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Statistical Inferences for Lomax Distribution Based on 
Record Values (Bayesian and Classical) 

 
Parviz Nasiri Saman Hosseini 

University of Payame Noor, 
Tehran, Iran 

 
 
A maximum likelihood estimation (MLE) based on records is obtained and a proper prior distribution to 
attain a Bayes estimation (both informative and non-informative) based on records for quadratic loss and 
squared error loss functions is also calculated. The study considers the shortest confidence interval and 
Highest Posterior Distribution confidence interval based on records, and using Mean Square Error MSE 
criteria for point estimation and length criteria for interval estimation, their appropriateness to each other 
is examined. 
 
Key words: Lomax distribution; record values, maximum likelihood estimation, method of moment, 

Bayesian estimation, shortest interval, highest posterior density (HPD) interval, quadratic 
loss function, squared error loss function, prior density, posterior density, simulation, MSE. 

 
 

Introduction 
Let 1 2 3 , , ,X X X be a sequence of independent 

and identically (iid) random variable with 
cumulative distribution (cdf) function F(x) and 
probability density (pdf) f(x) For 1n ≥  define  
 

( ) ( )

( ){ }
1 1, 1

min : .
nj T

T T n

j X X

= +

= ≥
 

 

The sequence ( ) 1{ }T n nX ∞
=  is known as an upper 

record value statistic and the sequence 

1{ ( )}nT n ∞
=   is known as a record time sequence 

(Arnold, Balakrishnan & Nagaraja, 1998). 
Chandler (1952) was one of the first to study 
record theory and he defined a mathematical 
model for record values. Record values arise 
naturally in many applications involving data 
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relating to weather, sports, economics and life 
testing studies. Many authors have studied 
records and their associated statistics as well as 
inference-based testing on records. Some of the 
best examples may be found in the works of 
Balakrishnan, Arnold, Nagaraja (1998), 
Ahsanullah (1998) and Nevzoroz (1946).  

Sevgi, et al. (2005) examined the 
relationship between order statistics and records. 
Mohammad (2002) and Balakrishnan (1994) 
examined the recurrent relations between the 
moments for the generalized exponential and 
Lomax distributions. Ahsanullah (1974) studied 
record values received from Lomax distribution, 
and Ahsanullah and Holland (1994) discussed 
both scale and location estimation of the 
distribution of generalized extreme values based 
on records. Asgharzadeh (2009) discussed both 
MLE and Bayesian estimation based on record 
values and Chan (1998) presents interval 
estimation according to records for groups of 
scales and locations. Soliman and Abd Ellah 
(2006) compared Bayesian and Non-Bayesian 
estimation based on records.  

The Lomax distribution plays an 
important role in reliability. Consider the one-
parameter Lomax distribution with pdf 
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( ) ( )
1

11
; 1 0, 0 ,  f x x xθθ θ

θ
 − + 
 = + ≥ >  

 (1) 
and cdf 
 

( ) ( )
1

; 1 1  0 0.  ,F x x xθθ θ−= − + ≥ >  

 
An application of the Lomax distribution in 
receiver operating characteristic (ROC) was 
presented by Campbell and Ratnaparkhi (1993). 
Distributional properties and recurrence relation 
moments of record values was studied by 
Balakrishnan (1994) and Ahsanullah (1991). 
Much work has been done with respect to 
estimating the parameters using both classical 
and Bayesian techniques, and parametric and 
nonparametric inference based on record values 
have also been studied extensively (for example, 
see Ahmadia, et al., 2009; Soliman & Al-
Abound, 2008; Baklizi, 2008). 

This study has several components: It 
considers Lomax parameter estimation based on 
record values. It estimates the parameter ߠ using 
maximum likelihood and method of moment 
(MME) based on record values. It uses an 
appropriate selection of density function for a 
prior distribution to derive a Bayesian estimation 
based on record values. For the latter, by 
applying an appropriate selection for the prior 
density, the society parameter is controlled; this 
means that the Mean Square Error MSE) of the 
Bayesian estimation is controlled by controlling 
the parameters of this distribution. Finally, it 
derives the shortest interval estimation and 
Highest Posterior Density (HPD) interval 
estimation based on record values. Examples are 
used to illustrate the various components. 
 
Point Estimation of θ Parameter: The Method of 
Maximum Likelihood Estimation 

If (1) (2) ( ), , ,T T T nX X X…  represents the 

first n upper record values from the Lomax 
distribution in (1), then the joint distribution of 

(1) (2) ( ), , ,T T T nX X X…   is 

 

( ) ( ) ( )
1

(1) (2) ( ) ( ) ( )
1

, , , ; ; ,
n

T T T n T n T i
i

f x x x f x h xθ θ
−

=

… = ∏
 (2) 

where 

( ) ( )
( )

( )

( )
;

1 ( )
T i

T i
T i

f x
h x

F x
θ =

−
. 

 
Thus, for the Lomax distribution, 
 

( )
1

( )
(1) (2) ( )

( )1

(1 )
, , , ,

(1 )

T nn
T T T n n

T ii

x
f x x x

x

θ

θ
−

−

=

+
… =

+∏
 

(3) 
 
and the log likelihood function is  
 

( )( ) ( )( )
1

1
ln 1 ln 1  .

n

T n T i
i

L nln x xθ
θ =

 = − − + − + 
 


 (4) 

 
The maximum likelihood estimation (MLE) 
based on records can be obtained from (4) as 
 

( )( )
2

ln 1
0

T nxn
θ θ

+
− + =

 
and

 

( )ln(1 )
.ˆ T nx

n
θ

+
=                   (5) 

 
Using (2), the marginal pdf of ( )T nX  can be 

derived as 
 

( )

( ) ( )
( )

1
1 1

( ) ( )

 

1
 1 (ln(1 ))

1
,

!

T n

n
T n T nn

f x

x x
n

θ

θ

 − +  − 

=

+ +
−

 

(6) 
 
therefore, 

( ) ( )
2

ˆ .ˆ,MLE mleVar
n

θθ θ θ= =  

 
conversely, if (3) is rewritten as 
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( )
( )

(1) (2) ( )

( ) ( )
1

, , ,

1
  exp( ln 1 ln(1 )),

T T T n

n

T n T i
i

f x x x

nln x xθ
θ =

… =

− − + − +
 
then ln(1 )nx+  is a complete sufficient statistic 

for parameter θ . Therefore M̂LEθ  based on 

record is the equal to the Uniformly Minimum-
Variance Unbiased Estimator (UMVUE) for 
parameter θ . 
 
Point Estimation of θ Parameter: The Method of 
Moment Estimation 

The MME, first introduced by Pearson 
(1894), was one of the first methods used to 
estimate the society parameter θ  (for additional 
details and an example see Pearson, 1894). The 
Lomax parameter θ  is estimated by the MME 
based on record values by using the density 
function (6), which results in 
 

( )( ) ( )
1

1.
1

T n nE X
θ

= −
−

 

 
Next, solving the equation  
 

( )( )T nE X X=  

 
yields a MME based on record values, where തܺ 
is average of the n first records 

( ) ( ) ( )1 2( , , , )T T T nX X X… . Thus, 

 

1

1
1 .

(1 )

ˆ
MME

nX
θ = −

+
 

 
Bayesian Estimation of θ Parameter 

The Bayesian estimator of θ  is obtained 
based on record values under the two following 
loss functions: 
 

( )
2

, 1
ˆ

ˆ ,L θθ θ
θ
 

= −  
 

                  (7) 

and 

( ) 2ˆ ˆ, ) ,(L θ θ θ θ= −                    (8) 

where θ̂  is an estimator of θ . Assuming an 
inverse Weibull distribution IWD ( , , 1)cγ β = , 

the prior for θ  is conjugated as 
 

( ) 11
( ) exp  ,

Γ( )
γβ βπ θ

γ β θ θ
+  = − 

 
 

(9) 
 
such that 

( )

( )
( )

2

2

,
1

1 ( 2)

E

Var

βθ
γ

βθ
γ γ

=
−

=
− −

 

 
where 0,  0γ β> > . Note that 

1
~ ( , )gamma γ β

θ
. This prior density has an 

advantage over other priors because it is easy to 
use and the parameter ( , )γ β  can be chosen 

such that prior precision for the true value of θ  
is fulfilled because Bayesian estimations are 
functions of ( , )γ β , therefore, the precision of 
the Bayesian estimations cannot be controlled by 
altering the prior distribution parameters. 
Combining likelihood function (3) with prior 
density (9), the posterior density of θ  is 
obtained as 
 

( )

( ) ( )( )
( )( )

( )( )

1

|

ln 11

Γ ln 1

ln 1
exp

n

T n

T n

T n

x

x

n x

x

γ

π θ

β

θγ β

β

θ

+

=

  + +  
   + + +    

  + +
  −
 
  

×
 

 
where ( ) ( )1 , , ,   0.T T nx x x θ= … >  Note that 
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( ) ( ) ( )( )( )1

1
| , , ~ , Ln 1 .T T n T nx x gamma n xγ β

θ
 … + + + 
 
 

Bayesian Estimator of θ Under Quadratic Loss 
Function  

The posterior distribution of θ  is 

( )IWD( , ln 1 , 1)nn x cγ β+ + + = , where IWD 

is Inverse Weibull Distribution (in other words ܦܹܫ = ଵௐ where W is a Weibull variable) and 

the Bayes estimator of θ  is based on record 
values under a quadratic loss function (7), for 

example ,1b̂θ , as given by Berger (1985) is 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

1 2

,1

1 2

1 2

1 22

| , , ,

| , , ,

1
| , , ,

1
| , ,

1

1

ˆ

,

.

T T T n
b

T T T n

T T T n

T T T n

T n

E X X X

E X X X

E X X X

E X X X

Ln x

n

ω θ μ θ
θ

ω θ

θ

θ

β

γ

…
=

…

 … 
 =
 … 
 

+ +
=

+ +

 

(10) 
 
Bayesian Estimator of θ Under Squared Error 
Loss Function 

Considering the posterior distribution of 
θ  and loss function (8), the Bayes estimator 

based on record values, for example, ,2b̂θ , is 

given as (Berger, 1985): 
 

( )
( )
( )

,2 (1) (2) ( )

(1) (2) ( )

( )

( )| , , ,

| , ,

ˆ

,

1  
.

1

b T T T n

T T T n

T n

E X X X

E X X X

Ln x
n

θ μ θ

θ

β
γ

= …

= …

+ +
=

+ −

 

 
As a result, the Bayesian estimation is formed as 
a differentia combination of both prior 
distribution and sample distribution as: 
 

( )( )

,2

ln 1 1  
.

1 1 1
ˆ T n
b

xn
n n n

γ βθ
γ γ γ

+ −= +
+ − + − −

 

(11) 
 
Interval Estimation of θ Based on Record 
Values: The Shortest Interval Estimation  

To obtain the shortest (1 )%α−  
confidence interval estimation based on record 
values, a pivot quantity is chosen as a function 
of a minimal sufficient statistic for parameter 

( )ˆ
MLEθ θ  such that 

 

( )( )2 ln 1
.

T nX
Q

θ
+

=  

 
From (6) it is clear that the distribution of Q is 

2nχ  for any constants a and b, hence, 

 

( ) ( )

1 .

b

Q
a

P a Q b f t dt

α

< < =

= −

            (12) 

 
Algebraic manipulation results in the confidence 
interval 
 

( ) ( )( ) ( )2 ln 1 2ln 1
,

T n T nx x
b a

θ
+ +

< <  

 
thus, the length of interval is obtained as 
 

( )( )

1 1
2 ln 1 .T nL x

a b
 = + −  

         (13) 

 
To minimize (13) and satisfy (12), a and b are 
selected using the Lagrange multipliers method  
 

( )

( ) ( ) ( )( )

, ,

1 1
 2 ln 1 1 .

b

T n Q
a

a b

x f t dt
a b

ψ λ

λ α

=

  + − + − −  
   


 
After derivation by λ, a, and b, the following 
results: 



NASIRI & HOSSEINI 
 

183 
 

( )

( ) ( )

( ) ( )

( )

( )

( )

2

2 2

( )

2

1

12 ln 1
0 

( )
2 ln 1

0

.

b

Q
a b

QT n
a

Q Q
T n

f t dt

f t dtx
f a

a
a f a b f b

x
f b

b

α

α
λ

λ

= −

= −− +
− = 

=
+

+ =



  
 
 









 
Accordingly, a and b must satisfy (14) to yield 
the shortest interval estimation for ߠ: 
 

( ) ( )

( )
( )

2

2

1  ,

b

Q
a

Q

Q

P a Q b f t dt

a f a

b f b

α

< < =

= −

=


       (14) 

 
Interval Estimation of ߠ Based on Record 
Values: Highest Posterior Density (HPD) θ 
Estimation 

After obtaining the posterior distribution 

( )(1) (2) ( )| , , , ,T T T nX X Xπ θ …  the problem of the 

likelihood that the parameter θ  lies within the 
interval [ , ]L Uc c  arises. Bayesians call the 

interval based on the posterior distribution a 
credible interval; the interval [ , ]L Uc c  is said to 

be a (1 )%α−  credible interval for θ  if  
 

( )(1) (2) ( )| , , , 1 .
U

L

c

T T T n
c

X X X dπ θ θ α… = −  

(15) 
 
The Highest Posterior Density (HPD) region is 

given by ( ){ }(1) (2) ( ): | , , ,T T T nA X X X cπ θ … ≥   

where c is chosen so that 
 

( ) ( ) ( )( )1 2| , , , 1
U

L

c

T T T n
c

X X X dπ θ θ α… = −
 

 

( ) ( )(1) (2) ( ) (1) (2) ( ) | , , , | , , ,L T T T n U T T T nc X X X c X X Xπ π… = …
(16)

  

The HPD interval estimation is optimal in the 
sense that it results in the shortest interval. Let 

1λ
θ

= , by this assumption the posterior 

distribution of λ is Gamma 

( )( , ln 1 )nn xγ β+ + + . After algebraic 

manipulation, an HPD estimation (1 )%α−  for 

parameter θ  based on records is given by 
 

( )

1*Γ ( , , )
1    ,

Γ( )

exp ,

n

L U L

U

L U

n Ac Ac c
n c

c A c A

γ
γ α

γ

+ −
 + = −  +  

= −

 

(17) 
 

where ( )( )β ln 1 T nA x= + +  and *Γ  is the 

generalized incomplete Gamma function. 
Therefore HPD interval estimation based on 
record values can be obtained as: 
 

1 1
, .

U Lc c
θ

 
∈  
 

                     (18) 

 
Simulation and Examples 

MSE and Bias 
To illustrate the estimation techniques 

developed, consider the following simulated 
data from the Lomax distribution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.286379 2.652416 1.325698 
1.895476 16.420820 10.123657 
1.254875 14.852147 12.985314 

11.684235 15.365742 1085.950045 
50.254198 850.569874 32.154875 

950.548796 2423.065086 1.989562 
84.254187 1240.325487 7372.085167 
2.658474 352.325469 6524.123548 

15.987455 33.659874 5487.214587 
1.235478 3658.125489 9083.239327 

48.236584 6985.125489 6.325698 
448.125634 8754.215487 47739.689056 
125.258643 25.365987 12543.2158746

25413.125487 256.326598 1254.365241 
1.36548 16845.362545 25.326874 

6985.125469 7.365214 121942.356923
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This data was obtained by using the 

transformation 
1

1,
(1 )i

i

x
u θ= −

−
 where ui is a 

uniformly distributed random variable. If only 
the upper record values have been observed, 
these are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for a non-informative prior distribution with 
0, 1γ β= = , and 8, 7.56γ β= =  for an 

informative prior distribution. Results from 
equations (5), (10) and (11) for the parameter θ  
computed for n=4, 5, 6, 7, 8 are presented in 
Table1. 
 
Interval Estimation 

Results from using equations (14) and 

(15) for the parameter, 
1λ
θ

=  computed for 

n=4, 5, 6, 7, 8 are presented in Tables 2 and 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.286379 7372.085167 

16.420820 9083.239327 

1085.950045 47739.689056 

2423.065086 121942.356923 
 

Table 1: Estimation, Bias and MSE 
 

Number of 
Records (n=) 

 Estimate Bias MSE 

4 
5 
6 
7 
8 

M̂LEθ  

1.948300 
1.781118 
1.519049 
1.539077 
1.463914 

0 
0 
0 
0 
0 

0.9489683 
0.6344765 
0.3845852 
0.3383940 
0.2678805 

4 
5 
6 
7 
8 

,1b̂θ  

Non-Informative 

1.758640 
1.650932 
1.444899 
1.471692 
1.412368 

-0.18966006 
-0.13018638 
-0.07414991 
-0.06738463 
-0.05154600 

0.6433108 
0.4575572 
0.2880506 
0.2636236 
0.2143157 

4 
5 
6 
7 
8 

,2b̂θ  

Non-Informative 

2.931067 
2.476398 
2.022859 
1.962257 
1.815902 

0.9827668 
0.6952796 
0.5308099 
0.4231795 
0.3519877 

2.6528857 
1.4747832 
0.8076270 
0.6396728 
0.4737801 

4 
5 
6 
7 
8 

,1b̂θ  

Informative 

1.181015 
1.176114 
1.111620 
1.145846 
1.133607 

-0.7672848 
-0.6050046 
-0.4074296 
-0.3932308 
-0.3303074 

0.6785692 
0.4469587 
0.2275325 
0.2194012 
0.1684260 

4 
5 
6 
7 
8 

,2b̂θ  

Informative 

1.395746 
1.372133 
1.282638 
1.309539 
1.284754 

-0.5525547 
-0.4089857 
-0.2364112 
-0.2295385 
-0.1791599 

0.4308002 
0.2774215 
0.1378137 
0.1372864 
0.1082954 
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Table2: Shortest (1 )%α−  Confidence Interval Estimation Based On Record Values 
 

Number of 
Records 

(n=) 
Interval Length 

(1 )%α−  
Confidence 

4 
5 
6 
7 
8 

0.7071710 
0.7314714 
0.6822589 
0.7401722 
0.7432804 

4.549181 
3.743103 
2.965349 
2.843073 
2.589680 

3.842010 
3.011632 
2.283090 
2.102900 
1.846400 

90% 

4 
5 
6 
7 
8 

0.6255906 
0.6532331 
0.6139227 
0.6765692 
0.6765692 

5.766975 
4.580130 
3.545798 
3.340115 
3.001246 

5.141384 
3.930780 
2.931875 
2.669904 
2.324677 

95% 

4 
5 
6 
7 
8 

0.5012662 
0.5321775 
0.5064018 
0.5586008 
0.5689107 

9.505643 
7.002903 
5.142492 
4.663650 
4.069324 

9.003677 
6.470725 
4.636090 
4.104764 
3.500414 

99% 

 
 

Table3: Highest Posterior Distribution (HPD) (1 )%α−  Interval Estimation Based On Record Statistics 
 

Number of 
Records 

(n=) 
( , )L Uλ λ λ∈  

1 1
[ , ]

U L

θ
λ λ

∈  Length 
(1 )%α−  

Confidence 

4 
5 
6 
7 
8 

0.414500 
0.430000 
0.472900 
0.467300 
0.483600 

1.137700 
1.140900 
1.196200 
1.164000 
1.173200 

0.878966 
0.876501 
0.835980 
0.859100 
0.852369 

2. 412545 
2.325581 
2.114612 
2.139900 
2.067825 

1.533579 
1.449080 
1.278631 
1.280846 
1.215455 

90% 

4 
5 
6 
7 
8 

0.3668000.
383300 

0.423500 
0.421100 
0.437700 

1.237600 
1.236500 
1.293800 
1.254100 
1.260800 

0.808015 
0.808734 
0.772917 
0.797384 
0.793147 

2.726281 
2.608923 
2.361275 
2.374733 
2.284670 

1.918266 
1.800188 
1.588358 
1.577384 
1.491523 

95% 

4 
5 
6 
7 
8 

0.295500 
0.312600 
0.348500 
0.350100 
0.366900 

1.416700 
1.407700 
1.468000 
1.415400 
1.417600 

0.705865 
0.710378 
0.681198 
0.706514 
0.705417 

3.384095 
3.198976 
2.869400 
2.856327 
2.725538 

2.678229 
2.488598 
2.188242 
2.149813 
2.020121 

99% 
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Figure 1: MSE’s of the Estimators , ,1θ̂b , and ,2θ̂b  Informative and Non-Informative 

 
 

Figure 2: Lengths of the Shortest Interval and Highest Posterior Distribution (HPD) Estimations 
Based on Record Statistics for 90% Confidence 

θ̂MLE
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Figure 3: Lengths of the Shortest Interval and Highest Posterior Distribution (HPD) Estimations 
Based on Record Statistics for 95% Confidence 

 

 
 

Figure 4: Lengths of the Shortest Interval and Highest Posterior Distribution (HPD) Estimations 
Based on Record Statistics for 99% Confidence 
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Conclusion 
MLE and Bayesian estimations based on record 
values were obtained. For the Bayes estimations, 
in order to control the passive parameter of 
society, the prior distribution was assumed to be 
Gamma. In addition, Bayes estimations were 
obtained for two types of loss functions and, 
with a view of prior estimation, using an 
informative posterior density function, HPD 
estimations were obtained in a theoretic way 
(see Table 3). Conversely, the shortest 
confidence interval was obtained using a MLE 
based on records and equation (14) (Tate & 
Klett, 1959); see Table 2 for results.  

Theoretical results of the study are 
explained numerically by simulation in the 
following ways: Table 1 shows that an 
informative    Bayesian    estimation    based   on 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
records under squared error loss function has the 
lowest MSE compared to the informative 
Bayesian estimation, which is based on records 
under a quadratic loss function with a non-
informative Bayesian estimation under a squared 
error loss function.. This is also compared to a 
MLE based on records; comparisons are shown 
in Figure 1. Confidence intervals and their 
lengths for record numbers 4, 5, 6, 7, 8 and 
confidence levels 90%, 95% and 99% were 
obtained. The longer the n, the shorter the 
interval distance (see Table 3). Comparing 
Tables 2 and 3, it the point at which HPD 
estimations have a shorter length than the 
confidence interval with optimal length is 
observed. This comparison is illustrated in 
Figures 2, 3 and 4 for various confidence levels; 
Figure 5 shows the comparison for all levels. 
 

Figure 5: Lengths of the Shortest Interval and Highest Posterior Distribution (HPD) Estimations Based on 
Record Statistics for 90%, 95% and 99% Confidence 
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