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Empirical Sampling from Permutation Space with Unique Patterns 
 

Justice I. Odiase 
University of Benin, 

Benin, Nigeria 
 

 
The exact distribution of a test statistic ultimately guarantees that the probability of a Type I error is 
exactly α. Several methods for estimating the exact distribution of a test statistic have evolved over the 
years with inherent computational problems and varying degrees of accuracy. The unique pattern of 
permutations resulting from using experimental data to sample within the permutation space without the 
risk of repeating permutations is identified. The method presented circumvents the theoretical 
requirements of asymptotic procedures and the computational difficulties associated with an exhaustive 
enumeration of permutations. Results show that time and space complexities are drastically reduced 
without compromising accuracy even when enumeration is not exhaustive provided error tolerance is 
achieved. The exact distribution of the Siegel-Tukey test statistic is examined as an illustration. 
 
Key words: Algorithm, exact test, permutation test, bootstrap, resampling. 
 
 

Introduction 
The first edition of Fisher (1935) contains 
descriptions of two tests of significance that 
depend on permutation: Fisher’s exact test for 
analyzing categorical data, and the permutation 
test for the difference between means. Many 
studies have been designed to confirm the 
asymptotic equivalence of permutation and 
classical tests (Ludbrook, 1994). Fisher wrote 
that “the statistician does not carry out this very 
simple and very tedious process, but his 
conclusions have no justification beyond the fact 
that they agree with those which could have 
been arrived at by this elementary method” 
(1936, p 59). Ernst (2004) noted that with fast 
computers there is little reason for a statistician 
not to carry out this very tedious process. 

The main problem with permutation 
tests is that their null distributions are generally 
very difficult to express in closed form and to 
calculate exactly. This is because they depend 
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on a specific data set; thus they vary as the data 
varies in the sample space, however, for several 
test statistics involving ranks, the null 
distributions only need to be computed once. For 
large sample sizes, direct calculations are 
practically impossible due to the very large 
cardinality of associated permutation sample 
spaces. For example, a data set consisting of 
four treatments with five observations per 
treatment, ni = 5, i = 1(1)4, demands as many as  
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configurations for an exhaustive enumeration of 
all permutations. Pesarin (2001) stated that, 
unless sample sizes are very large, the 
approximation of such distributions by means of 
asymptotic arguments is not always appropriate. 
No general agreement exists regarding how 
large a sample should be before applying 
asymptotic approximation (Fahoome, 2000). 
Pesarin (2001) observed that the algorithms for 
exact calculations are generally based on direct 
calculus of upper tail probabilities; a strategy 
which may become highly impractical, if not 
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impossible, in multivariate problems because 
there is no general computing routine useful to 
identify the critical regions. This was also 
observed by Hall and Weierserman (1997). In 
the early years of research into exact statistical 
inference, Scheffé (1943) clearly identified the 
fact that the permutation approach is the only 
way of constructing the exact distribution of a 
test statistic. 

To avoid the computational difficulty in 
exact permutation tests, the conditional Monte 
Carlo (CMC) method was adopted by Pesarin 
(2001). In CMC replicate resampling is 
conducted without-replacement on the given 
data set, which is considered as playing the role 
of a finite population, provided that sample sizes 
are finite. According to Opdyke (2003), all 
existing permutation procedures developed to 
date can perform conventional Monte Carlo 
sampling without replacement within a sample 
but none can avoid the possibility of drawing the 
same sample more than once. The consideration 
given by Odiase and Ogbonmwan (2007) is an 
exception but involves a complete enumeration 
of all the distinct permutations, which becomes 
impracticable when the sample size is large. 

In this study, the unique pattern of each 
permutation resulting from experimental data is 
identified and exploited in sampling from the 
permutation space without the attendant risk of 
repeating permutations. The method presented 
circumvents the elaborate theoretical 
requirements of asymptotic procedures and the 
logical and computational difficulties associated 
with an exhaustive enumeration of permutations. 
 
Exhaustive Permutation Procedures 

The process of obtaining permutations 
begins by choosing the test statistic T and the 
acceptable significance level α . Let π 1, π 2, 
…, π N be a set of all distinct permutations of 
the observations or ranks of the observations in 
the experiment. Compute the test statistic Ti for 
permutation iπ , that is, Ti = T( iπ ). Construct an 

empirical cumulative distribution for T as: 
 

0p  = ( ) ( )
=

−=≤
N

1i
i0i tψ

N

1
p TTT , 

 
where 

ψ(·) = 




<
≥

i0

i0

 tif0,

 tif1,

T
T

. 

 
Under the empirical distribution, if α≤0p , 

reject the null hypothesis. 
 
Paired Permutation 

Given two paired samples X = (x1, x2, …, 
xn) and Y = (y1, y2, …, yn), suppose a sample of n 
units from the population distribution FX is 
paired with a sample of n units from the 
population distribution FY and are 
simultaneously tested in an experiment with T as 
the test statistic. For k distinct values of the test 
statistic T, the probability distribution of the test 
statistic T = (T1, T2, …, Tk) under the null 
hypothesis YX FFH =:0  is given by 
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where fj is the number of occurrences of Tj. For 
specified value of n and the level of significance 
α, the critical value c corresponds to a level 
closest to α. Ordering all the distinct occurrences 
of T in ascending order of magnitude, and if g is 
the position of the observed value of T, then the 
following significance level for the left tail of 
the distribution of the test statistic is 
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and, for the right tail, 
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For a two-tailed test, the left and right tails are 
summed. If the distribution of the test statistic is 
symmetric, then 
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The distribution of the test statistic is 
obtained by tabulating the distinct values of the 
statistic against their probabilities of occurrence 
in the complete enumeration (see Odiase & 
Ogbonmwan, 2007a for a detailed description of 
the implementation of the paired permutation 
algorithm). Given a balanced two-sample layout 
as 
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where xi ∈  X and yj ∈  Y. If n = 4, then, for a 
two-sample problem, the number of 

permutations is 
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The test statistic is computed for each 
permutation in the complete enumeration of the 
distinct permutations. The distribution of the test 
statistic is obtained by tabulating the distinct 
values of the statistic against their probabilities 
of occurrence in the complete enumeration, 
where all the permutations are equally likely. 

Considering consecutive number of 
pairs for a given experiment, the growth rate of 
the permutations from n–1 pairs to n pairs in a 
two-sample paired permutation experiment is 

2
2
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n

n =− , meaning that it doubles each time a 

single pair of observations is added. 
 
Independent Samples Experiment 

Given a multi-sample experiment with 
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of p subsets of size ni, i = 1(1)p, which are 
equally likely and each has the conditional 
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Ogbonmwan (2005a) showed that the number of 
permutations for a two-sample experiment is 
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the permutations of a two sample experiment, 
find the number of ways to permute any n3 
elements of the combined (n1 + n2 + n3) variates 
of the three treatments. This yields: 
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By following the same procedure as for the case 
of three treatments, a complete enumeration of 
the distinct permutations for a four-treatment 
experiment yields: 
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Continuing in this manner, for p ≥ 3 treatments, 
the distinct permutations are enumerated through 
the expression 
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Therefore, in a p-sample problem, the number of 

distinct permutations is ∏ 
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Ogbonmwan, 2005b). Observe that, for the 
balanced case, the number of distinct 
permutations is 
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Again, considering consecutive number of 
treatments for a given experiment, the growth 
rate of the permutations from p–1 treatments to 
p treatments is 
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Repeated Measures (Block) Permutation 

Repeated measures ANOVA tests the 
equality of means and is used when all members 
of a random sample are measured under varying 
conditions. In the repeated measures design, 
each trial represents the measurement of the 
same characteristic under a different condition. 
Given the layout of a multi-sample (n x k) 
experiment as 
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where xij is an observation in the jth treatment 
and the ith block and the total number of 
observations in the experiment is nk. Rank the 
observations for each row from 1 (smallest xij on 
row i) to k (largest xij on row i). Let the layout of 
the   ranks   (rij)   of   the   observations  xij  be 
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The data are arranged in k columns (treatments) 
and n rows (blocks), where each block contains 
k repeated observations. Obviously, there are k! 
possible arrangements or permutations of each 
block and due to multiplication of choices, the 
entire layout of the n x k experiment requires 
(k!)n permutations of the observations to yield 
the exact distribution of a test statistic, with the 
permutations equally likely and each having the 
conditional probability (k!)-n. 

The first step in developing permutation 
algorithm is to formulate an initial configuration 
of the ranks of the variates of an experiment by 
taking the trivial configuration 
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because any configuration of the ranks can 
engender all the distinct permutations. The test 
statistic is computed for each permutation in the 
complete enumeration of all the distinct 
permutations. The distribution of the test statistic 
is obtained by tabulating the distinct values of 
the test statistic against their probabilities of 
occurrence in the complete enumeration. 

Considering two consecutive numbers 
of blocks for a given experiment, the growth rate 
of the permutations from n–1 blocks to n blocks 

is 
( )

( )
!

!
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k
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=−  and the growth rate of the 

permutations from k–1 treatments to k 

treatments is 
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−
 and clearly, k! 

grows faster than kn for a fixed n, and for a fixed 
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k, k! is constant while kn explodes as n increases. 
Therefore, the growth rate of the permutations is 
higher for a unit increase in blocks than a unit 
increase in treatments for a fixed number of 
treatments and the reverse is the case when it is 
the number of blocks that is fixed. 
 
Sampling Permutations with Unique Patterns 

Given the layout of a two-sample 
experiment as 
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where ix  and iy  are the ith observations of the 

independent random samples X and Y 
respectively, arrange the combined samples in 
ascending order of magnitude and rank all the 

21 nnm +=  observations from 1 (smallest) to m 
(largest). Let the layout of the ranks (rij) of the 
observations in a two-sample layout be  
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Under the null hypothesis, LR is composed of m 
independent and identically distributed random 
variables and hence conditioned on the observed 
data set. An exhaustive permutation of the ranks 

yields 
!!

!

21 nn
mN =  permutations of the m ranks 

of the variates of two subsets of sizes 1n  and 

2n , which are equally likely, each having the 

conditional probability 1−N . 
The unique pattern of each permutation 

resulting from experimental data is identified by 
adopting the first sample, for example, in a two-
sample problem. This is carried out by 
concatenating the ranks or indices of 
observations in the experiment in a particular 
manner that makes the pattern unique for every 
distinct permutation. The unique patterns 

obtained are therefore exploited in sampling 
from the permutation space without the risk of 
repeating permutations already sampled. The 
benefit of this approach is that – even when 
enumeration is not exhaustive – the distribution 
of a test statistic can be obtained within a 
reasonable level of accuracy with reduced time 
and space complexities. This sampling approach 
therefore circumvents the elaborate theoretical 
requirements of asymptotic procedures and the 
logical and computational difficulties associated 
with an exhaustive enumeration of permutations. 
 

Methodology 
Let the initial configuration of the ranks of the 
variate in a two-sample experiment be LR. The 
entire permutation space can be spanned by any 
of the permutations (configurations) of the 
observations or ranks of observations. In a two-
sample problem, only one of the samples is 
required to define each permutation because it is 
obvious that the remaining variates are in the 
second sample. 

In a two-sample experiment 
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where ix  and iy  are the ith observations of the 

independent random samples X and Y 
respectively, arrange the combined samples in 
ascending order of magnitude and rank all the 

21 nnm +=  observations from 1 (smallest) to m 
(largest) to arrive at LR. For the original 
permutation and subsequent permutations, sort 
X such that 

121 nxxx ≤≤≤  . 

The variates are identified by their 
indices (1, 2, ..., m) or actual ranks, which are 
employed in obtaining the unique patterns. 
Attach 0 in front of the first nine indices or ranks 
(01, 02, ..., 09) to make each number two digits, 
leaving 10, 11, ..., 99 as they are and treat all the 
numbers as strings so that it will be possible to 
manipulate the numbers. Concatenate the indices 
or ranks of X and store as a single constant 
value. This now becomes the pattern of the 
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given layout of the observations. (Concatenation 
is a standard operation in computer 
programming languages. It is the operation of 
joining two character strings end to end. In 
programming languages, string concatenation is 
a binary operation usually accomplished by 
putting a concatenation operator between two 
strings or operands.) 

After a unique pattern is obtained, a 
resampling without replacement is carried out to 
obtain a random sample of n1 variates from the 
original combined sample of m variates. This is 
achieved by deleting points already selected at 
random. Again, sort the resampled n1 variates 
and concatenate their indices or ranks to obtain a 
pattern. Compare this pattern with previously 
obtained patterns and store it only if it is unique, 
otherwise, resample without replacement again 
until a unique pattern is obtained. The chosen 
test statistic is computed for each unique 
permutation and the probability distribution of 
the test statistic is constructed. Finally, compute 
the cumulative probability distribution of the test 
statistic, T, under the null hypothesis and obtain 
the p-values such that the probability of making 
a Type I error is exactly α. 

As an illustration, consider an n x k 
experiment with n = 2 treatments (X, Y) and k = 
5 variates in each treatment could have the 
trivial configuration or permutation of ranks 
represented as 
 

105
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61

YX

 

 
Using the methodology presented, the 
permutation is written as 

1005

0904

0803

0702

0601

YX

 

 

a total of 252
!5x!5

!10 =  permutations are 

required for an exhaustive enumeration of all the 
distinct or unique permutations. The process 
starts thus:  The entire permutation space 
can be spanned by the trivial permutation 
(configurations) of the observations or ranks of 
observations, any other permutation from the 
permutation space can also be adopted to span 
all the unique permutations. In a two-sample 
problem, only one of the samples (X) is required 
to define each permutation because it is clear 
that the remaining variates are in the second 
sample. 

The first permutation pattern is 
0102030405. Assuming resampling from the 
permutation space yields X = {8, 3, 5, 2, 6}, then 
the second permutation pattern is obtained by 
first sorting to have {2, 3, 5, 6, 8}, leading to the 
pattern 0203050608. Resampling again, given 
{2, 10, 5, 9, 8}, the third permutation pattern is 
0205080910. The resampling process continues 
until either all the patterns are enumerated for 
small samples or the error tolerance is achieved 
for large samples. See Table 1 for an exhaustive 

enumeration of the 252
!5x!5

!10 =  permutation 

patterns for this illustration. 
For very small samples, an exhaustive 

enumeration of all the unique permutations is 
achieved with the sampling method described. 
When sample size is large, enumeration of 
permutations does not need to be exhaustive. 
Instead, a subset of the permutation space (for 
example, 2,000) is obtained and the probability 
distribution of the test statistic is constructed. 
Take a second sample of same size and fuse it 
into the earlier distribution to obtain an updated 
probability distribution and compare with the 
earlier distribution. With a given level of error  



JUSTICE I. ODIASE 
 

129 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Exhaustive Enumeration of Unique Permutation Patterns for n = 2, k = 5 
0102030405 0304050710 0103050709 0405070809 0304070810 0105060708 

0203050608 0206070809 0105060910 0102030408 0203060708 0405060708 

0106070809 0102030910 0102040910 0205080910 0102060810 0102030506 

0104050809 0102050609 0102060709 0204050708 0304060708 0506080910 

0104080910 0102030709 0304050709 0102040608 0206070810 0305060710 

0104060708 0205060809 0104060809 0102030510 0204050610 0102070809 

0203040708 0104060710 0306070809 0307080910 0102040609 0102040710 

0507080910 0103040508 0103040810 0305080910 0103040507 0102040709 

0203060810 0306070810 0203040510 0205070810 0105080910 0106080910 

0102060710 0103050610 0204070910 0103050810 0203060809 0204050809 

0102030409 0102030407 0204060708 0506070809 0102050910 0205070910 

0304050910 0405060910 0102060809 0103060910 0104060709 0103040506 

0203040508 0205060910 0205060810 0103060709 0204060910 0203040610 

0304050708 0104070809 0103050710 0105060710 0102030509 0304050609 

0102030607 0406080910 0304050809 0103040708 0203050910 0204080910 

0203040810 0104070910 0102040509 0104050910 0203050609 0304070809 

0103060710 0103040608 0406070809 0103050609 0107080910 0104070810 

0106070810 0204050910 0305060708 0203040609 0102030609 0106070910 

0405060710 0304060910 0304050610 0103040609 0102050809 0102040506 

0203040506 0102030406 0104050607 0204070810 0103070810 0203040509 

0102040610 0304060809 0102040810 0103050708 0405060709 0203060910 

0203040607 0104050709 0204050709 0102080910 0206080910 0102030810 

0205060710 0103040809 0103060708 0203060710 0405060809 0204060710 

0104050609 0102060910 0104050710 0102070910 0103060810 0304080910 

0103060809 0203050607 0102040507 0102030708 0203040709 0204050810 

0105060709 0207080910 0304070910 0204050710 0203070809 0103040710 

0102040508 0305060809 0103050809 0102030410 0103040607 0205060709 

0105070810 0103040510 0405070910 0405060810 0607080910 0204060809 

0102030710 0102070810 0203080910 0204060810 0406070910 0405070810 

0203050809 0203060709 0204060709 0103080910 0105070809 0204050607 

0102030507 0103070809 0102050607 0103050910 0104050810 0105070910 

0203040608 0204050609 0104060810 0203040809 0103070910 0102040607 

0103040610 0103050607 0206070910 0102040809 0506070910 0304060709 

0305060810 0306080910 0203040710 0105060809 0102060708 0203050709 

0102050710 0203070910 0304060710 0104060910 0304050608 0102030608 

0203050610 0102030508 0102030809 0406070810 0103050608 0204070809 

0102030610 0203040507 0405080910 0102040708 0105060810 0103040509 

0305060910 0205070809 0103040709 0304050607 0203040910 0203050708 

0306070910 0305070910 0102040510 0304060810 0305070809 0203070810 

0204050608 0205060708 0103040910 0304050810 0407080910 0102050608 

0305060709 0104050608 0104050610 0203050810 0506070810 0102050610 

0305070810 0104050708 0203050710 0102050708 0102050709 0102050810 
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tolerance, if the error tolerance is exceeded, 
another sample is taken and fused into the last 
update of the probability distribution to obtain 
another update and again compared with the 
previous update of the probability distribution. 
This process is continued until the error 
tolerance is achieved. Compare for every 
occurrence of the test statistic in the last two 
updates using the error tolerance as a guide and 
proceed to update the probability distribution if 
the error tolerance is not met. Compute the 
cumulative probability distribution of the Test 
Statistic, T, under the null hypothesis and obtain 
the p-values such that the probability of making 
a type I error is exactly α. 
 
Unique Permutation Pattern Test Procedure 

Let π 1, π 2, …, π N be a set of all 
distinct permutations of the ranks of the data set 
in the experiment. The unique permutation 
pattern test procedure is as follows: 
 
1. Read the original layout of observations. 
 
2. Rank the combined observations of the 

experiment in (1) to obtain LR = π 1 and 
compute the observed value of T statistic to 
obtain 01 tT = . 

 
3. Store pattern of (1) or (2). 
 
4. Obtain a distinct permutation iπ , of the 

ranks (LR) from (3) by sampling without 
replacement. 

 
5. Obtain pattern of (4) and compare with 

previous patterns. If different, store pattern, 
if already exists, go to (4). 

 
6. Compute the T statistic Ti = T( iπ ), for 

permutation iπ  in (5), where i > 1; update 

probability distribution. 
 
7. Perform (4) to (6) for i = 2, 3, …, k ≤ N. If 

sample size (N) is large, 
 

a) Assume a level of error tolerance 
(0.00001) and take a subset of size k = 
1,000 of the permutation space to obtain 

the probability distribution of the test 
statistic. 

 
b)  Take another subset of size k from the 

permutation space and fuse into the 
earlier probability distribution to obtain 
an updated distribution. Compare this 
distribution with the earlier distribution 
of the test statistic for every value of the 
test statistic. 

 
c)  If the error tolerance is exceeded for 

any value of the test statistic, go back to 
(b); continue this process until the error 
tolerance is achieved. 

 
8. Construct the empirical cumulative 

probability distribution for the distinct 
values of T and extract critical values. 
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9. Under the empirical distribution, if α≤0p , 

reject the null hypothesis. 
 

In a two-sample problem, only one of 
the samples is important in the generation of 
permutation patterns because it is unique for 
each permutation, that is,  
 

!!

!

2121 nn
m

n
m

n
m

=







=








, 21 nnm += . 

 
To provide exact critical values when ties occur, 
midranks are assigned as the ranks of tied 
observations, and the algorithm is implemented 
with rij as input, composed of actual ranks 
containing ties. Tabulated exact critical values of 
a test statistic are usually provided for 
experiments with distinct observations, because 
it will be practically difficult to consider all 
possible occurrences of ties and create tables of 
exact critical values for each occurrence of ties 
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for different sample sizes. This will result in 
several volumes of tables. In order to arrive at 
the critical values (see Table 2), the ranks of 
distinct observations (rij) were used as input in 
Algorithm for various sample sizes. See 
Appendix A for the unique permutation pattern 
algorithm. This algorithm identifies and 
compiles the unique permutation patterns of the 
layout of observations or rank of observations in 
a two-sample experiment. It is illustratively 
implemented to produce a table of critical values 
for the Siegel-Tukey test statistic 
 
Siegel-Tukey Test 

The Siegel-Tukey test is similar in 
procedure to the Wilcoxon Rank Sum test for 
difference in location. It is based on the logic 
that if two samples come from populations with 
the same median, the one with the greater 
variability will have more extreme scores. The 
hypotheses for a two-tailed test are: 
 

H0: There is no difference in spread 
between the two populations 

 
versus 

 
H1: There is some difference in spread 

between the two populations. 
 

The two samples are combined and 
ordered in ascending order of magnitude, 
keeping track of sample membership. For 

1 2m n n= + , the ranking proceeds as follows: 

( )1 1α = , ( ) 2mα = , ( )1 3mα − = , ( )2 4α = , 

( )3 5α = , ( )2 6mα − = , ( )3 7mα − = , 

( )4 8α = , the ranking continues to alternate 

from lowest to highest, ranking two scores at 
each end. It tests for differences in scale between 
two groups. 
 
Critical Values for the Siegel-Tukey Test 
Statistic 

Figures 1a-1b illustrate that the normal 
distribution will poorly approximate the exact 
distribution of the Siegel-Tukey (S-T) test 
statistic for very small sample sizes. As group 
sample size increases, the shape of the 
distribution of the S-T test begins to look more 

like the normal distribution as shown in Figures 
1c-1d. The critical values of the S-T test statistic 
shown in Table 2 were obtained from the 
enumeration of all distinct permutations of the 
ranks of the observations in an experiment (m, n 
< 20) combined with the idea of resampling 
while ensuring an error tolerance level (m, n ≥ 
20). These critical values ensure that the 
probability of a Type I error in decisions arising 
from the use of the S-T test is exactly α. 

Results obtained from asymptotic 
procedures and resampling techniques are 
commonly adopted in several nonparametric 
tests as alternatives to tabulated exact critical 
values. Fahoome (2002) conducted a Monte 
Carlo study and recommended the asymptotic 
approximation of the S-T test when group 
sample sizes exceed 25, based on conservative 
estimates of 0.045 < Type I error rate < 0.055 
for α = 0.05; other authors recommended higher 
or lower sample sizes. 
 

Conclusion 
The critical values for a test statistic are 
determined by cutting off the most extreme 
100α% of the theoretical frequency distribution 
of the test statistic, where α is the level of 
significance (Siegel & Castellan, 1988). 
Classical methods require that the theoretical 
distribution of the test statistic should agree with 
a mathematically definable frequency 
distribution, this often leads to a probability of 
Type I error greater than α, particularly when 
sample sizes are small. The cost of such an error 
might be too high to risk. Therefore, the exact 
permutation paradigm methodology presented in 
this study is of value because it guarantees that 
the probability of a Type I error is exactly α 
with the attendant advantage of no distributional 
assumptions apart from the exchangeability of 
the observations. When sample sizes are large 
and it becomes practically difficult or impossible 
to construct the probability distribution, 
permutation sampling becomes very useful 
because it quickly converges to the actual 
distribution; Scheffe (1943) opined that this is 
the only sure way of constructing the exact 
distribution of a test statistic. 
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Figure 1: Exact Distribution of Siegel-Tukey Test Statistic (S-T) for Different Sample Sizes 
with their Large Sample Approximations (Z) 

 

 
 

(a) 
n1 = 4, n2 = 4 

 

 
 
 

(b) 
n1 = 6, n2 = 6 

 

 
 
 

(c) 
n1 = 8, n2 = 8 

 

 
 
 

(d) 
n1 = 15, n2 = 15 
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Figure 2: Distribution of Siegel-Tukey Test Statistic with Error Tolerance = 0.00001 for Different Sample Sizes 
 

 
 
 

(a) 
n1 = 20, n2 = 20 

 

 
 
 

(b) 
n1 = 30, n2 = 30 

 

 
 
 

(c) 
n1 = 40, n2 = 40 

 

 
 
 

(d) 
n1 = 50, n2 = 50 
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Figure 3: Distribution of Siegel-Tukey Test Statistic for Different Levels of Error Tolerance (n1 = 15, n2 = 15) 
 

 
 
 

(a) 
2 Iterations 

 

 
 
 

(b) 
5 Iterations 

 

 
 
 

(c) 
36 Iterations 

 

 
 
 

(d) 
339 Iterations 
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Figure 4: Distribution of Siegel-Tukey Test Statistic for Different Number Samples (n1 = 15, n2 = 15) 
 

 
 
 

(a) 
103 Iterations 

 

 
 
 

(b) 
82 Iterations 

 

 
 
 

(c) 
50 Iterations 

 

 
 
 

(d) 
36 Iterations 
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Table 2: Lower and Upper Critical Values for the Siegel-Tukey Test Statistic 

Sample Size 
n1 n2 

ST0.9000 ST0.9500 ST0.9750 ST0.9900 ST0.9950 ST0.9975 ST0.9990 

3 2 
6 

12 
      

3 3 
7 

14 
6 

15 
     

4 2 
11 
17 

      

4 3 
12 
20 

11 
21 

     

4 4 
13 
23 

12 
24 

11 
25 

    

5 2 
17 
23 

16 
24 

     

5 3 
18 
27 

17 
28 

16 
29 

    

5 4 
20 
30 

18 
32 

17 
33 

16 
34 

   

5 5 
21 
34 

20 
35 

18 
37 

17 
38 

16 
39 

16 
39 

 

6 2 
23 
31 

22 
32 

     

6 3 
25 
35 

24 
36 

23 
37 

    

6 4 
27 
39 

25 
41 

24 
42 

23 
43 

22 
44 

  

6 5 
29 
43 

27 
45 

25 
47 

24 
48 

23 
49 

22 
50 

 

6 6 
31 
47 

29 
49 

27 
51 

25 
53 

24 
54 

23 
55 

 

7 2 
30 
40 

29 
41 

     

7 3 
33 
44 

31 
46 

30 
47 

29 
48 

   

7 4 
35 
49 

33 
51 

32 
52 

30 
54 

29 
55 

  

7 5 
37 
54 

35 
56 

34 
57 

32 
59 

30 
61 

29 
62 

 

7 6 
40 
58 

37 
61 

35 
63 

33 
65 

32 
66 

31 
67 

29 
69 

7 7 
42 
63 

40 
65 

37 
68 

35 
70 

33 
72 

32 
73 

30 
75 

8 2 
39 
49 

38 
50 

37 
51 

    

8 3 
42 
54 

40 
56 

39 
57 

37 
59 

   

8 4 
44 
60 

42 
62 

41 
63 

39 
65 

38 
66 

37 
67 

 

8 5 
47 
65 

45 
67 

43 
69 

41 
71 

39 
73 

38 
74 

37 
75 
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Table 2 (continued): Exact Critical Values for Siegel-Tukey Test Statistic 

Sample Size 
n1 n2 

ST0.9000 ST0.9500 ST0.9750 ST0.9900 ST0.9950 ST0.9975 ST0.9990 

8 6 
50 
70 

47 
73 

45 
75 

43 
77 

41 
79 

40 
80 

38 
82 

8 7 
53 
75 

50 
78 

47 
81 

44 
84 

43 
85 

41 
87 

39 
89 

8 8 
56 
80 

52 
84 

50 
86 

46 
90 

44 
92 

43 
93 

41 
95 

9 2 
48 
60 

47 
61 

46 
62 

    

9 3 
51 
66 

49 
68 

48 
69 

47 
70 

46 
71 

  

9 4 
55 
71 

52 
74 

50 
76 

49 
77 

47 
79 

46 
80 

 

9 5 
58 
77 

55 
80 

53 
82 

51 
84 

49 
86 

48 
87 

47 
88 

9 6 
61 
83 

58 
86 

56 
88 

53 
91 

51 
93 

50 
94 

48 
96 

9 7 
64 
89 

61 
92 

58 
95 

55 
98 

53 
100 

51 
102 

49 
104 

9 8 
68 
94 

64 
98 

61 
101 

57 
105 

55 
107 

53 
109 

51 
111 

9 9 
71 

100 
67 

104 
63 
108 

60 
111 

57 
114 

55 
116 

53 
118 

10 10 
88 

122 
83 

127 
79 
131 

75 
135 

72 
138 

69 
141 

66 
144 

11 11 
107 
146 

101 
152 

97 
156 

92 
161 

88 
165 

85 
168 

82 
171 

12 12 
128 
172 

121 
179 

116 
184 

110 
190 

106 
194 

103 
197 

99 
201 

13 13 
150 
201 

143 
208 

137 
214 

131 
220 

126 
225 

122 
229 

118 
233 

14 14 
175 
231 

167 
239 

161 
245 

153 
253 

148 
258 

144 
262 

138 
268 

15 15 
201 
264 

193 
272 

185 
280 

177 
288 

172 
293 

167 
298 

161 
304 

20 20 
362 
458 

349 
471 

338 
482 

325 
495 

316 
504 

308 
512 

298 
522 

30 30 
828 

1002 
804 

1027 
783 

1047 
759 

1071 
743 

1088 
728 

1102 
710 

1121 

40 40 
1487 
1754 

1449 
1791 

1417 
1824 

1380 
1861 

1354 
1886 

1331 
1910 

1303 
1937 

50 50 
2339 
2711 

2286 
2764 

2241 
2809 

2189 
2861 

2153 
2898 

2122 
2930 

2082 
2970 
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Appendix A: Unique Permutation Pattern Algorithm 
This computer algorithm identifies and compiles the unique permutation patterns of the layout of observations or 
rank of observations in a two-sample experiment. It was implemented to produce a table of critical values for the 
Siegel-Tukey test statistic. 
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Appendix A (continued): Unique Permutation Pattern Algorithm 
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Appendix A (continued): Unique Permutation Pattern Algorithm 
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Appendix A (continued): Unique Permutation Pattern Algorithm 
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Appendix A (continued): Unique Permutation Pattern Algorithm 
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