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The Mixture Item Response Theory (MixIRT) can be used to identify latent classes of examinees in data 
as well as to estimate item parameters such as difficulty and discrimination for each of the groups. 
Parameter estimation via maximum likelihood (MLE) and Bayesian estimation based on the Markov 
Chain Monte Carlo (MCMC) are compared for classification accuracy and parameter estimation bias for 
difficulty and discrimination. Standard error magnitude and coverage rates were compared across number 
of items, number of latent groups, group size ratio, total sample size and underlying item response model. 
Results show that MCMC provides more accurate group membership recovery across conditions and 
more accurate parameter estimates for smaller samples and fewer items. MLE produces narrower 
confidence intervals than MCMC and more accurate parameter estimates for larger samples and more 
items. Implications of these results for research and practice are discussed. 
 
Key words: Mixture item response theory, differential item functioning, Bayesian estimation, Markov 

chain Monte Carlo estimation, maximum likelihood estimation. 
 
 
 

Introduction 
Mixture item response theory (MixIRT) has 
become an increasingly popular tool for 
investigating a variety of issues in educational 
and psychological assessment (Cohen & Bolt, 
2005; Bolt, Cohen & Wollack, 2001). Use of the 
MixIRT model in a variety of contexts has been 
described in detail by a number of authors 
(Cohen & Bolt, 2005; von Davier & Yamamoto, 
2004; von Davier & Rost, 1995; Mislevy & 
Verhelst, 1990; Rost, 1990; Yamamoto, 1987). 
For example, MixIRT has been recommended 
for identifying subsets of a population (latent  
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classes) which are characterized by different 
item response models for a particular measure or 
instrument (Li, et al., 2009). In this context, 
psychometricians have used MixIRT to detect 
and characterize differential item functioning 
(DIF) (Cohen & Bolt, 2005; De Ayala, et al., 
2002; Bolt, Cohen & Wollack, 2002, 2001). 
This simulation study compares the parameter 
estimation accuracy for two methods of 
estimation used with MixIRT: Maximum 
Likelihood Estimation (MLE) and Baysian 
estimation using the Markov Chain Monte Carlo 
(MCMC) approach.  

Prior research has demonstrated the 
utility of the MixIRT framework given its ability 
to identify differentially responding subgroups 
that exist organically in the data. This approach 
stands in contrast to the assumption that 
differential response patterns are inherently 
linked to easily identified grouping variables 
(e.g., gender) and that all (or most) members of 
such intact groups will demonstrate very similar 
responses to items; an assumption which 
underlies other statistical models used for 
similar purposes. For example, in the detection 
of DIF using standard methods such as logistic 
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regression or the Mantel-Haenszel test, 
comparisons of item response patterns are made 
between known groups such as males and 
females. However, recent work in the area of 
DIF has demonstrated that the causes of DIF are 
often complex and not so clearly tied to easily 
identified groups (Cohen & Bolt, 2005). In such 
cases, the utility of the MixIRT approach – and 
its sometimes superiority – has been 
demonstrated in gaining a deeper understanding 
into differential item response patterns such as 
those associated with DIF (Maij-de Meij, 
Kelderman & van der Flier, 2010; Samuelson, 
2008; Cohen, Cho & Kim, 2005; Rost, 1990). 

The MixIRT model, which combines the 
powerful statistical tools of latent class analysis 
(LCA) and item response theory (IRT), assumes 
that a population is composed of a finite number 
of latent examinee classes that can be 
differentiated based upon their item response 
patterns (Rost, 1997). In turn, these different 
response patterns will manifest themselves as 
differences in parameters of the item response 
model associated with each group. The 2-
parameter MixIRT (Mix2PL) model for 
dichotomous data takes the following form: 
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Here latent class membership (g = 1, 2, …, G), 
within class difficulty for item j (bjg) within class 
discrimination for item j (ajg), and the within 
class level on the latent trait being measured for 
person i (θig) are all model parameters to be 
estimated. In addition, each survey respondent is 
placed in a latent class, and the proportions of 
individuals in each class (πg), are also estimated, 

under the constraint that 
1
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g
g
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this model including a pseudo-chance parameter 
(Mix3PL) and excluding both pseudo-chance 
and constraining discrimination to be equivalent 
across items (Mix1PL) are also available, as in 
the standard IRT context. The focus of this study 
is on dichotomous items for which chance 
responding is not applicable, such as behavior 
inventories; for this reason only the Mix1PL and 
Mix2PL models are examined.  

The item parameter values carry the 
same meaning in the MixIRT context as in the 
more general IRT framework; thus, item 
difficulty provides information regarding the 
likelihood that an individual will endorse an 
item (or answer it correctly in the context of 
cognitive assessment), discrimination indicates 
how well the item differentiates between 
individuals with different levels of the construct 
being measured and pseudo-guessing is a 
measure of the likelihood that an examinee 
would respond to the item correctly due solely to 
chance (de Ayala, 2009).  

When there are class differences in the 
item difficulty and discrimination parameter 
values, researchers conclude that members of the 
latent classes perform differently on the specific 
item (Cohen & Bolt, 2005). For example, 
assume that the results of the analysis indicate 
the presence of two distinct latent classes in the 
population. In this case, if a specific item for 
latent class 1 has a higher value for bjg than class 
2, it is known that the item is more difficult for 
class 1; this in turn may provide insights into the 
types of individuals who tend to be in that class. 
Similarly, if latent class 2 has a higher ajg value 
on an item compared to class 1, it can be 
concluded that the item is better able to 
differentiate among individuals with different 
levels of the latent trait for class 2 than for class 
1. This approach to using MixIRT models has 
been particularly evident in the identification 
and characterization of DIF for achievement 
tests (Cohen & Bolt, 2005), though it has also 
been used to identify different usage patterns of 
the not sure category in personality inventories 
(Maij-de Meij, Kelderman & van der Flier, 
2008) and to identify individuals engaging in 
impression management in organizational 
surveys (Eid & Zickar, 2007). 
Parameter Estimation 

In the literature, model parameter 
estimation for MixIRT models has been 
examined using both MLE (Willse, 2011) and 
MCMC methods in the Bayesian context (von 
Davier & Rost, 2007). Excellent discussions 
regarding the technical details of both 
approaches are present in the literature; the 
interested reader is referred to von Davier and 
Carstensen (2007) for a thorough treatment of a 
number of MixIRT models available. Although 
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prior applied work has used both methods, there 
has been very little research empirically 
comparing the performance of the two 
estimation techniques to one another.  

Based upon these prior applications, 
each approach has been shown to have specific 
advantages and disadvantages in practice. For 
example, MCMC has proven useful with 
complex MixIRT models because it does not 
require integration of the likelihood function (as 
does MLE) which can be extremely difficult 
when it is necessary to estimate many 
parameters (Junker, 1999).  

Conversely, the MCMC approach is 
often very time consuming to implement 
(sometimes taking 10 days or more to fit a single 
model), and may encounter difficulties in 
converging to solutions for individual 
parameters (Li, et al., 2009). The issue of time is 
non-trivial when dealing with MixIRT models, 
as several different latent class solutions must 
typically be fit and then compared in order to 
determine which is optimal for the data at hand 
(Li, et al., 2009). MLE does not usually require 
such large amounts of time as MCMC and MLE 
has been used successfully in estimating 
MixIRT models (von Davier & Rost, 2007); 
however, MLE can mistakenly converge on 
localized, rather than general maximum 
likelihood solutions, leading to suboptimal 
model parameter estimates. This problem can be 
overcome through the use of multiple random 
starting values, such as the 10 random starts 
used in this study (Rost, 1991). Of concern, 
though, is that using more starting values and 
increasing the maximum number of iterations in 
order to increase the probability of obtaining 
optimal fit, also increases the time necessary for 
the model to converge and provide parameter 
estimates. 

Although relatively little work has been 
done explicitly comparing the performance of 
MLE and MCMC estimation techniques in the 
context of MixIRT models, Li, et al. (2009) 
conducted a simulation study in which they 
examined the performance of MCMC primarily 
in terms of identifying the optimal model 
selection criterion for dichotomous item 
response data. However, as a part of this study, 
MixIRT parameter estimation was also 
examined. Results of their research indicated 

that item parameter recovery was worse in the 
presence of more latent classes and better when 
there were more items and/or more examinees. 
Recovery of latent class membership was 
generally greater than 80%, with the most 
accurate results for the Mix2PL model and the 
least accurate for the Mix3PL.  

Cho and Cohen (2010) expanded on this 
work by investigating item parameter recovery 
for the multilevel Mix1PL model, in which 
information at both the student (level 1) and 
school (level 2) levels were taken into 
consideration. The estimation used in this 
simulation study was also MCMC and the model 
was restricted to the 1-Parameter Logistic form. 
The authors reported that recovery of both the 
item difficulty estimates and group membership 
was good for the MCMC methodology used in 
the study. A study by Willse (2011) examined 
the performance of a joint maximum likelihood 
estimator for the Rasch MixIRT model. He 
reported the results of a simulation study that 
showed good parameter recovery for group 
specific item difficulty values. No other 
simulation work examining the accuracy of 
parameter estimates in the MixIRT context was 
identified in the literature. 

The goal of this simulation study is to 
compare the parameter recovery performance of 
the MLE and MCMC estimation procedures in 
the context of the MixIRT model for 
dichotomous item response data. Prior 
simulation work in this area has focused 
primarily on MCMC estimation and has not 
directly compared the ability of this approach 
and MLE in terms of parameter recovery 
accuracy, both for the items and for latent class 
membership. In addition, this work adds the 
additional simulation conditions of group size 
ratio, which has not been previously examined. 
Thus, this study adds to the literature by directly 
comparing these two popular methods of 
estimation across a range of conditions for 
dichotomous item response data. Prior applied 
work in this area has shown both methods to be 
potentially useful in many cases. However, 
given that both have distinct certain practical 
advantages in terms of their relative abilities to 
converge on the optimal solution and the time 
needed to use each; it would be helpful to 
understand whether one technique provides any 
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methodological advantages over the other and, if 
so, under what conditions. If one approach does 
provide greater parameter estimation accuracy, 
researchers might be able to make decisions 
regarding which to use in light of this and the 
aforementioned practical concerns. Given that 
such a direct comparison has not been 
previously published, it is believed that this 
work will add valuable information to the 
literature on MixIRT models. 
 

Methodology 
The simulation study used to compare the 
parameter estimation accuracy for MLE and 
MCMC, involved the manipulation of several 
factors that have been shown pertinent in 
previous research. A total of 50 replications per 
combination of manipulated conditions were 
generated. The two estimation methods were fit 
using Mplus version 6.1 (Muthén & Muthén, 
2011). Several of the simulation conditions used 
in this study were based on those reported in Li, 
et al. (2009). These were selected for use 
because they were used previously and have 
been shown to be related to the performance of 
the MCMC estimator.  

Thus, given that something is known 
about how the MCMC approach performs under 
the various conditions, it was determined that 
they would be particularly informative for the 
comparison of this method and MLE. It should 
be noted that the simulating item parameter 
values were drawn from item responses to a 
behavioral checklist given to adolescents 
through the auspices of the 2009 administration 
of the Youth Risk Behavior Survey (Centers for 
Disease Control, 2009). A MixIRT study 
involving these items was published by Finch 
and Pierson (2011) in which they report results 
for four latent classes based on 16,000 
adolescents’ responses (yes or no) to items 
asking about participation in a variety of risky 
sexual and substance use behaviors. These data 
were fit with a Mix2PL model. The population 
item parameter values used in the generation of 
simulated data for the current study were drawn 
from this earlier work and are shown in Table 1. 
 
Manipulated Conditions 

A total of 2, 3, and 4 latent classes were 
simulated with sample sizes of 400, 1,000 and 

2,000 examinees. Group sizes were either equal 
or unequal. In the unequal case for two groups, 
the ratio was 75/25, for three groups the ratio 
was 50/25/25 and for four groups the ratio was 
40/20/20/20. Two models were simulated, the 
Mix1PL and Mix2PL, and the appropriate model 
was fit for each replication. Specifically, when 
the Mix2PL model was used to generate the 
data, the Mix2PL model was fit to each 
simulated dataset. Finally, three conditions were 
simulated for the number of items, 5, 15 and 30. 
These were intended to simulate very short, 
moderate and somewhat longer instruments. The 
underlying latent trait was simulated to be 
unidimensional from the N(0,1) distribution. 

In order to differentiate the groups in the 
simulations, the item discrimination and item 
difficulty parameter values for the groups were 
made to differ (Table 1 shows the values for 
each group). For the 5 item condition, the first 5 
item parameter sets were used, and for the 30 
item condition, the 15 item set was used twice, 
in keeping with the methodology laid out in Li, 
et al. (2009). The outcome variables of interest 
were the proportion of correctly placed 
individuals into the latent classes, the estimation 
bias for item difficulty and discrimination, mean 
standard error for parameters across replications 
and the coverage rates for the item parameters. 
In order to place all items on the same metric 
prior to estimating the outcome variables, 
methods outlined by Lloyd and Hoover (1980) 
were utilized. 
 
Model Convergence Issues 

Researchers using the MCMC approach 
to estimation must ensure that each time an 
analysis is run the results converge to the 
optimal solution. As a part of this, a burn-in 
period must be established, which means 
identifying a number of draws from the posterior 
distribution that will be ignored as the estimator 
seeks to converge to the solution for each 
parameter. After the burn-in has been 
established, samples are then drawn from 
subsequent values in the posterior in order to 
obtain the final parameter estimate. Based upon 
earlier work in this area, particularly that of Li, 
et al. (2009) and Cho and Cohen (2010), as well 
as examination of auto-correlation plots from 
several  of the    simulated   datasets,   10,000 
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Table 1: Item Difficulty and Discrimination Parameters Used In the Monte Carlo Simulations 
 

Item 

Difficulty 

Class 1 Class 2 Class 3 Class 4 

1 2.817 1.188 -2.522 1.824 

2 -1.447 0.099 0.306 1.054 

3 -2.507 -0.835 -2.002 2.819 

4 0.268 -1.022 -0.547 3.177 

5 1.743 -0.001 -2.569 2.535 

6 -0.699 -1.525 1.248 1.847 

7 0.022 0.206 -0.262 2.025 

8 1.025 0.729 -1.627 2.059 

9 1.201 0.747 -1.766 2.037 

10 1.444 1.348 -2.398 2.422 

11 1.299 0.867 -2.085 2.207 

12 1.056 0.681 -1.725 2.233 

13 0.713 0.626 -1.048 1.948 

14 1.154 0.352 -1.536 2.212 

15 0.546 0.001 -0.851 1.868 

Item 

Discrimination 

Class 1 Class 2 Class 3 Class 4 

1 0.096 1.735 0.083 0.689 

2 0.025 1.549 2.812 1.203 

3 0.236 1.146 0.057 0.351 

4 1.207 0.568 1.009 0.928 

5 0.845 0.279 0.547 0.483 

6 0.923 1.339 0.629 0.632 

7 0.918 2.105 0.836 1.062 

8 1.857 3.198 1.654 2.459 

9 1.075 2.106 0.722 0.978 

10 1.415 0.512 2.133 3.304 

11 2.477 0.163 1.765 0.853 

12 1.606 2.189 1.359 2.752 

13 0.432 1.918 0.529 0.547 

14 2.151 1.212 1.643 2.359 

15 1.029 2.130 1.150 1.009 
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iterations were used as the burn-in, 10,000 post 
burn-in values were used to obtain parameter 
estimates with MCMC and thinning of the 
posterior draws was set at 50.  

Each method presented some difficulties 
in terms of convergence. The MLE approach 
had difficulty converging for the smallest 
sample size condition (400). Therefore 
additional simulations were run until the 
necessary 50 converged replicates were obtained 
for MLE. With respect to MCMC, difficulty was 
encountered in obtaining convergence for the 5 
item condition for some of the replications. 
Thus, as with the MLE method, additional 
replications were run until the requisite 50 
converged solutions were obtained. Although it 
was recognized that both conditions causing 
these problems (400 examinees and 5 items) 
might generally be viewed as problematic in 
practice, it is important to learn as much as 
possible about the relative performance of these 
two methods, including under relatively difficult 
circumstances such as these, given that such 
conditions are not uncommon in actual research 
practice, particularly for behavioral inventories 
and short mental health screening instruments. 
 
Label Switching 

An issue of some importance in any 
study involving latent class analysis is that of 
label switching, in which a given latent class 
might take one number (e.g., 1) in one case, and 
another number (e.g., 2) in another case. In 
reality, however, the group is constituted of the 
same individuals or type of individuals. In a 
simulation study involving MCMC estimation, 
label switching consists of two separate 
problems. First, within the context of Bayesian 
analysis, label switching can occur across 
repeated sampling from the posterior distribution 
within a single analysis. In order to detect this 
type of label switching, it is necessary to 
monitor the posterior densities of group 
membership. A multimodal distribution would 
be indicative of such label switching. During the 
simulation the densities were monitored and 
multimodal solutions did not present themselves, 
thus this type of label switching was eliminated 
as a concern. 

The second type of label switching 
occurs across replications of a simulation study 

and is not limited to MCMC but can also occur 
for MLE. Essentially, it involves changing the 
arbitrary group label as described, but in this 
case from one replication to another. For this 
study, the methodology described in Cho, Cohen 
and Kim (2006) was used. Namely, the item 
parameter estimates from the individual sample 
replications were compared with those used to 
generate the data and the group labels from the 
sample replications were changed to match those 
to which they most closely conformed from the 
model generation groups.  
 

Results 
Classification Accuracy 

In order to identify statistically 
significant effects among the manipulated 
factors described, a repeated measures analysis 
of variance (ANOVA) was used. The within 
replication variable was method, and the 
between replication variables were the 
manipulated factors including number of items, 
sample size, number of groups, group size ratio 
and the underlying model. The dependent 
variable was the mean classification accuracy 
across replications. In addition to statistical 
significance, effect sizes were also calculated for 
all main effects and interactions. 

ANOVA results for the classification 
accuracy outcome variable indicate that the 
method of estimation interacted significantly 
with number of items (F < 0.001, η2 = 0.363), 
number of subjects (F = −0.025, η2 = 0.07), 
group size ratio (F = 0.006, η2 = 0.117) and 
number of groups (F = 0.003, η2 = 0.108). In 
addition, method (F < 0.001, η2 = 0.721) itself 
was statistically significant. Table 2 shows the 
classification accuracy rates for each of the 
manipulated variables by method. Across all 
other conditions, the MCMC approach yielded 
more accurate group classification than did 
MLE. This difference was most noticeable for 
fewer items, with the gap between the two 
estimation techniques narrowing as the number 
of items increased, in large part due to 
improvements in the accuracy of MLE. In 
addition, the MLE approach was more accurate 
at classifying individuals when the groups were 
of equal size, whereas the MCMC was largely 
impervious to the group size ratio. Across 
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conditions MCMC yielded similar rates of 
correct classification, which were uniformly 
higher than 0.9, whereas MLE was much more 
likely to be influenced by the manipulated 
conditions and rarely had correct classification 
rates greater than 0.9. 
 
Item Discrimination Parameter Estimation 

As with the classification accuracy 
results, ANOVA was used to identify significant 
study effects with regard to bias in the 
estimation of the item discrimination parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The interaction terms of method by 
number of items (F = 0.025, η2 = 0.07) and 
method by number of groups (F < 0.001, η2 = 
0.147) were significantly related to bias in the a 
parameter estimate. Table 3 shows the mean bias 
results across replications for these two terms. 
Regardless of the number of items, the Bayesian 
method provided estimates of a with bias under 
0.15 in all cases. By contrast, MLE yielded very 
biased estimates in the case of 5 items, had 
comparable bias  to the  Bayesian  for 15 items, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Latent Class Classification Accuracy by Method, Number of Items, 
Number of Groups, Sample Size, Group Size Ratio and Underlying Model 

 

Items MLE MCMC 

5 0.761 0.939 

15 0.889 0.972 

30 0.916 0.991 

Sample Size 

400 0.852 0.971 

1,000 0.845 0.969 

2,000 0.827 0.947 

Groups 

2 0.831 0.949 

3 0.880 0.970 

4 0.820 0.972 

Group Ratio 

Equal 0.841 0.963 

Unequal 0.715 0.950 

Model 

1PL 0.844 0.951 

2PL 0.822 0.969 

 



MIXTURE ITEM RESPONSE THEORY MODEL PARAMETER ESTIMATION 

174 
 

and had lower bias for 30 items. With respect to 
the number of groups, item discrimination bias 
for MLE increased concomitantly with 
increasing number of groups. In contrast, 
estimation accuracy for the Bayesian approach 
seemed largely unaffected by the number of 
groups in terms of the absolute size of bias, 
though for 4 groups the estimates were 
somewhat underestimated whereas for 2 and 3 
groups they were somewhat overestimated. 

In addition to parameter estimation bias, 
the coverage rates for the discrimination 
parameters were also estimated. These coverage 
rates represent the proportion of simulation 
replications for which the nominal 95% 
confidence interval actually contained the true 
population value of a: ideally they would be 
0.95. The results of the ANOVA indicated that 
the  main  effect  of  method  (F < 0.001, η2 = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.762), as well as the interaction of method by 
number of items (F < 0.001, η2 = 0.339) were 
statistically significant. Table 4 includes the 
coverage rates for each method by the number of 
items. 

Across conditions, the coverage rates for 
the MCMC estimates were near 1.0 and were 
much higher than those of the MLE method. The 
latter estimation approach had higher coverage 
for tests with a larger number of items, though in 
no case were these rates comparable to those of 
the MCMC approach and they were generally 
lower than the nominal 0.95 level. The standard 
errors of these estimates also appear in Table 4, 
and show that those associated with MCMC 
were larger than those from MLE. These larger 
standard errors resulted in wider confidence 
intervals for the MCMC estimates, which 
contributed in part to the higher coverage rates 
for this approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Item Discrimination Bias by Method, Number of Items and Number of Groups 
 

Items MLE MCMC 

5 0.307 -0.133 

15 -0.084 -0.082 

30 0.074 0.149 

Groups 

2 0.097 0.118 

3 0.276 0.105 

4 0.302 -0.080 
 
 
 

Table 4: Item Discrimination Coverage Rates (Mean Standard Error across Replications) By 
Method and Number of Items 

 

Items MLE MCMC 

5 0.663 (0.394) 0.991 (0.902) 

15 0.788 (0.378) 1.000 (0.886) 

30 0.886 (0.366) 1.000 (0.865) 
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Item Difficulty Parameter Estimation 
The ANOVA results for the item 

difficulty parameter bias revealed that only the 
interaction of method by number of groups was 
statistically significant (F = 0.013, η2 = 0.082). 
Table 5 includes the b bias results for this 
interaction term. For both methods, 
underestimation bias of the b parameter 
increased concomitantly with increases in the 
number of groups. The significant interaction 
appears to be a function of the fact that for 2 
groups, the bias in the MCMC estimator was 
somewhat smaller than that of MLE; however, 
for 3 groups this pattern was reversed and for 4 
groups the bias of the two methods was 
comparable. 

The ANOVA for the b parameter 
coverage rates showed that the main effect of 
method (F < 0.001, η2 = 0.768) and the 
interaction of method by number of items (F < 
0.001, η2 = 0.263) were the two significant 
terms in this model. Table 6 includes the 
coverage rates for b by method and number of 
items. Item difficulty coverage rates were 
uniformly 1.0 for the MCMC estimator, whereas 
for MLE these rates were below the nominal 
0.95 level except for the 30 item condition. An 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

examination of the average standard error for 
these estimates, also shown in Table 6, reveals 
that the MCMC estimator had a substantially 
larger standard error than did MLE, which in 
turn led to wider confidence intervals. 
Therefore, although the coverage rates for the 
MCMC approach were higher than those of 
MLE, the associated intervals were also wider, 
just as was the case for item discrimination. 
 

Conclusion 
It is hoped that the results of this study will 
prove useful to researchers and practitioners 
interested in using the MixIRT approach in order 
to gain a greater understanding of their data, 
whether in the context of characterizing DIF, or 
identifying specific item response profile 
groups, as was the case for the study upon which 
this work was built, or gaining further insights 
into the interplay of personality and item 
response profiles. In all of these cases, accurate 
estimation of item response and group 
membership parameters is crucial to obtaining 
useful results that can inform policy and 
practice. Prior applied research has focused on 
two different estimation methods, MCMC 
within the Bayesian framework, and MLE, and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Item Difficulty Bias by Method and Number of Groups 
 

Groups MLE MCMC 

2 -0.029 -0.019 

3 -0.031 -0.038 

4 -0.057 -0.055 

 
 
 

Table 6: Item Difficulty Parameter Coverage Rates (Mean Standard Error 
across Replications) by Method and Number of Items 

 

Items MLE MCMC 

5 0.620 (0.205) 1.00 (0.607) 

15 0.814 (0.195) 1.00 (0.598) 

30 0.959 (0.188) 1.00 (0.587) 
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has shown that both approaches appear to be 
useful for specific situations. In addition, a very 
brief simulation literature demonstrated some 
support for the MCMC technique in terms of 
parameter estimation, though no direct 
comparisons with MLE were made. At the same 
time, these earlier authors noted that the MCMC 
approach often requires a very lengthy time 
period in order to complete a single analysis (Li, 
et al., 2009), a fact which has also been reported 
by other authors. Therefore, while previous 
work indicates that the MCMC estimation 
approach might hold promise in terms of 
parameter estimation, the logistics of using it in 
many real world situations might limit its 
practical value. Given that there has been little 
simulation work examining MixIRT in general, 
and no studies that could be found comparing 
the two major parameter estimation approaches 
with one another, this the current study should 
prove informative to practitioners considering 
the use of the MixIRT paradigm in research. 

Study results herein indicate that for 
correctly identifying which group an individual 
belongs to, the MCMC approach would seem to 
be more effective. Across virtually all conditions 
simulated, it was more accurate than MLE in 
terms of correct group identification. Across all 
simulated conditions, MCMC correctly 
classified respondents in over 96% of cases, 
whereas MLE was correct only 84% of the time. 
Furthermore, there was very little variation in 
the rates of accuracy for MCMC across 
manipulated conditions, however, for MLE the 
accuracy rates varied greatly, particularly as a 
function of the number of items. Thus, for 
researchers whose primary goal is to gain 
insights into the types of respondents present in 
the population, it would seem that MCMC is the 
preferable estimation approach. 

For researchers who are most interested 
in the accuracy and precision of class specific 
item difficulty and discrimination values, the 
results of the study are somewhat more 
ambiguous. It seems that with respect to item 
discrimination estimates, the MCMC approach 
might provide somewhat less biased estimates 
for shorter instruments. By contrast, item 
discrimination bias was lower for MLE when the 
instrument contained 30 items. With respect to 
item difficulty, the length of the instrument was 

not as salient as the number of latent classes, 
such that the presence of more groups was 
associated with greater item difficulty bias for 
both methods. It is possible that this relationship 
was due in part to the smaller number of 
individuals in the groups that was present when 
the number of groups increased.  

In terms of estimate precision as 
measured by the average standard error value 
across replications and the coverage rates, MLE 
appears to have fared somewhat better than 
MCMC. It is true that the coverage rates for 
MCMC were uniformly higher than those of 
MLE, but this appears to have been due in the 
main to the larger standard errors associated 
with the Bayesian estimates. Thus, researchers 
using MCMC can be reasonably sure that the 
credible intervals for the estimates contain the 
population parameter value, but they also must 
be aware that these intervals will generally be 
wide. Such wide intervals may not be terribly 
informative to researchers interested in obtaining 
fairly precise estimates of the item difficulty and 
discrimination values. 
 
Recommendations for Practice 

Based on study results, some general 
recommendations for practice can be developed. 
First, when there are many items, the MLE 
approach might be optimal. With 30 items, MLE 
produced somewhat more accurate item 
parameter estimates than did MCMC and it had 
group classification accuracy rates above 90% 
(though this was lower than that of MCMC). In 
addition to the more accurate item parameter 
estimation in the presence of 30 items, MLE 
estimates were also more precise than those of 
MCMC, as witnessed in the narrower confidence 
intervals. However, when an instrument consists 
of very few items, MLE should probably be 
avoided, as it produced substantially more 
biased estimates than MCMC and will be less 
accurate in terms of classifying respondents. 
When researchers suspect that more than 3 
groups are present, MCMC would also seem to 
be a better choice, particularly with regard to 
estimating item discrimination parameters. Such 
is not the case for item difficulty, which was 
compromised with equal severity for both 
estimation approaches for 4 groups. In short, 
situations in which many items are available to 
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describe many examinees and few groups are 
ideal for the use of MLE, whereas cases in 
which the number of items is small and/or the 
number of groups is large may be better suited to 
MCMC. All of these recommendations must be 
considered in light of the fact that the MCMC 
estimation will probably take substantially more 
time than will MLE. 

Finally, with respect to using MixIRT 
models with relatively small samples as 
previously discussed, with a sample size of 400 
individuals, both estimation methods had 
difficulty reaching convergence for many of the 
replications in the study. This was particularly 
an issue for MLE, though the Bayesian approach 
was also less successful for an N of 400 than for 
the larger sample sizes; thus, in practice 
researchers might find that they are unable to 
obtain useful estimates for this small sample size 
regardless of the method used. This problem was 
particularly acute for a larger number of groups 
in conjunction with the smaller sample size, 
because the number of individuals in each group 
became small. Therefore, one other 
recommendation for practice to come out of this 
study is that – for samples of 400 or fewer – 
MixIRT may not be particularly viable, except 
perhaps for the simplest models. 
 
Limitations and Areas for Future Research 

As with any research, this study has 
some limitations which impact interpretations of 
the results that must be acknowledged. First, the 
Mix3PL model was not included in the study. 
This decision was made consciously, as the 
focus of the study was on instruments that are 
common in psychology, such as behavior 
inventories and personality assessments, for 
which chance responding is a negligible issue. In 
addition, the item parameter values used to 
generate the data were based on a behavior 
inventory. That this focus is believed to be 
appropriate for research in psychology, but it 
does limit the findings for those interested in 
cognitive assessments where chance responses 
to items are an issue. Future research should 
include a Mix3PL model. In addition, the current 
study examined a limited range of unequal group 
size conditions. Although this is the first study 
in this area to manipulate group sizes, it is 
recognized that more work in this area needs to 

be conducted and thus a wider range of unequal 
group size conditions should be simulated. In 
addition, it is believed that the settings of the 
MCMC and MLE techniques used in this study 
were in keeping with recommended practice, it 
would be helpful if a wider array of values for 
the burn-in period and post burn-in iterations for 
MCMC were used and if more conditions in 
terms of number of random starts and 
convergence criteria were investigated for MLE. 
Such research would provide more information 
regarding the optimal settings for use with these 
estimators. 
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