased estimators. The variance and covariance expressions are derived and the relative efficiency of 
the proposed estimators based on scrambling variables is investigated. 
 
Key words: Estimation of sensitive multinomial proportions, randomized response sampling, 

respondents protection. 
 
 

Introduction 
The problem of estimating the proportion of 
potentially sensitive attributes in survey 
sampling has been very well addressed in the 
literature following the pioneering work of 
Warner (1965), and the use of randomized 
response sampling in social, medical and 
environmental sciences has been well 
documented (Waltz, et al., 2004; Blank, 2008). 
Singh and Chen (2009) introduced the use of 
higher order moments of scrambling variables to 
improve single proportion estimates without 
affecting respondent cooperation in survey 
research. 

The problem of estimating trinomial 
proportions has been very useful, especially 
during election periods in the United States of 
America. Voters in the US can be divided into 
three mutually exclusive groups: Democrat, 
Republican and Other. At this time, expressing 
preference for one of these three groups does not 
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pose a threat to an individual’s privacy; 
however, the competition for the presidential 
position is becoming more difficult and there 
may be a time when voters will not feel safe 
disclosing their preferences to vote in the US. A 
new method is developed here that could be 
useful in such circumstances to organizations 
that conduct surveys about the prediction of 
future president for the US in the forthcoming 
elections. It is assumed that the partition of 
voters will remain trinomial because it may not 
be easy to establish a new competitive party as 
strong as those that are currently functioning; 
however, the proposed model can be extended to 
the case of a multinomial distribution if 
required. 

This same argument can be extended to 
other applications if a population can be 
captured completely within three mutually 
exclusive groups. As noted by Singh, Kim and 
Grewal (2008), a sensitive question in one 
survey could be non-sensitive in another survey 
depending on the situation, particularly when 
there are three categories that are feasible when 
an answer is: exactly known, exactly unknown 
and not sure; hence leading to the problem of 
trinomial proportions estimation.  

In a careful examination of the literature 
in randomized response sampling (Tracy & 
Mangat, 1996), not much attention has been paid 
to estimate sensitive multinomial proportions. 
Abul-Ela, et al. (1967) extended Warner’s 
(1965) design to the multichotomous case when 
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a population can be considered to be divided 
into t  disjoint classes jC  with unknown 

proportions jπ  ( ,,...,2,1 tj =  ,10 << jπ  

 =1jπ ). It is assumed that at least one of the 

classes carries a stigma and at least one carries 
no stigma. They suggested drawing s  ( 1−= t ) 
independent simple random with replacement 
samples sized in  ( ,,...,2,1 si =   = nni ), and 
then employing a randomized response device to 
each of the samples. Abul-Ela, et al. (1967) 
examined the extent of bias and the mean square 
error of estimators for 3=t .  

Bourke and Dalenious (1973, 1974) 
proposed a Latin square measurement design to 
extend Warner’s model to the multinomial case; 
their design uses t  different possible responses 
and requires only one sample. A respondent is 
asked to select one of a t -type cards using a 
random device. Each of the t -mutually 
exclusive classes is described on each card, 
except that the order of the description is 
permuted from card to card and the permutation 
for t -cards forms a Latin square. 

The respondent reads the cards selected 
and reports only the position of the card (i.e., 

=t 1, 2, …, )1( −t  or t ) of the statement 
describing the class to which he/she belongs. 
The unrelated question design was also extended 
by Bourke (1974) to estimate the proportion of a 
population in each of t  mutually exclusive 
classes of which )1( −t  are sensitive. One 
sample is needed if the distribution of the 
unrelated character is known. The design uses a 
deck of cards, each of which contains a number 
of statements. The arrangement of the statements 
is a part of the design.  

Hochberg (1975) outlined an alternative 
scheme for estimating the t  group proportions 
of which, at most, )2( −t  are stigmatizing. The 
realizations for any sampled individuals 
constitute a two-stage scheme. The second stage 
is conditional on the random individual’s 
response in the first stage. Drane (1976) used a 
forced yes stochastic model to estimate the 
proportion of more than one sensitive character. 
The use of supplemented block, balanced 
incomplete block and spring balance weighing 
designs were introduced by Raghavarao and 

Federer (1979); their models allow the surveyor 
to obtain answers to several sensitive questions. 
Mukhopadhyay (1980), Mukherjee (1981), 
Tamhane (1981), Bourke (1981, 1982, 1990), 
Silva (1983) and Christofides (2003) have also 
considered the estimation of multi-attribute 
parameters.  

Guerriero and Sandri (2007) pointed out 
that the family of models proposed by Kuk 
(1990) is better than the Simmons’ family  (refer 
to Greenbeg et al. (1969) )  in terms of 
efficiency and privacy protection. From an 
empirical standpoint, van der Heijden, et al. 
(2000) showsed that Kuk’s procedure performs 
slightly better than the forced-response 
procedure and markedly better than face-to-face 
direct questioning and computer assisted self-
interviewing. 

They also noted that the 
recommendations and successful applications of 
Kuk’s procedure have been reported in van den 
Hout and van der Heijden (2002), and these 
results should be even more marked for the 
model proposed by Christofides (2003). In 
addition, an adequate analysis of the efficiency 
and the respondents’ protection is always 
necessary when proposing new randomized 
response models. Thus, following Guerriero and 
Sandri (2007), it is worthwhile to extend the 
Kuk (1990) and Franklin (1989) type models. 
Note that the the Mangat (1994), Mangat and 
Singh (1990), Gjestvang and Singh (2006) and 
Kuk (1990) models are special cases of the 
Franklin (1989) model. Additional work on 
randomized response sampling is available in 
Singh and Kim (2011), Diana and Perri (2009), 
Tan, et al. (2009) and Esponda and Guerrero 
(2009). 
 
Proposed Randomized Response Technique 

In the proposed randomized response 
device, if a person selected in the sample 
belongs to the first sensitive group 1A  then that 
person is requested to draw a random number 

1S  from a density function )(1 sf  and report to 
the interviewer; if that person belongs to second 
sensitive group 2A  then that person is requested 

to draw a random number 2S  from a density 

function )(2 sf  and report to the interviewer; 
and if that person belongs to the third sensitive 
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group 3A , then that person is requested to draw 

a random number 3S  from a density function 

)(3 sf  and report to the interviewer. The 
respondent is further requested not to disclose 
the mode of response.  

Let Ω  be the population under study; 


3

1=
=Ω

k
kA  and the groups kA  are mutually 

exclusive. The choice of the three densities 
)(1 sf , )(2 sf  and )(3 sf  are comprised such 

that respondents should feel safe in reporting the 
random number drawn. In other words, to 
maintain the privacy of respondents from all the 
three groups, the mean values and the variances 
of the three densities should not deviate too 
greatly from each other. In particular, the 
densities )(1 sf , )(2 sf  and )(3 sf  could be 
normal, beta, gamma or some other distribution.  

Let 1π , 2π  and 3π  represent the true 

proportions of persons belonging to groups 1A , 

2A  and 3A  respectively such that 

1321 =++ πππ . Assume that E  denotes the 
expected value over the proposed randomization 
response device, and let )( 11 SE=θ , )( 22 SE=θ , 

)( 33 SE=θ , and 

])()()[( 332211
cba

abc SSSE θθθγ −−−= , where 

a , b  and c  are non-negative integers and are 
known moments of the three scrambling 
variables used in the proposed randomization 
device. Consider a simple random with 
replacement sample (SRSWR) of n  
respondents. Interestingly, it can be shown that, 
based on only single sample information, three 
unbiased estimates of the three different 
parameters can be proposed. The distribution of 
the responses will be as follows: 
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2 2

3 3
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with probability
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then, following Singh and Chen (2009),  
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1 )( θγ +=SE , 2
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2
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If 
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and defining 
 

{ }
{ }

2 2
1 3 020 2 002 3

2 2
2 3 200 1 002 3

( ) ( ) ( )

     ( ) ( ) ( ) ,

θ θ γ θ γ θ

θ θ γ θ γ θ

Δ = − + − +

− − + − +
 

(2.5) 
 
several theorems and lemmas may be put forth 
(see Appendix A). 
 
Empirical Comparisons 

It is possible to use the Warner (1965) 
model three times to estimate the three non-
overlapping parameters kπ , .3,2,1=k  Each 
respondent selected in the sample could be 
provided with three randomization devices, for 
example, kR , .3,2,1=k  The randomization kR  
bears two types of statements, are you a member 
of group kA ?, and are you a member of group 

c
kA ? with probabilities kP and )1( kP− , 

respectively. Based on a sample of n  
respondents, if kn  reports yes related to the kth 

group, then the unbiased estimator of kπ  is 
 

( )

(1 )
ˆ ,

2 1

0.5

k k
k w

k

k

n n P
P

P

π − −=
−

≠
             (3.1)

 

 
with variance 
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The relative efficiency of the proposed estimator 

kπ̂  (as defined in the Appendix) with respect to 

the corresponding estimator )(ˆ wkπ  (Warner, 

1965) is: 

( )ˆ( )
( ) 100%,

ˆ( )

1, 2,3.

k w

k

V
RE k

V
k

π
π

= ×

=
        (3.3) 

 
Results 

Choosing 7.0=kP , 3,2,1=k , based on Warner 
(1965) is a reasonable and practical choice for 
the model, considering the problem of 
estimation of kπ  with their respective estimators 

)(ˆ wkπ  for 3,2,1=k . A privacy protection 

criterion is suggested, that is: 
 

( )
( )ik

ik
ikZ AkZf

AkZf
∉
∈

=
|

|
,

λ                 (3.4) 

 
and refers to the privacy protection with respect 
to response kZ  for a respondent k  being a 

member of iA . For these measures 

∞<≤ ikZ ,0 λ  applies with 11, =kZλ  indicating 

data privacy protection for unit k  being a 
member of group iA . This means that the value 

kZ  contains absolutely no information on the 

variable of interest; the more the λ -measure 
differs from unity the more information on the 
variable under study is contained in the 
response, meaning the less the privacy 
protection. The maximum ∞=ikZ ,λ  (or 0) 

describes a situation where membership or the 
non-membership of iA  may be concluded based 

on the answer kZ  directly. A respondent would 
answer untruthfully or not answer at all in such a 
case.  

Bearing in mind the proposed privacy 
protection criterion in (3.4), choice of the known 
parameters of the scrambling variables was: 

,571 =θ  ,622 =θ  603 =θ , 200 0.5,γ =  

,5.3020 =γ and 5.4002 =γ  in the proposed model 
with three scrambling variables. Based on the 
three sigma empirical rule, most of the values of 
the scrambling variables 1S , 2S  and 3S  could 
be any real numbers in the ranges: (54.87, 
59.12); (56.38, 67.61), and (53.63, 66.36) 
respectively, but those values are not 100% 
bounded to these intervals. Due to an overlap 
between the three intervals, it is difficult to 
guess the status of the respondents based on 
their reported responses. Using the four sigma 
rule the scrambling variables 1S , 2S  and 3S  
could, respectively, be any real numbers in the 
ranges: (54.17, 59.82); (54.51, 69.48), and 
(51.51, 68.48), and the six sigma empirical rule 
can be considered in a similar manner. 

To study the effect of known higher 
order moments, such as skewness and kurtosis, 
of the scrambling variables on the relative 
efficiencies )(kRE  of the proposed estimators 
we studied different values of 

0030303003 γγγγ ===  as –2, 0, 3, 5, 10 and 20; 

and the values of the 0040404004 γγγγ ===  as 2, 
3, 5 and 10. The minimum relative efficiency of 
103% was retained by assuming that a minimum 
3% gain is enough if one methodology could 
gain over the other without affecting the 
respondents’ cooperation (see Table 1). 

Note that, while estimating rare 
attributes in two groups such as 1.01 =π , and 

1.02 =π , then 8.03 =π  and based on 3 

observations, the relative efficiencies )1(RE , 

)2(RE  and )3(RE  remain as 615.3%, 451.1%, 

713.4% for 2003030300 −=== γγγ  and 

10004040400 === γγγ . Keeping the same 

value of 10004040400 === γγγ , for 

0003030300 === γγγ , the )1(RE , and )3(RE  
values become 919.0%, 306.8% and 562.5%. 
Thus, changing the value of 003030300 γγγ ==  

from −2 to 0, the )1(RE  increases from 615.3% 

to 919.0%, but the value of )2(RE  decreases 

from 451.1% to 306.8%, and the value of )3(RE  
decreases from 713.4% to 562.5%. As the values 
of 003030300 γγγ ==  increase to 3, there is 

huge increase in the value of )1(RE  to 3543.1%, 

whereas a decrease in the values of )2(RE  and  
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Table 1: Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices of Known 
Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ  400γ  040γ  004γ  )1(RE  )2(RE  )3(RE  

0.1 

0.1 0.8 

-2 -2 -2 10 10 10 615.3 451.1 713.4 

0 0 0 10 10 10 919.0 306.8 562.5 

3 3 3 10 10 10 3543.1 207.3 426.9 

0.2 0.7 

-2 -2 -2 2 2 2 977.6 358.7 1368.6 

-2 -2 -2 3 3 3 907.5 338.1 843.5 

-2 -2 -2 5 5 5 793.7 303.4 477.3 

-2 -2 -2 10 10 10 604.3 241.4 228.9 

0 0 0 2 2 2 1633.8 246.8 548.7 

0 0 0 3 3 3 1447.0 236.9 439.1 

0 0 0 5 5 5 1177.7 219.3 313.8 

0 0 0 10 10 10 803.8 185.0 183.1 

3 3 3 3 3 3 13358.9 163.5 255.4 

3 3 3 5 5 5 4294.3 154.9 207.3 

3 3 3 10 10 10 1592.6 136.9 140.9 

5 5 5 10 10 10 4606.9 116.7 122.1 

0.3 0.6 

-2 -2 -2 2 2 2 950.1 220.8 282.2 

-2 -2 -2 3 3 3 883.8 213.1 250.7 

-2 -2 -2 5 5 5 775.5 199.2 204.9 

-2 -2 -2 10 10 10 593.6 171.2 140.6 

0 0 0 2 2 2 1301.9 166.3 187.7 

0 0 0 3 3 3 1180.5 161.9 173.2 

0 0 0 5 5 5 994.9 153.7 150.0 

0 0 0 10 10 10 714.2 136.5 112.4 

3 3 3 2 2 2 2928.3 121.3 124.9 

3 3 3 3 3 3 2378.1 119.0 118.3 

3 3 3 5 5 5 1728.6 114.5 107.0 

0.4 0.5 

-2 -2 -2 2 2 2 924.1 163.6 161.3 

-2 -2 -2 3 3 3 861.2 159.5 150.5 

-2 -2 -2 5 5 5 758.1 151.7 132.8 

0 0 0 2 2 2 1082.1 127.8 115.2 

0 0 0 3 3 3 996.9 125.2 109.6 

0.5 0.4 
-2 -2 -2 2 2 2 899.5 131.5 113.5 

-2 -2 -2 3 3 3 839.8 128.8 108.0 
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Table 1 (continued): Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices 
of Known Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ 400γ 040γ 004γ )1(RE  )2(RE  )3(RE

0.2 

0.1 0.7 

-2 -2 -2 2 2 2 529.7 657.2 1375.4 
-2 -2 -2 3 3 3 509.4 588.5 846.1 
-2 -2 -2 5 5 5 473.1 486.6 478.1 
-2 -2 -2 10 10 10 401.6 339.7 229.0 
0 0 0 3 3 3 786.8 431.9 2202.0 
0 0 0 5 5 5 703.5 374.4 733.2 
0 0 0 10 10 10 556.3 280.9 274.9 
3 3 3 5 5 5 2610.9 278.1 3673.9 
3 3 3 10 10 10 1317.1 223.0 392.7 
5 5 5 10 10 10 14931.8 196.1 549.8 

0.2 0.6 

-2 -2 -2 2 2 2 521.9 287.3 282.5 
-2 -2 -2 3 3 3 502.1 274.0 250.9 
-2 -2 -2 5 5 5 466.9 250.7 205.0 
-2 -2 -2 10 10 10 397.1 206.8 140.7 
0 0 0 2 2 2 743.9 230.5 282.5 
0 0 0 3 3 3 704.4 221.8 250.9 
0 0 0 5 5 5 636.9 206.3 205.0 
0 0 0 10 10 10 513.8 175.7 140.7 
3 3 3 2 2 2 2055.6 177.8 282.5 
3 3 3 3 3 3 1780.2 172.6 250.9 
3 3 3 5 5 5 1404.0 163.1 205.0 
3 3 3 10 10 10 918.7 143.3 140.7 
5 5 5 5 5 5 7125.6 143.0 205.0 
5 5 5 10 10 10 1935.8 127.6 140.7 

0.3 0.5 

-2 -2 -2 2 2 2 514.3 192.3 161.3 
-2 -2 -2 3 3 3 495.1 186.5 150.6 
-2 -2 -2 5 5 5 460.8 175.7 132.8 
0 0 0 2 2 2 669.8 159.0 144.8 
0 0 0 3 3 3 637.7 154.9 136.0 
0 0 0 5 5 5 581.8 147.4 121.4 
3 3 3 2 2 2 1226.0 126.1 125.5 
3 3 3 3 3 3 1122.4 123.6 118.9 
3 3 3 5 5 5 960.2 118.8 107.5 
5 5 5 2 2 2 2745.7 110.9 115.2 
5 5 5 3 3 3 2275.6 108.9 109.6 

0.4 0.4 
-2 -2 -2 2 2 2 506.9 147.8 113.5 
-2 -2 -2 3 3 3 488.3 144.3 108.1 
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Table 1 (continued): Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices 
of Known Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ 400γ 040γ 004γ )1(RE  )2(RE  )3(RE

0.3 

0.1 0.6 

-2 -2 -2 2 2 2 383.8 444.7 282.8 

-2 -2 -2 3 3 3 373.4 412.2 251.1 

-2 -2 -2 5 5 5 354.1 359.5 205.2 

-2 -2 -2 10 10 10 313.7 272.4 140.8 

0 0 0 2 2 2 567.7 410.2 570.8 

0 0 0 3 3 3 545.2 382.3 454.9 

0 0 0 5 5 5 505.1 336.5 323.6 

0 0 0 10 10 10 426.7 259.1 188.0 

3 3 3 5 5 5 1401.7 307.1 2416.8 

3 3 3 10 10 10 928.3 241.3 378.2 

5 5 5 10 10 10 4290.6 230.7 1163.0 

0.2 0.5 

-2 -2 -2 2 2 2 379.8 239.7 161.4 

-2 -2 -2 3 3 3 369.6 230.3 150.7 

-2 -2 -2 5 5 5 350.7 213.6 132.9 

0 0 0 2 2 2 524.9 216.3 194.9 

0 0 0 3 3 3 505.6 208.6 179.4 

0 0 0 5 5 5 470.9 194.9 154.8 

0 0 0 10 10 10 402.0 167.3 115.3 

3 3 3 2 2 2 1229.3 188.6 282.9 

3 3 3 3 3 3 1128.4 182.8 251.4 

3 3 3 5 5 5 969.2 172.1 205.6 

3 3 3 10 10 10 716.5 150.2 141.2 

5 5 5 2 2 2 11669.3 173.8 404.6 

5 5 5 3 3 3 6310.2 168.9 343.1 

5 5 5 5 5 5 3289.2 159.7 263.1 

5 5 5 10 10 10 1497.2 140.7 166.2 

0.3 0.4 

-2 -2 -2 2 2 2 375.9 170.4 113.6 

-2 -2 -2 3 3 3 365.9 165.8 108.1 

0 0 0 2 2 2 488.1 152.3 118.4 

0 0 0 3 3 3 471.3 148.6 112.5 

3 3 3 2 2 2 883.5 131.3 126.4 

3 3 3 3 3 3 830.1 128.5 119.7 

3 3 3 5 5 5 740.6 123.4 108.1 

5 5 5 2 2 2 1921.1 120.3 132.4 

5 5 5 3 3 3 1685.4 118.0 125.0 

5 5 5 5 5 5 1353.4 113.6 112.5 
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Table 1 (continued): Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices 
of Known Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ  400γ  040γ  004γ  )1(RE  )2(RE  )3(RE  

0.4 

0.1 0.5 

-2 -2 -2 2 2 2 313.4 336.1 161.5 

-2 -2 -2 3 3 3 306.5 317.2 150.7 

-2 -2 -2 5 5 5 293.7 285.0 133.0 

0 0 0 2 2 2 456.2 365.2 298.1 

0 0 0 3 3 3 441.9 342.9 263.3 

0 0 0 5 5 5 415.6 305.7 213.5 

0 0 0 10 10 10 362.0 240.4 144.9 

3 3 3 5 5 5 1102.4 342.9 2330.8 

3 3 3 10 10 10 791.2 262.8 378.1 

0.2 0.4 

-2 -2 -2 2 2 2 310.8 205.5 113.6 

-2 -2 -2 3 3 3 304.0 198.6 108.2 

0 0 0 2 2 2 428.7 203.7 150.2 

0 0 0 3 3 3 416.0 196.9 140.8 

0 0 0 5 5 5 392.6 184.6 125.0 

3 3 3 2 2 2 994.8 200.9 290.1 

3 3 3 3 3 3 928.8 194.3 256.9 

3 3 3 5 5 5 820.1 182.3 209.0 

3 3 3 10 10 10 634.4 157.9 142.5 

5 5 5 2 2 2 8315.3 199.1 765.8 

5 5 5 3 3 3 5218.4 192.6 570.8 

5 5 5 5 5 5 2990.7 180.8 378.2 

5 5 5 10 10 10 1446.7 156.8 205.2 

0.3 0.3 

3 3 3 2 2 2 759.0 136.9 127.8 

3 3 3 3 3 3 720.0 133.9 120.8 

3 3 3 5 5 5 652.9 128.3 108.8 

5 5 5 2 2 2 1829.2 131.4 157.1 

5 5 5 3 3 3 1617.9 128.7 146.6 

5 5 5 5 5 5 1314.4 123.5 129.3 
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Table 1 (continued): Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices 
of Known Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ  400γ  040γ  004γ  )1(RE  )2(RE  )3(RE  

0.5 

0.1 0.4 

-2 -2 -2 2 2 2 272.2 270.1 113.7 

-2 -2 -2 3 3 3 267.0 257.7 108.2 

0 0 0 2 2 2 398.2 329.1 205.3 

0 0 0 3 3 3 387.3 310.9 188.1 

0 0 0 5 5 5 367.1 280.0 161.1 

0 0 0 10 10 10 324.8 224.2 118.5 

3 3 3 5 5 5 1020.9 388.1 3115.4 

3 3 3 10 10 10 749.6 288.6 392.0 

0.2 0.3 

0 0 0 2 2 2 377.2 192.5 122.2 

0 0 0 3 3 3 367.3 186.4 115.8 

0 0 0 5 5 5 349.2 175.3 104.7 

3 3 3 2 2 2 928.5 214.9 305.8 

3 3 3 3 3 3 871.1 207.3 268.4 

3 3 3 5 5 5 775.3 193.7 215.7 

3 3 3 10 10 10 608.2 166.4 144.7 

5 5 5 3 3 3 10163.3 224.1 2219.8 

5 5 5 5 5 5 4162.8 208.3 735.2 

5 5 5 10 10 10 1681.3 177.1 275.1 

0.3 0.2 

3 3 3 2 2 2 720.8 143.1 129.9 

3 3 3 3 3 3 685.8 139.8 122.4 

3 3 3 5 5 5 625.0 133.7 109.8 

5 5 5 2 2 2 2216.4 144.9 197.4 

5 5 5 3 3 3 1915.3 141.5 180.6 

5 5 5 5 5 5 1506.2 135.3 154.4 

5 5 5 10 10 10 981.8 121.8 113.3 
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Table 1 (continued): Relative efficiencies, )(kRE , 3,2,1=k , of Proposed Estimators for Difference Choices 
of Known Higher Order Moments of the Three Scrambling Variables 

 

1π  2π  3π  300γ  030γ  003γ  400γ  040γ 004γ  )1(RE  )2(RE  )3(RE  

0.6 

0.1 0.3 

0 0 0 2 2 2 365.7 299.5 157.2 

0 0 0 3 3 3 356.4 284.4 146.7 

0 0 0 5 5 5 339.2 258.3 129.5 

3 3 3 5 5 5 1068.8 447.1 12053.1 

3 3 3 10 10 10 773.7 320.0 424.2 

0.2 0.2 

3 3 3 2 2 2 967.3 230.9 334.1 

3 3 3 3 3 3 904.8 222.2 288.7 

3 3 3 5 5 5 801.3 206.7 227.1 

3 3 3 10 10 10 623.1 175.9 148.0 

5 5 5 10 10 10 2651.1 203.3 446.3 

0.3 0.1 

3 3 3 2 2 2 742.9 149.8 132.7 

3 3 3 3 3 3 705.5 146.2 124.6 

3 3 3 5 5 5 641.0 139.5 110.9 

5 5 5 2 2 2 4297.9 161.4 279.0 

5 5 5 3 3 3 3289.0 157.2 245.3 

5 5 5 5 5 5 2238.2 149.5 197.4 

5 5 5 10 10 10 1244.3 133.2 132.7 

0.7 

0.1 0.2 

0 0 0 2 2 2 348.7 274.8 126.9 

0 0 0 3 3 3 340.1 262.0 119.7 

0 0 0 5 5 5 324.1 239.7 107.6 

3 3 3 10 10 10 880.7 359.0 488.1 

0.2 0.1 

3 3 3 2 2 2 1147.2 249.6 385.8 

3 3 3 3 3 3 1058.8 239.4 324.1 

3 3 3 5 5 5 917.4 221.5 245.5 

3 3 3 10 10 10 687.8 186.5 152.9 

5 5 5 10 10 10 36398.8 238.8 1620.7 

0.8 0.1 0.1 
0 0 0 2 2 2 343.5 253.9 105.3 

3 3 3 10 10 10 1177.1 408.8 624.8 
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)3(RE  is 207.3% and 426.9%. Thus, for this case 
the minimum values of the relative efficiencies 

)1(RE , )2(RE  and )3(RE  are 615.3%, 207.3% 
and 426.9%, while the maximum values are 
3543.1%, 451.1% and 713.4% respectively. 

Consider another situation: If one of the 
attributes is rare, 1.01 =π , and the second 

attribute is moderate, 3.02 =π , then 6.03 =π  
and based on 11 observations, the average 
relative efficiencies )1(RE , )2(RE  and )3(RE  
remain as 1311.77%, 161.59%, 168.35% with 
standard deviations 742.70%, 37.46% and 
58.19% respectively as the values different 
parameters of the scrambling variables changes. 
The medians of the relative efficiencies )1(RE , 

)2(RE  and )3(RE  remain 994.9%, 161.9% and 
150.0%. The minimum values of the relative 
efficiencies )1(RE , )2(RE  and )3(RE  are 
593.6%, 114.5% and 107.0% while the 
maximum values are 2928.3%, 220.8% and 
282.2% respectively.  

By contrast, when all three variables 
have moderate prevalence over the population as 

3.01 =π , 3.02 =π  and 4.03 =π  then, based on 
10 observations, the average relative efficiencies 

)1(RE , )2(RE  and )3(RE  remain as 911.53%, 
137.22%, 117.67% with standard deviations 
558.53%, 20.52% and 8.19% respectively as the 
values different parameters of the scrambling 
variables changes. The medians of the relative 
efficiencies )1(RE , )2(RE  and )3(RE  remain 
785.35%, 129.90% and 166.00%. The minimum 
values of the relative efficiencies )1(RE , )2(RE  

and )3(RE  are 365.90%, 113.60% and 108.1% 
while the maximum values are 1921.10%, 
170.40% and 132.40% respectively (see Table 
1).  

Note that in Table 1 the )1(RE , )2(RE  

and )3(RE  for 1.01 =π , 1.02 =π  and 8.03 =π  

are not the same as for 8.01 =π , 1.02 =π  and 

1.03 =π  because of different choices of mean 
and variances of the scrambling variables for the 
three categories. Further note that the choice of 
parameters considered herein, shows in majority 
when 1π  remains close to zero, for example 

1.01 =π  and 1.02 =π  there are three situations 
where the proposed method remains efficient 

and as soon as 1π  becomes 0.8 the proposed 
method shows efficiency only in two situations.  

Thus, the proposed randomization 
device should be considered for a situation when 
the first attribute is rare, the second attribute is 
moderate and the third attribute is widespread. It 
may be concluded that the proposed randomized 
response technique based on higher order 
moments of the scrambling variables can be 
used to estimate multinomial proportions. The 
choice of the scrambling variables for a 
particular study may require an expert to decide 
based on simulation studies or past experience. 
The FORTRAN codes used in the simulation 
study are provided in Appendix A. 
 
Generalization to the Case of a Multinomial 
Distribution 

Consider a population Ω  consisting of 
m  mutually exclusive groups such that 


m

k
kA

1=
=Ω . Let kπ  be the proportion of a 

sensitive attribute is the kth group. Then 
extending the proposed randomized response 
model from Section 2, that a respondent 
belonging to the kth group is requested to report a 
random number from the kth scrambling variable 

kS  for mk ,....,2,1= , then )1( −m  unbiased 

estimates of the population proportion kπ  for 

)1(,..,2,1 −= mk  are given by 
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and, the unbiased estimate of the proportion mπ  

is given by 
 

1

1

ˆ ˆ1
m

m k
k

π π
−

=
= − .                   (4.2) 

 
The variance of Π̂  is given by 
 

( ) tAZVAV )()()ˆ( 11 −−=Π         (4.3) 
and 
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jk
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(4.4) 
 
where )(ZV  denotes the variance-covariance 
matrix of the scrambled responses which utilizes 
the higher order moments of the scrambling 

variables l
iZ , mt ,....,3,2,1= . 
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Appendix A: Theorems and Proofs 
Theorem 2.1 

An unbiased estimator of the population 
proportion 1π  is given by 
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(2.6) 
 
Theorem 2.1 Proof 

Solving (2.2) and (2.4) for 1π  and using 
the method of moments proves the theorem. 
 
Theorem 2.2 

An unbiased estimator of the population 
proportion 2π  is given by 
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(2.7) 

 
Theorem 2.2 Proof 

Solving (2.2) and (2.4) for 2π  and using 
the method of moments proves the theorem. 
 
Theorem 2.3 

An unbiased estimator of the population 
proportion 3π  is given by 
 

23 1ˆ ˆ ˆ1 .π π π= − −                    (2.8) 

 
Theorem 2.3 Proof 

Theorem 2.3 is proven by taking 
expected values on both sides of (2.8). 
 
Based on these theorems and proofs, the 
following lemmas are put forth. 
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Lemma 2.1 
The variance of iZ  is given by 
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22 2 2 12 1 2 00
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Lemma 2.2 

The variance of 2
iZ  is given by 
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Lemma 2.2 Proof 

Based on the definition of variance,  
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which, on rearranging reduces to (2.10), and 
proves the lemma. 
 
 
Lemma 2.3 

The covariance between iZ  and 2
iZ is 

given by 
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Lemma 2.3 Proof 

Based on the definition of covariance,  
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which, on rearranging, reduces to (2.11) and 
proves the lemma. 
 
Consider the following theorems: 
 
 
Theorem 2.4 

The variance of the unbiased estimator 

1π̂  of the population proportion 1π  is given by 
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Theorem 2.4 Proof 

Based on the definition of variance,  
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Using the lemmas, the following theorems are 
put forth. 
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Theorem 2.5 
The variance of the unbiased estimator 

2π̂  of the population proportion 2π  is given by 
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Theorem 2.6 Proof 

Based on the definition of covariance,  
 
 
 
 
 
 
 
 



CHENG CHEN & SARJINDER SINGH 
 

121 
 

( )1 2ˆ ˆ,Cov π π = 

( )

( ) ( )
( )

2 2

020 2 002 3

2

2 3 1 3

1 1

2

200 12

2
1 1

002 3

2 2

2 2 2

1 3 020 2 002 3

2 2

1 3 2 3

1

0

2 2

( ) ( )

( ) , ( )

( )

( )

( ) ( ) ( ) ,

( )( ) ,

(1

n n

i i
i i

n n

i i
i i

i i

n

i i
i

Cov Z Z

Z Z

n

Cov Z Z

Cov Z Z

n

γ θ γ θ

θ θ θ θ

γ θ

γ θ

θ θ γ θ γ θ

θ θ θ θ

γ

= =

= =

=

+ − +

− − −

+
−

− +
=

Δ

− + − +

− − −

= −
Δ

 
 
 
 
 
 
  
  
    

 

 



( )

2 2

20 2 200 1

2 2

002 3 002 3

2 3

1

2

200 1 2

2
1

002 3

) ( )

( ) ( )

, ( )

( )
( , )

( )

n

i i
i

n

i i
i

Cov Z Z

Cov Z Z

θ γ θ

γ θ γ θ

θ θ

γ θ

γ θ

=

=

+ +

− + − +

+ −

+

− +

 
 
 
 
 
 
   
   
   
 
 
 
 
      




 
These lemmas result in theorem 2.7. 
 
Theorem 2.7 

The variance of the unbiased estimator 

3π̂  of the parameter 3π  is given by 
 

)ˆ,ˆ(2)ˆ()ˆ()ˆ( 21213 πππππ CovVVV ++=  
(2.15) 

 
Theorem 2.7 Proof 

Theorem 2.7 is proved based on the 
definition of variance. 
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