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A Weighted Exponential Detection Function Model for Line Transect Data 
 

Faisal Ababneh Omar M. Eidous 
Al-Hussian Bin Talal University, 

Ma’an, Jordan 
Yarmouk University, 

Irbid, Jordan 
 

 
A new parametric model is proposed for modeling the density function of perpendicular distances in line 
transects sampling. The model can be considered a weighted exponential model in the sense that it 
combines two exponential models with different weights. The proposed model is appealing because it is 
monotone decreasing with distance from transect line; in contrast to the classical exponential model, it 
satisfies the shoulder condition at the origin. Simulation results for a wide range of target densities show 
reasonable and good performances of the weighted exponential model in most considered cases compared 
to the classical exponential and the half-normal models. 
 
Key words: Line transect sampling, exponential model, weighted exponential model, half-normal model. 
 
 

Introduction 
Transect methods, particularly line transect 
methods, are a practical and relatively 
inexpensive procedure for estimating the 
population density of certain objects in a given 
region; these methods have become a popular 
sampling scheme among ecologists. The 
estimation procedure can be achieved by 
walking distance L  following a deterministic 
transect line, counting the number of objects 
being investigated and recording the 
perpendicular distance, ,X  from the object 
sighted to the path of the observer (line transect 
center). When objects are observed from a line 
transect with a detection function )(xg , the 

distance X  to the observed object from a 
randomly placed transect will tend to have a 
probability density function (pdf) )(xf  of the 

same shape as )(xg , but scaled so that the area 

under   )(xf    equals   unity.   Buckland, et al. 
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(2001) and Burnham, et al. (1980) are the key 
references for this distance sampling procedure. 

The logical assumption related to the 
detection function )(xg  indicates that )(xg  is 
monotonically decreasing and satisfies the shape 
criterion (i.e., 0)( =′ xg ). Accordingly, )(xf  
is in turn monotonically decreasing with 

0)0( =′f . Burnham and Anderson (1976) gave 
the fundamental relation for estimating the 
density of objects in a specific area, which is 
expressed as 
 

L
fnED

2

)0()(= , 

 
where )(nE  is the expected value of the number 
of detected objects. Given various assumptions 
(Burnham & Anderson, 1976) show that the 
general estimate for D  is given by  
 

L
fnD
2

)0(ˆ
ˆ = , 

 

where )0(f̂  is an appropriate sample estimator 

of )0(f  based on n  observed perpendicular 

distances nxxx ,...,, 21 . Thus, the key aspects in 

line transects sampling are the modeling of 
)(xf and the estimation of )0(f . 
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Let )(xf  be the unknown pdf of 

perpendicular distances nXXX ,...,, 21 , which 

are usually assumed to be a random sample 
(Buckland, et al., 1993). A parametric approach 
involves assuming that )(xf  is a member of a 
family of proper pdf of a known functional form, 
but depends on an unknown parameter θ , where 
θ  may take a vector value and should be 
estimated by using perpendicular distances. A 
variety of approaches to estimate θ  will lead to

)ˆ,0()0(ˆ θff = . 
A number of parametric models have 

been proposed for )(xf . The classical 
exponential model and the half normal model, 
each with one scale parameter, are the most 
prominent. Gates, et al. (1968) suggested the 
exponential model with detection function, 
 

0   , )( /
1 ≥= − xexg x α  

 
and pdf, 
 

0    ,/ )( /
1 ≥= − xexf x αα .           (1) 

 
The maximum likelihood (ML) method 

indicates that the ML estimator of )0(f is 

Xf ML /1)0(ˆ
 ,1 = , where X  is the sample mean. 

The detection function )(1 xg  (or the pdf )(1 xf ) 
do not satisfy the shoulder condition which 
minimizes the importance of utilizing this model 
in line transect sampling. In contrast to the 
exponential model, the half normal model 
suggested by Hemingway (1971) satisfies the 
shoulder condition assumption. The half normal 
detection function is given by 
 

0   ,)(
22 2/

2 ≥= − xexg x σ  
 
and the pdf is, 

 

0   ,)(
22 2/

2
2

2 ≥= − xexf x σ

πσ
.      (2) 

The ML estimator of )0(f  is 
2/1

 ,2  

2
)0(ˆ 






=

T
f ML π

 under the half normal 

model, where nxT
n

i
i /

1

2
=

= . Quinn and 

Gallucci (1980) derived the minimum variance 
unbiased estimator for )0(f  under Model (2), 
which is given by 

2/1

 ,2  

2

)(

1
)0(ˆ 






=

Tn
f MV πβ

, 

 
where 

2/1

2)2/(

)2/)1((
)( 








Γ
−Γ= n
n

nnβ . 

 
Under Model (2), Zhang (2009) proposed the 
shrinkage estimator  
 

2/1

 ,2  

2
)(

2
)0(ˆ 






−=

T
n

n
nf SH π

β . 

 

The estimator )0(ˆ
 ,2 SHf  is biased for )0(f , but 

it achieves the smallest mean square error. 

Comparing the estimators )0(ˆ
 ,2 MLf , )0(ˆ

 ,2 MVf  

and )0(ˆ
 ,2 SHf it is observed that 

 

2
2, 2, 

2, 

2ˆ ˆ(0) ( ) (0)

2 ˆ( ) (0)

SH MV

ML

nf n f
n

n n f
n

β

β

−=

−=
. 

 
Because 1)( →nβ  (Magnus, et al., 1966) and 

1
2 →−

n
n

 as ∞→n , the three estimators are 

asymptotically equivalent. A simulation study 
was performed using a finite sample for different 
target models; results indicate that the three 
estimators perform very similarly to each other, 
even for the target detection functions that are 
deviated from the half normal model.(For other 
parametric models with two parameters see: 
Burnham & Anderson (1976); Pollock, (1978); 



WEIGHTED EXPONENTIAL DETECTION MODEL FOR LINE TRANSECT DATA 

146 
 

Burnham, et al. (1980); Buckland (1985); 
Eidous (2004). 

A weighted exponential model with one 
parameter is proposed to fit line transects data. 
Two estimators under this model are derived to 
estimate )0(f  and hence the density of objects, 

D . The small-sample properties of the new 
estimators were studied and compared to both 
the classical exponential and the half normal 
estimators via simulation techniques. 
 

The Model 
Let nXXX ,...,, 21 be n  perpendicular distances 

(assumed to be independent and identically 
distributed) following the detection function 

),;( γθxg , where θ  and γ  are two unknown 
parameters. The detection function is proposed 
to be,  
 

  ( ; , ) 2 ,

0,  ,  0

x xg x e e
x

θ λθ γ
θ γ

− −= −
≥ >

 

 
According to this detection function, the 
probability of detecting an object given its 
perpendicular distance on the transect line is one 
(i.e., 1),;0( =γθg ), which indicates that the 
probability of detecting on the line transect 
center is certain. However, the first derivative of 

),;( γθxg  at 0=x  is γθ +− 2  (i.e. 

γθγθ +−=′ 2),;0(g ), which indicates that 

),;( γθxg  do not satisfy the shoulder condition 

unless θγ 2= . Therefore, the detection 
function for the perpendicular distances that 
satisfies the shoulder condition is proposed to 
be, 

( )xx eexg   2)(3
θθ −− −= , 

 
and the corresponding pdf is, 
 

( ) 0  ,0    , 2
3

2
)(   

3 >≥−= −− θ
θ

θθ xeexf xx . 

(3) 
Because 1)0(3 =g , the parameter )0(3f  is 

given by 

3

2
(0)

3
f

θ
= .                            (4) 

model (3) can be expressed in terms of )0(3f  as 

 

( )3 33 3
3 3

(0) (0) /2  /2( ) (0) 2  ,

0

f fx xf x f e e

x

− −= −

≥
 

(5) 
 
It can be shown that the detection function 

)(3 xg  is monotonically decreasing in x . The 

first derivative of )(3 xg  is 

( )xx eexg   2
3 2)( θθθ −− −=′ , which equals zero at 

0 =x ; thus, )(3 xg  is monotonically 

decreasing for ),0( ∞∈x  if ( )xx ee   22 θθθ −− −
0<  0  2 <− −− xx ee θθ  xx ee   2 θθ −− < 

xx   2 θθ −<−  xx   2 θθ > , which is true for 
all 0x >  and 0θ > . Accordingly )(3 xf  is 

monotonically decreasing for ),0( ∞∈x . 
 
Moments and Maximum Likelihood Estimators 

The parameter )0(3f  in model (5) must 

be estimated. The expected value of X  based 
on this model is ))0(9/(7 3f , which gives 

)9/(7)0(ˆ
,3 Xf
MO

=  as the moment estimator 

for )0(3f . 

Although the moment estimator for 
)0(3f  is given in a closed form, the maximum 

likelihood estimator must be calculated using a 
numerical method. The likelihood function 

)( fL  based on model (5) is 
 

3
1

nn
3 ii

3 3
i 1 i 1

( ) ( )

3 (0)xx
(0) exp( 3 (0) ) 2 exp( ) .

2 2

n

i
i

n

L f f x

ff f

=

= =

=

− = − − 
 

∏

 ∏
 

To find the maximum likelihood estimator of 
)0(3f , the following equation must be solved 

 

0
)(log =

∂
∂

f
fL

, 

where 
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1 13 3

log ( )

3 3
.

(0) 2 2 2exp(3 (0) / 2) 1

n n
i

i
i i i

L f
f

xn x
f f x= =

∂ =
∂

 
− +  − 
 

 
The maximum likelihood estimator can be found 
by using numerical methods such as the 
Newton-Raphson, and a Mathematica Program 
for carrying out the estimation procedure can be 

written. Let )0(ˆ
 ,3 MLf  be the maximum 

likelihood estimator of )0(3f , then as ∞→n ,

)0(ˆ
  ,3 MLf  is asymptotically )),0(( 2

3 ffN σ , 

where 

1

2

2
2 )(ln

−

















−=

df
fLdEfσ . Using the 

transformation )2/ )0(3exp(2 3 xfu −−=
results in, 
 

2

2

2
3

2 2
13 3

2 2

2 2
3 3 1

9

ln ( )

exp( 3 (0) / 2)
     

(0) 2 (2 exp( 3 (0) / 2))

4 (2 ) ln (2 )
     .

(0) 3 (0)

n
i i

i i

n

d L fE
df

X f XE
f f X

n n u u du
f f u

=

 
−  

 
 −= +  − − 

− −= +




 
The Mathematica Program was used to compute 
the last integral, which gives, 
 

2
3 )0(

 80153.0

f
n= . 

 
Therefore,  

=2
fσ

n
f

 80153.0

)0( 2
3 . 

 

Replacing )0(3f  by )0(ˆ
  ,3 MLf  leads to the 

estimate 2ˆ fσ  of 2
fσ  and the approximate large-

sample %100)1( α−  confidence interval (C.I.) 

for )0(3f  is given by 

 

)0(ˆ
  ,3 MLf ± 2

2/ ˆ fZ σα . 

 

For example, if 05.0=α , then 96.1025.0 =Z  

and thus, a %95  C.I. for )0(3f  is )0(ˆ
  ,3 MLf ±

nf ML /)0(ˆ18925.2   ,3 . 

 
Methodology 

To assess the performances of the proposed 

estimators )0(ˆ
,3 MO

f  and )0(ˆ
 ,3 MLf  of )0(f  

under the weighted exponential family, a 
simulation study was performed. For 
comparison, the classical exponential estimator 

)0(ˆ
 ,1 MLf and the half normal estimator 

)0(ˆ
 ,2 MLf were also considered. Four target 

models were chosen for inclusion in the 
simulation based on the criterion that they are 
representative of many different shapes that 
might occur in the field. These four models are: 
 
(1) Exponential Power (EP) Model (Pollock, 

1978) 
1

( )
(1 1/ )

0, 1

xf x

x

e β

β
β

−=
Γ +

≥ ≥
; 

 
(2) Hazard-Rate (HR) Model (Hayes and 

Buckland, 1983) 
 

( )1
( ) 1

(1 1/ )

0, 1

xf x

x

e β

β
β

− −
= −

Γ −
≥ >

; 

 
(3) Beta (BE) Model (Eberhardt, 1968) 
 

( ) (1 )(1 )

0 1,  0

f x x
x

ββ
β

= + −
≤ < ≥

; 

 
(4) General Polynomial (GP) Model (Zhang, 

2009) 

210 ( )
( ) (1 ( / 0.6) )

3 ( 1/ 2)

0,  1/ 2.

f x x

x

ββ
π β

β

−Γ= +
Γ −

≥ >
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Four models were selected from the 
following different models: EP, HR, BE and GP. 
For the EP model, parameter values 

5.2,0.2,5.1,0.1=β  and corresponding 

truncation points 0.2,5.2,0.3,0.5=w . For 
the HR model with parameter values 

0.3,5.2,0.2,5.1=β  and corresponding 

truncation points 6,8,12,20=w . The BE 
model parameter values 

0.3,5.2,0.2,5.1=β  and truncated point 

0.1=w  for all cases. For the GP model 

parameter values 5.3,9.1,9.0,6.0=β  and 

the truncated point 0.3=w  for all cases. 
The 16 target models considered cover a 

wide range of perpendicular distance probability 
density functions that vary near zero from spike 
to flat. It should be noted that the EP model with 

1=β  and the BE model with different values 

of β  do not satisfy the shoulder condition 
assumption. These choices were made in order 
to assess the robustness of the considered 
estimators with respect to the violation of the 
shoulder condition assumption. Note also that 
the other considered models satisfy the shoulder 
condition assumption. 

For each model 1,000 samples of 
perpendicular distances were randomly drawn 

for sample sizes 200,100,50=n . Table (1) 
reports the simulated value of the relative bias    
( RB ) for each model and for each sample size, 
 

( )
)0(

)0()0(ˆ

f
ffERB −= , 

 
and the relative mean error ( RME ) 
 

( )
)0(

)0(ˆ

f
fMSE

RME = , 

 
for each considered estimator. 
 

Conclusion 
Based on the simulation, several conclusions can 
be drawn by inspecting the results with respect 
to RB and RME . 

(1) The performance of the classical 

exponential estimator, )0(ˆ
 ,1 MLf  is 

effective when the target (underlying) 
model is exponential (EP with 1=β ). In 

this case, the RB  and RME  associated 

with )0(ˆ
 ,1 MLf  were very small compared 

other considered estimators. However, the 

RB  and RME  of )0(ˆ
 ,1 MLf  become very 

large when the underlying model deviates 
from the exponential. The RME  values of 

)0(ˆ
 ,1 MLf  range between 0.080 (EP with 

1=β and 200=n ) and 0.732 (EP with 

5.2=β  and 50=n ).  
 

(2) The estimator )0(ˆ
 ,2 MLf  seems to be better 

than )0(ˆ
 ,1 MLf  for most considered cases. 

Regarding RME , )0(ˆ
 ,2 MLf  beats 

)0(ˆ
 ,1 MLf  for all considered cases except 

for (EP with 1=β  and HR with 5.1=β  

and 2=β ). Despite that HR satisfies the 
shoulder condition, it decreases very 
sharply away 0=x  when 5.1=β  and 

2=β . This may explain the performances 

of )0(ˆ
 ,1 MLf  in these two cases. The 

performance of )0(ˆ
 ,2 MLf  is very good 

when the target model is half normal (EP 
with 2=β ) and when the shoulder 
condition of the target model is very large 
(EP with 5.2=β  and HR with 3=β ). 

Except for the cases: EP with 1=β , HR 

with 5.1=β  and 2=β , the performance 

of )0(ˆ
 ,2 MLf  is acceptable compared the 

other estimators. The RME  values of 

)0(ˆ
 ,2 MLf  range from 0.052 (EP with 

2=β  and 200=n ) to 0.576 (EP with 

5.1=β  and 200=n ). 
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(3) The RB  and RME  associated with the 

two proposed estimators )0(ˆ
 ,3 MOf  and

)0(ˆ
 ,3 MLf  are very similar to each other in 

all considered cases. Therefore, )0(ˆ
 ,3 MOf  

is recommended as opposed to )0(ˆ
 ,3 MLf  

because the formal model takes a closed 

form, while )0(ˆ
 ,3 MLf  needs a numerical 

method to compute. Comparing the RME s 

of )0(ˆ
 ,3 MOf  and )0(ˆ

 ,2 MLf  it appears that 

)0(ˆ
 ,3 MOf  performs better than )0(ˆ

 ,2 MLf  in 

most cases. More specifically, if the 
shoulder condition of the target model 

seems to be large, then )0(ˆ
 ,2 MLf  beats 

)0(ˆ
 ,3 MOf  (e.g. EP with 5.2 ,2=β  and 

HR with 3=β ). Otherwise, )0(ˆ
 ,3 MOf  

performs better than )0(ˆ
 ,2 MLf . The RME  

values of )0(ˆ
 ,3 MOf  range from 0.058 (GP 

with 6.0=β  and 200=n ) to 0.357 (EP 

with 5.2=β  and 50=n ). Comparing the 

range of RME  for different estimators 

indicates that )0(ˆ
 ,3 MOf  is more stable than 

the other estimators.  
 
Therefore, based on results in this study, it may 
be concluded that the weighted exponential 
model fits the line transect data reasonably and it 
can be recommended as a promising parametric 
model to estimate the parameter )0(f  and the 

population density D . 
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Table 1: RB and RME for Different Estimators when Data are Simulated from the Four Target Models 

n  β  w  

Estimator 

)0(ˆ
 ,1 MLf  )0(ˆ

 ,2 MLf  )0(ˆ
 ,3 MOf  )0(ˆ

 ,3 MLf  

RB RME RB RME RB RME RB RME 

Exponential Power (EP) Model

50 

1 5 

0.055 0.154 -0.384 0.393 -0.179 0.211 -0.187 0.219 

100 0.040 0.105 -0.393 0.397 -0.191 0.206 -0.187 0.204 

200 0.041 0.080 -0.395 0.397 -0.190 0.198 -0.186 0.199 

50 

1.5 3 

0.400 0.435 -0.133 0.166 0.089 0.159 0.089 0.155 

100 0.391 0.408 -0.141 0.156 0.082 0.122 0.081 0.118 

200 0.390 0.399 -0.142 0.149 0.081 0.103 0.078 0.102 

50 

2 2.5 

0.593 0.617 0.017 0.104 0.239 0.274 0.248 0.281 

100 0.590 0.602 0.015 0.073 0.236 0.254 0.243 0.261 

200 0.580 0.586 0.008 0.052 0.229 0.238 0.233 0.242 

50 

2.5 2 

0.711 0.732 0.118 0.155 0.331 0.357 0.345 0.373 

100 0.697 0.708 0.109 0.132 0.320 0.334 0.330 0.343 

200 0.695 0.700 0.105 0.117 0.318 0.325 0.326 0.331 

Hazard Rate (HR) Model 

50 

1.5 20 

-0.120 0.199 -0.565 0.571 -0.316 0.339 -0.311 0.337 

100 -0.126 0.169 -0.570 0.573 -0.320 0.332 -0.310 0.335 

200 -0.131 0.152 -0.575 0.576 -0.324 0.329 -0.323 0.331 

50 

2 12 

0.149 0.256 -0.409 0.427 -0.107 0.194 -0.128 0.215 

100 0.126 0.187 -0.427 0.434 -0.124 0.164 -0.126 0.175 

200 0.112 0.152 -0.437 0.441 -0.135 0.157 -0.127 0.149 

50 

2.5 8 

0.387 0.443 -0.226 0.270 0.079 0.186 0.067 0.161 

100 0.394 0.421 -0.231 0.252 0.084 0.143 0.083 0.139 

200 0.374 0.386 -0.250 0.258 0.068 0.102 0.069 0.109 

50 

3 6 

0.559 0.599 -0.074 0.169 0.213 0.270 0.236 0.294 

100 0.559 0.579 -0.084 0.135 0.213 0.242 0.226 0.255 

200 0.543 0.552 -0.099 0.122 0.200 0.215 0.213 0.227 
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Table 1 (continued): RB and RME for Different Estimators when Data are Simulated from the Four Target 
Models 

n  β  w  

Estimator 

)0(ˆ
 ,1 MLf  )0(ˆ

 ,2 MLf  )0(ˆ
 ,3 MOf  )0(ˆ

 ,3 MLf  

RB RME RB RME RB RME RB RME 

Beta (BE) Model 

50 

1.5 1 

0.410 0.436 -0.096 0.126 0.096 0.151 0.092 0.152 

100 0.406 0.419 -0.099 0.115 0.093 0.124 0.103 0.134 

200 0.403 0.410 -0.101 0.109 0.092 0.107 0.096 0.109 

50 

2 1 

0.350 0.382 -0.148 0.171 0.050 0.130 0.067 0.134 

100 0.336 0.352 -0.157 0.168 0.039 0.091 0.046 0.093 

200 0.332 0.340 -0.158 0.163 0.036 0.066 0.041 0.072 

50 

2.5 1 

0.297 0.332 -0.189 0.207 0.009 0.117 0.021 0.121 

100 0.298 0.315 -0.189 0.198 0.010 0.080 0.010 0.075 

200 0.289 0.298 -0.196 0.200 0.003 0.057 -0.000 0.054 

50 

3 1 

0.263 0.301 -0.216 0.231 -0.018 0.115 -0.011 0.116 

100 0.257 0.276 -0.221 0.229 -0.023 0.082 -0.023 0.080 

200 0.256 0.267 -0.223 0.227 -0.023 0.061 -0.025 0.060 

General Polynomial (GP) Model 

50 

0.6 3 

0.254 0.290 -0.220 0.243 0.030 0.117 0.033 0.123 

100 0.245 0.262 -0.233 0.238 0.022 0.083 0.021 0.073 

200 0.246 0.259 -0.217 0.229 0.018 0.058 0.014 0.061 

50 

0.9 3 

0.189 0.243 -0.296 0.308 -0.075 0.141 -0.077 0.154 

100 0.181 0.211 -0.302 0.308 -0.081 0.117 -0.095 0.128 

200 0.170 0.187 -0.309 0.311 -0.090 0.108 -0.092 0.110 

50 

1.9 3 

0.280 0.332 -0.262 0.289 -0.004 0.138 0.001 0.141 

100 0.275 0.303 -0.276 0.289 -0.009 0.099 -0.011 0.101 

200 0.267 0.283 -0.284 0.291 -0.015 0.074 -0.019 0.075 

50 

3.5 3 

0.452 0.489 -0.118 0.174 0.129 0.194 0.121 0.191 

100 0.435 0.454 -0.135 0.163 0.116 0.154 0.119 0.155 

200 0.426 0.436 -0.140 0.154 0.109 0.130 0.120 0.142 
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