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Inverted Exponential Distribution Under a Bayesian Viewpoint 
 

Gyan Prakash 
S. N. Medical College, Agra, 

U. P., India 
 

 
The objective of this study was to examine the properties of Bayes estimators of the parameter, reliability 
function and hazard rate under the symmetric and asymmetric loss functions for the inverted exponential 
model. The Bayes predictive interval and the Bayes estimate of shift point are also determined. A 
simulation study was carried out to study the properties of the Bayes estimators. 
 
Key words: Bayes estimators, LINEX loss function, squared error loss function, prediction limits. 
 
 

Introduction 
The exponential distribution is frequently used 
in lifetime data analysis, but its suitability is 
restricted to constant hazard (failure) rates. For 
situations where a failure rate is monotonically 
increasing or decreasing, the two-parameter 
Weibull and the Gamma distributions are 
popular for analyzing lifetime data. Both 
distributions have increasing and decreasing 
hazard rates depending on the shape parameter. 
However, one of the major disadvantages of the 
Gamma distribution is that its distribution and 
survival functions cannot be expressed in a 
closed form if the shape parameter is not an 
integer. Moreover, there are terms involving the 
incomplete Gamma function, thus, it is 
necessary to obtain distribution, survival or 
hazard functions by numerical integration. This 
makes the Gamma distribution less popular 
compared to the Weibull distribution, which has 
a closed form for the hazard and survival 
functions, but the Weibull distribution also has 
disadvantages. Bain & Engelhardt (1991) 
demonstrated that the maximum likelihood 
estimators of the Weibull distribution might not 
behave properly for all parametric ranges. 

Recently two new distributions have 
been introduced: the generalized Exponential 
(two - parameter) and the inverted Exponential 
(one - parameter) distributions. The generalized 
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exponential distribution can be used effectively 
in situations where a skewed distribution is 
needed. Gupta & Kundu (1999, 2002) and 
Raqab & Ahsanullah (2001) investigated several 
properties of the two parameter generalized 
exponential distribution.  

It is remarkable that most of the 
Bayesian inference procedures have been 
developed with the usual squared error loss 
function (SELF), which is symmetrical and 
associates equal importance to losses due to 
overestimation and underestimation of equal 
magnitude. However, such a restriction may be 
unrealistic in the most situations of practical 
importance. For example, in estimating 
reliability and hazard rate functions, an 
overestimation is usually much more serious 
than an underestimation. The use of a 
symmetrical loss function in Bayesian 
framework might be inappropriate (Parsian & 
Kirmani, 2002). 

A useful asymmetric loss function 
known as the LINEX loss function (LLF) was 
introduced by Varian (1975) and has been used 
in several studies. The LLF for any parameter θ  
is given by 
 

( ) a Δ ˆL Δ e a Δ 1; Δ θ θ= − − = −       (1.1) 

 

where a( 0)≠  is the shape parameter and θ̂  is 

any estimate of the parameter θ . 
The sign and magnitude of a''

represents the direction and degree of 
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asymmetry respectively. The positive (negative) 
value of a''  is used when overestimation is 
more (less) serious than underestimation. The 
LLF (1.1) is approximately squared error and 

almost symmetric if a
 

is near zero. Many 

authors have discussed estimation procedures 
under a LLF criterion, however a few recently 
presented studies using Bayesian and/or LLF 
criterions, for example see Xu & Shi (2004), 
Ahmadi, et al. (2005), Son & Oh (2006), Singh, 
et al. (2007) and Prakash (2011).  

Present article examine the properties of 

Bayes estimators for the 
thr power of the 

parameter θ , reliability function, hazard rate 
and the shift point. Both the symmetric (SELF) 
and asymmetric (LLF) loss functions were 
considered and the behavior of the future 
observations is predicted in terms of the 
predictive interval. 
 
The Model and the Prior Distributions 

The model considered is the inverted 
Exponential distribution with a distribution 
function 
 

1/xθF(x; θ) e ;  x 0, θ 0.−= > >           (2.1) 
 

This distribution has no finite moments. 
The reliability function and hazard rate for a 
specific mission time t( 0)>  are obtained as 
 

1/tθ(t) 1 eψ −= −  
and 

( ) 11/t θ
2

1
(t) e 1

t θ
ρ

−
= − . 

 
If 1 2 nx , x , ..., x  are n independent 

random samples from model (2.1), then the 
likelihood function is obtained as 
 

( ) , 
θ

T
 exp x

θ

1
θ|x,...,x,x L

n

1  i

n 2 
i 2n21 ∏

=

− 





−=  

. x T
n

1  i

1 
i n 






= 

=

−                                           (2.2) 

 

The maximum likelihood estimate 

(MLE) of the parameter θ  is n

1
θ̂ T

n
= . Further,

2, 1,i ;  x 1
i =−    n..., are iid Exponential with 

parameter θ , and the distribution of nT is a 

Gamma distribution with a probability density 
function (pdf) 
 

( )
nTn 1

nn θ
n n

T
f T e θ ; T 0.

Γn

− − −= >         2.3) 

 
It is assumed that, from a Bayesian 

viewpoint, there is clearly no way in which it 
can be stated that one prior is better than another 
(Arnold & Press, 1983). More frequently the 
case is that attention to a given flexible family of 
priors is restricted and a prior is chosen from 
that family. Thus, in present case the conjugate 
prior of the parameter θ  is considered as 
inverted Gamma distribution and is given as:  
 

βα
(α 1) θ

1

β
g (θ) θ e ; α 0,  β 0.

Γα

−− += > >
  

(2.4) 

 
Further, in a situation where a researcher 

has no or very little prior information about the 
parameter θ,  a family of priors defined as  
 

δ
2g (θ) θ ; δ 0,−= >                    (2.5) 

 
If δ 0=  a diffuse prior is obtained, and 

if δ 1=  a non–informative prior is obtained. 
The posterior density of θ  under the prior 1g (θ)  

is given by 
 

( ) ( )n
α n T β

 n   (α n 1)θ
1

T β
Z (θ) e θ .

Γ(α n)

+ +
− − + ++

=
+

 

(2.6) 
 

This is an inverted Gamma distribution 

with parameters (α n)+  and ( )nT +β . 

Similarly, the posterior density of θ  
corresponding to 2g (θ)  is 
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( ) n
δ n 1 T

 n  (δ n)θ
2

T
Z (θ) e θ .

Γ(δ n 1)

+ −
− − +=

+ −      
(2.7) 

 
Bayes Prediction Limits 

Predicting the nature of the future 
behavior of an observation when sufficient 
information regarding the past and present 
behavior of an event or an observation are 
known or given is an important problem in 
lifetime models. Statistical prediction limits 
have many applications in quality control and 
reliability problems and the determination of 
these limits has been extensively investigated. It 
may be desirable to obtain confidence limits not 
only for any parameter of a distribution, but also 
for a future observation drawn from the same 
model. Such limits are called prediction limits.  

If a % ε 100  prediction limit for an 
additional observation is desired, for example 
Y,  given a random sample 1 2 nX (x , x , ..., x )=  

from model (2.1), the problem is equivalent to 
determining the region ( )R X  such that ( )R X  

covers the average proportion ε  of the 
distribution of Y.  

A wealth of literature is available 
regarding predictive inference for future failure 
distributions; examples of studies involving 
predictive inference for future observations 
include: Aitchison & Dunsmore (1975), Bain 
(1978), Sinha (1990), Raqab (1997), Cramer & 
Kamps (1998), Raqab & Madi (2002), Ahmed et 
al. (2007) and Prakash & Prasad (2010). 

In the context of prediction, it may be 
stated that ( , )l u  is a 100(1 ε)%−  prediction 

interval for a future observation Y  if 
 

( )Pr Y 1 ε;l u≤ ≤ = −
               

(3.1) 

 
where l  and u are the lower and upper 
prediction limits for the random variable Y , 
and 1 ε−  is termed the confidence prediction 
coefficient.  

The predicative distribution of a future 
observation Y  may be obtained from model 
(2.1) by simplifying 
 

( ) 1

θ

h y |X f (y ;θ) Z (θ) dθ= ⋅  

( ) ( )
( )

n α

n2
n α 11

n

T β
h y|X (n α)y ,

T +β y

+
−

+ +−

+
 = +

+
 

(3.2) 
 
and 100(1 ε)%−  equal tail prediction interval is 
obtained by solving 
 

( ) ( )
0

ε
h y|X dy h y|X dy .

2

l

u

∞

= =       (3.3) 

 
Hence, the Bayes prediction limits and 

length of the Bayes predictive interval are 
obtained as 
 

( )
1

1/(α n)

n

ε
T β 1 ,

2
l

−− +    = + −   
     

 

(3.4) 
 

( )
1

1/(α n)

n

ε
T β 1 1

2
u

−− +    = + − −   
       

(3.5) 
and 

I .u l= −                         (3.6) 
 
Bayes Estimators for Reliability Function and 
Hazard Rate 

The Bayes estimates of (t)ψ  and (t)ρ  
under the SELF corresponding to the posterior 

1Z (θ)  are obtained as 

 

( ) ( )

(α n)

1 P
n

1
E (t) 1 1

t T β
ψ ψ

− +
 

= = − +  +   
(4.1) 

and 

( ) ( )

( )
1 P S12

1z/t
S1

1
E (t) I 0, , ;

t

z e 1 ,

ρ ρ ρ

ρ
−

= = ∞

= −
 

(4.2) 
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where

( ) ( ) ( )
2

n

1

α n z
T β zn α n 1

1 2 z z

z

T β
I z , z , f  f  e z dz.

(α n)

+
− + + −+

= ⋅
Γ + 

 
Here zf is a function of z  and suffix P  

indicates the expectation taken under posterior 
density.  

Similarly, the Bayes estimators of the 
reliability function and hazard rate under the 
LLF-criterion corresponding to the posterior 

1Z (θ)  are obtained by solving 

 

( )

( )( )
( )

a (t)
2 P

a
L1

z/t
L1

1
lnE e

a
1

ln e I 0, , ,
a

exp ae

ψψ

ψ

ψ

−

−

−

= −

= − ∞

=

 

 
and 

( )

( )

a (t)
2 P

 L1

L1 S12

1
lnE e

a
1

ln I 0, , ,
a

a
exp .

t

ρρ

ρ

ρ ρ

−= −

= − ∞

 =  
 

 

 
The expressions of the risks for these 

estimators under the SELF and the LLF loss 
criterions are ( )(S) iR ,ψ

 ( )(L) iR ,ψ
 ( )(S) iR ρ  

and ( )  ; R i(L) ρ  2. 1,i =  Note that these do not 

exist in closed form. However, a numerical 
study has been carried out in later section. 
 
The Bayes Estimator for Shift Point 

In order to obtain information about 
their endurance, manufactured items such as 
mechanical or electronic components, are often 
put to life tests and life times are observed 
periodically. Physical systems manufacturing 
different items are often subject to random 
fluctuations and it may happen that, at some 
point, there is a change in the parameter. The 
objective of this study was to determine when 

and where this change starts occurring; this is 
called the shift point inference problem. 
Bayesian modeling may play an important role 
in the study of such shift point problems 
(Broemeling & Tsurumi, 1987; Jani & Pandya, 
1999). 

Consider first a sequence of independent 
random sample of size n  such as 1x ,

2 m m 1 nx , ..., x , x , ..., x+  from model (2.1) with 

a reliability function 1(t)ψ  at mission time 

t( 0)> . If it is later found that there was a 
change in the system at some point in time m, 
this will be reflected in the sequence after mx  

by a change in the reliability 2 (t)ψ  at mission 

time t . 
Thus, from model (2.1), the pdf of the 

random samples 1 2 mx , x , ..., x  of size m  is 

given by 

( )i 1  2
1 i 1 i

1

1 1
f x ; θ exp ;

θ x θ x

i 1, 2, ..., m, θ 0.

 
= − 

 
= >         

(5.1) 

 
Similarly, the remaining 

m 1 m 2 nx , x , ..., x+ +  components of size (n m)−  

follow model (2.1) with the pdf 
 

( )i 2 2
2 i 2 i

2

1 1
f x ; θ exp ; 

θ x θ x

i m 1, m 2, ..., n, θ 0.

 
= − 

 
= + + >       

(5.2) 

 
If prior information regarding the 

parameter is considered as the conjugate prior, 
then prior 1g (θ)  is redefined as 

 

i

βα
θ(α 1)

3 i i

β
g (θ ) θ e ;

Γα
α 0,  β 0, i 1, 2.

−
− +=

> > =               
(5.3) 

 
Further, the prior distribution for shift point mis 
considered to be discrete uniform over the set 
{1, 2, ..., n 1}− . Hence, the joint posterior 

density  for  the  parameters  1 2θ , θ   and  m  is 
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( )3 1 2

1 m α 1 n m α 11 2
1 2

1 2

Z θ , θ , m

ω ω
   k exp θ θ ;

θ θ
− − − − − + − −

=

 
− − 
 

 

(5.4) 
where 

n 1
1

m 1

k Δ,
−

−

=

=
 

 

m α n m α
1 2

Γ(m α) Γ(n m α)
Δ= ,

ω  ω+ − +

 + − +
 
   

 
m

1
1 i

i 1

ω β x−

=

= +  

and 
n

1
2 i

i m 1

ω β x−

= +

= +  . 

 
This case may be verified without considering 
shift point situations with 1 2θ θ .=  

The marginal posterior density for shift 
point mis 
 

1
4Z (m) k Δ.−=                   (5.5) 

 
Therefore, the Bayes estimator for shift point m 
under the SELF and LLF are obtained 
respectively as (suffixes S and Lindicates the 
loss criterion selected as the SELF and LLF 
respectively) 
 

n 1
1

S
m 1

m̂ k (mΔ)
−

−

=

=   

and 

( )
n 1

1 am
L

m 1

1
m̂ ln k e Δ .

a

−
− −

=

 = −  
 

  

(5.6) 
 
If no further information regarding iθ ; i 1, 2=  
is available and they are assumed as a priori 
independent random variables, then the non-
informative prior is considered from (2.7) with 
(δ 1)= such that 

( )4 i
i

1
g θ ; i=1, 2 ,

θ
=  

 
The Bayes estimators for shift point m under 
SELF and LLF are obtained from (5.6) by 
replacing β 0 α= =  as: 
 

n 1
1

S 1
m 1

m̂ k (mΔ )
−

−

=

′ ′=   

and 

( )
n 1

1 am
 L 1

m 1

1
m̂ ln k e Δ .

a

−
− −

=

 ′ ′= −  
 

  

(5.7) 
 
where 

n 1
1

1
m 1

k Δ ,
−

−

=

′=
 

 

m n m
3 4

ΓmΓ(n m)
Δ ,

ω  ω −

−′ =
 

 
m

1
3 i

i 1

ω x−

=

=  

and 
n

1
4 i

i m 1

ω x−

= +

=  . 

 
The Bayes Estimator for Parameter θ  

The Bayes estimator for rθ  ( r  being 
any integer) obtained corresponding to the 
posterior 1Z (θ)  under the SELF is 

 

( )rr
S n

Γ(n α r)
θ̂ T +β .

Γ(n α)

+ −=
+

       (6.1) 

 
In particular, the Bayes estimators for the 

parameters θ(r 1)=  and 
1

(r 1)
θ

= −  are given 

respectively as 
 

n
S

T β
θ̂

n α 1

+=
+ −

 

and 
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1
S

n

n α
θ̂

T β
− +=

+                       
(6.2) 

 

Similarly, the Bayes estimator for rθ  under the 
LLF is obtained with respect to the posterior 

1Z (θ)  by solving 

 

( )rr aθ
L

1
θ̂ ln I 0, , e .

a
−= − ∞

         
(6.3) 

 
The Bayes estimator for parameter θ  does not 
exist in a closed form. However, the Bayes 

estimator for 
1

θ
 is given as 

 

1
L

n

n α a
θ̂ ln 1 .

a T β
−  + = +   +            

(6.4) 

 
Note that, all results discussed thus hold for the 
posterior distribution 2Z (θ)  if α(=δ 1)−  and 

β (= 0)  are substituted. 
 
Numerical Analysis 

To assess and study the properties of the 
proposed Bayes estimators and prediction 
interval, the random samples are generated as 
follows: 
 
1. For the given values of prior parameters α  

and β, generate θ  using the prior density 

1g (θ) . The values of α  and β  are chosen 

to maintain the prior variance at 1.00and 
the considered values are (β, α ) =  (02, 03), 
(10, 06) and (30, 11).  

 
2. Using θ  obtained in (1), generate 10,000 

random samples size n = 5, 10, 15 from the 
considered model (2.1). 

 
Bayes Prediction Interval 

The Bayes prediction intervals were 
obtained with the level of significance 

99%, 95%, 90%ε =  and results are presented in 
Table 1. The intervals tend to be wider as the 
sample size n increases when other parametric 

values are fixed. The opposite trend was 
observed when a combination of the prior 
parameters increases. It is also noted that when 
the confidence level decreases the intervals also 
decrease. 
 
Bayes Estimators for Reliability Function 

Results for 1.50 1.00, 0.50,a =  and 

2.50t =  (hours) are presented in Table 2. As 
Table 2 shows, the risk of Bayes estimators 1ψ  

and 2ψ  decrease as sample size n increases 

under both loss criteria, SELF and LLF. In 
addition, the risk of 1ψ  increases as 'a'  increases 

under a LLF loss criterion. A similar trend was 
observed for 2ψ  when 'a'  increases under both 

loss criteria. A decreasing trend in risk was 
observed when a set of prior parameters 
increased only for 1ψ  under both loss criterions 

with other fixed parametric values. The 
magnitude of the risk is nominal for both 
estimators under the LLF. 
 
Bayes Estimators for Hazard Rate 

The numerical findings are presented in 
Table 3 for a similar set of values of 'a'  and t.
The performances of Bayes estimators 1ρ  and 

2ρ  are similar to the Bayes estimators of the 

reliability functions 1ψ  and 2ψ  when sample 

size n  or 'a'  increase respectively. The 
magnitude of the risk is nominal for both 
estimators under the LLF loss criterion. 
 
Bayes Estimators for Shift Point 

For a similar set of values considered 
earlier with 0.25, 0.50, 1.00, 1.50,a =  samples 
were generated for 10, 15, 20n = and results are 
presented in Tables 4 and 5. It was observed 
that, when sample size n  increases, the 
magnitude of the Bayes estimator (under SELF) 
increases but the increment in magnitude is 
nominal (robust). Further, an opposite trend was 
observed when values of the set of prior 
parameters increase. Similar properties have 
been noted for the Bayes estimate of the shift 
point under LLF, and a decreasing trend in the 
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magnitude of the estimate has also been 
observed when 'a'  increases. 
 

Bayes Estimators for the thr  Power of the 
Parameter 

The numerical findings presented in 
Tables 6 and 7 are for 0.50, 1.00, 1.50a =  and 

1, 2r .± ±= Based on results show in the tables 
it may be concluded that the magnitude of the 
risk increases (decreases) when a(n)  increases 
when other parametric values are fixed. The 
increasing trend in the magnitude has also been 
observed when prior parameters increase (only 
for r 1, 2= − − ). Further, the magnitude of the 
risk is smaller for these estimators under the 
LLF. 
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Table 1: Bayes Prediction Limits 
 

n  β, α  

99%ε =  95%ε =  90%ε =  

l  u  l  u  l  u  

05 

02,03 1.2272 1.2648 1.2662 1.4722 1.2825 1.7349 

10,06 0.8442 0.8697 0.9292 1.0784 0.8212 1.1070 

30,11 0.5941 0.6118 0.5458 0.6326 0.5265 0.7077 

10 

02,03 2.2409 2.3083 2.0216 2.3447 1.3851 1.8645 

10,06 1.3329 1.3727 1.2600 1.4604 1.0571 1.4209 

30,11 0.8032 0.8271 0.7453 0.8631 0.6920 0.9287 

15 

02,03 2.0570 2.1284 2.7406 3.1751 1.7060 2.2914 

10,06 1.4661 1.5097 1.4084 1.6311 1.3485 1.8098 

30,11 0.8807 0.9068 0.9548 1.1052 0.7790 1.0445 
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Table 2: Risks for Bayes Estimate of Reliability Function 
 

n  a  α β,  1 ψ  S 1R (ψ )  L 1R (ψ )  2ψ  S 2R (ψ )  L 2R (ψ )  

05 

0.50 

02,03 0.1125 14.7296 1.0523 0.0123 14.7012 1.0502 

10,06 0.0903 14.7612 1.0541 0.0780 14.8141 1.0607 

30,11 0.0584 14.8300 1.0578 0.0055 14.2740 1.0266 

1.00 

02,03 0.1059 14.7296 2.8066 0.2646 14.7132 2.8041 

10,06 0.0818 14.7612 2.8106 0.1418 14.8245 2.8180 

30,11 0.0559 14.8300 2.8191 0.0567 14.5478 2.7834 

1.50 

02,03 0.1190 14.7296 4.6586 0.2088 14.7194 4.6564 

10,06 0.0847 14.7612 4.6647 0.1302 14.8335 4.6724 

30,11 0.0561 14.8300 4.6777 0.0339 14.6418 4.6416 

10 

0.50 

02,03 0.1827 5.9753 0.4270 0.8166 6.0077 0.4283 

10,06 0.1179 5.9827 0.4274 1.3328 5.8511 0.4193 

30,11 0.0768 6.0081 0.4288 0.5438 5.1131 0.3785 

1.00 

02,03 0.1348 5.9753 1.1389 0.2641 6.0863 1.1399 

10,06 0.1057 5.9827 1.1398 0.6477 5.9076 1.1298 

30,11 0.0729 6.0081 1.1429 0.2365 5.5525 1.0852 

1.50 

02,03 0.1668 5.9753 1.8905 0.0643 6.1807 1.8912 

10,06 0.1119 5.9827 1.8919 0.5157 5.9292 1.8813 

30,11 0.0734 6.0081 1.8967 0.0950 5.7037 1.8382 

15 

0.50 

02,03 0.1932 0.4478 0.0321 1.5324 0.4472 0.0372 

10,06 0.1434 0.4489 0.0321 1.0564 0.5884 0.0393 

30,11 0.0856 0.4517 0.0323 0.8032 0.3951 0.0291 

1.00 

02,03 0.2639 0.4478 0.0856 0.3801 0.4658 0.0913 

10,06 0.1468 0.4489 0.0857 0.3046 0.6159 0.0938 

30,11 0.0824 0.4517 0.0861 0.2365 0.4217 0.0822 

1.50 

02,03 0.2005 0.4478 0.1421 0.7962 0.4796 0.1480 

10,06 0.1315 0.4489 0.1423 0.2168 0.6929 0.1505 

30,11 0.0870 0.4517 0.1429 0.0306 0.4310 0.1388 
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Table 3: Risks for Bayes Estimate of Hazard Rate 
 

n  a  α β,  1ρ  S 1R ( )ρ  L 1R ( )ρ  2ρ  S 2R ( )ρ  L 2R ( )ρ  

05 

0.50 

02,03 0.1181 14.1954 1.0230 0.3540 14.1651 1.0208 

10,06 0.1238 14.1827 1.0223 0.0195 14.2119 1.0294 

30,11 0.1398 14.2215 1.0244 0.1485 13.6402 0.9914 

1.00 

02,03 0.1411 14.1954 2.7397 0.1463 14.1760 2.7368 

10,06 0.1216 14.1827 2.7381 0.3392 14.2227 2.7464 

30,11 0.1291 14.2215 2.7430 0.1184 13.9077 2.7026 

1.50 

02,03 0.1157 14.1954 4.5564 0.0612 14.1813 4.5534 

10,06 0.1148 14.1827 4.5540 0.2712 14.2315 4.5631 

30,11 0.1317 14.2215 4.5615 0.1289 13.9996 4.5181 

10 

0.50 

02,03 0.1944 5.7601 0.4152 0.0918 5.7696 0.4169 

10,06 0.0770 5.7694 0.4157 1.2395 5.6419 0.4077 

30,11 0.1676 5.8155 0.4182 0.3497 4.8807 0.3650 

1.00 

02,03 0.1936 5.7601 1.1119 0.1672 5.7782 1.1138 

10,06 0.0883 5.7694 1.1130 0.6489 5.6963 1.1031 

30,11 0.1692 5.8155 1.1189 0.1737 5.3099 1.0537 

1.50 

02,03 0.1841 5.7601 1.8493 0.1399 5.7825 1.8514 

10,06 0.0745 5.7694 1.8510 0.4315 5.7171 1.8404 

30,11 0.1730 5.8155 1.8599 0.0694 5.4577 1.7899 

15 

0.50 

02,03 0.1314 0.4286 0.0310 1.1623 0.5327 0.0364 

10,06 0.1164 0.4258 0.0308 0.3103 0.4731 0.0386 

30,11 0.1303 0.4386 0.0316 0.5889 0.3813 0.0283 

1.00 

02,03 0.2328 0.4286 0.0832 0.8862 0.5482 0.0897 

10,06 0.1980 0.4258 0.0828 0.0166 0.5017 0.0921 

30,11 0.1870 0.4386 0.0844 0.0024 0.4074 0.0804 

1.50 

02,03 0.0677 0.4286 0.1384 0.5436 0.5566 0.1455 

10,06 0.1858 0.4258 0.1379 0.3606 0.5479 0.1479 

30,11 0.1560 0.4386 0.1403 0.0739 0.4165 0.1360 
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Table 4: Bayes Estimate of Shift Point Under SELF 
 

Prior Density (β, α) ↓ n →  10 15 20 

Conjugate 

02,03 4.9919 5.0069 5.0169 

10,06 4.9493 4.9641 4.9740 

30,11 4.4590 4.4724 4.4813 

Non-Informative 00,00 4.8946 4.9112 4.9472 

 
 
 

Table 5: Bayes Estimate of Shift Point Under LLF 
 

Prior Density n  ( )β, α a↓ →  0.25 0.50 1.00 1.50 

Conjugate Prior 

10 

02,03 4.0051 3.2058 3.1096 3.0163 

10,06 3.7951 3.1965 3.1006 3.0076 

30,11 3.7196 3.1806 3.0852 2.9926 

15 

02,03 4.2321 3.6035 3.4954 3.3905 

10,06 3.8554 3.2342 3.1372 3.0431 

30,11 3.7907 3.2191 3.1225 3.0288 

20 

02,03 4.5051 3.7436 3.6313 3.5224 

10,06 3.8615 3.3673 3.2663 3.1683 

30,11 3.8356 3.3249 3.2252 3.1284 

Non-Informative Prior 

10 00,00 3.9477 3.2412 3.1440 3.0497 

15 00,00 4.0255 4.0184 3.9657 3.8467 

20 00,00 4.0926 4.0783 4.0424 3.9502 
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Table 6: Risks for the Bayes Estimate of rθ
  

n  a  αβ,  

2r −=  2r =  

( )r
(S) S

ˆR θ  ( )r
(L) S

ˆR θ ( )r
(S) L

ˆR θ ( )r
(L) L

ˆR θ ( )r
(S) S

ˆR θ ( )r
(L) S

ˆR θ  ( )r
(S) L

ˆR θ ( )r
(L) L

ˆR θ

05 

0.50 

02,03 13.288 0.9700 13.343 0.9726 10.285 4.5467 1.6360 1.9821 

10,06 13.719 0.9961 13.804 1.0061 11.384 7.0496 0.7671 1.5262 

30,11 14.246 1.0258 13.706 0.9949 14.270 9.1108 2.0452 2.9854 

1.00 

02,03 13.288 2.6178 13.440 2.6363 10.285 6.0364 2.3876 2.5377 

10,06 13.719 2.6776 13.816 2.6959 11.384 9.8003 1.6753 2.2181 

30,11 14.246 2.7460 13.981 2.7115 14.270 9.7628 5.7040 3.6989 

1.50 

02,03 13.288 4.4315 13.518 4.4154 10.285 8.4251 7.7043 2.8013 

10,06 13.719 4.4615 13.859 4.4899 11.384 11.112 6.9306 2.4745 

30,11 14.246 4.5661 14.082 4.5336 14.270 10.550 5.9482 4.2190 

10 

0.50 

02,03 5.4663 0.3986 5.4705 0.3995 3.9248 0.9999 0.1222 0.0180 

10,06 5.5413 0.4029 5.3734 0.3929 3.6741 0.9096 0.2512 0.0331 

30,11 5.7225 0.4131 4.8579 0.3637 9.1533 3.4073 0.6589 0.8112 

1.00 

02,03 5.4663 1.0738 5.4805 1.0754 3.9248 1.2036 0.1302 0.0354 

10,06 5.5413 1.0838 5.4371 1.0701 3.6741 8.8628 0.2709 0.0474 

30,11 5.7225 1.1071 5.2914 1.0512 9.1533 4.6310 0.6659 0.8903 

1.50 

02,03 5.4663 1.3599 5.4858 1.7949 3.9248 2.0292 0.1518 0.1044 

10,06 5.5413 1.8063 5.4661 1.7915 3.6741 9.0630 0.2838 0.0675 

30,11 5.7225 1.8419 5.4438 1.7871 9.1533 5.4232 0.7181 0.9334 

15 

0.50 

02,03 0.3864 0.0286 0.4302 0.0342 0.0087 0.0009 0.0368 0.0038 

10,06 0.3975 0.0292 0.4434 0.0364 0.0045 0.0005 0.0443 0.0045 

30,11 0.4208 0.0306 0.3550 0.0267 0.1127 0.0203 0.0034 0.0004 

1.00 

02,03 0.3864 0.0666 0.4416 0.0847 0.0087 0.0028 0.0462 0.0097 

10,06 0.3975 0.0791 0.4818 0.0873 0.0045 0.0017 0.0628 0.0104 

30,11 0.4208 0.0822 0.3807 0.0769 0.1127 0.1251 0.0045 0.0019 

1.50 

02,03 0.3864 0.1225 0.4565 0.1379 0.0087 0.0054 0.0525 0.0182 

10,06 0.3975 0.1322 0.5402 0.1406 0.0045 0.0034 0.0737 0.0178 

30,11 0.4208 0.1369 0.3900 0.1307 0.1127 0.4628 0.0070 0.0062 
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Table 7: Risks for the Bayes Estimate of rθ  
 

n  a  αβ,  

r 1= −  r 1=  

( )r
(S) S

ˆR θ  ( )r
(L) S

ˆR θ ( )r
(S) L

ˆR θ ( )r
(L) L

ˆR θ ( )r
(S) S

ˆR θ ( )r
(L) S

ˆR θ  ( )r
(S) L

ˆR θ ( )r
(L) L

ˆR θ

05 

0.50 

02,03 12.002 0.8972 12.029 0.8983 2.0144 0.1875 2.3556 0.2156 

10,06 12.224 0.9110 12.332 0.9193 1.6934 0.1622 2.1786 0.2043 

30,11 12.723 0.9401 12.246 0.9116 0.7526 0.0784 0.7404 0.0763 

1.00 

02,03 12.002 2.4474 12.082 2.4583 2.0144 0.5928 2.7107 0.7636 

10,06 12.224 2.4806 12.333 2.4953 1.6934 0.5180 2.4282 0.7162 

30,11 12.723 2.5485 12.510 2.5191 0.7526 0.2664 1.0455 0.3536 

1.50 

02,03 12.002 4.1081 12.129 4.1356 2.0144 1.1044 3.0264 1.5302 

10,06 12.224 4.1595 12.337 4.1834 1.6934 0.9617 2.6799 1.4354 

30,11 12.723 4.2639 12.610 4.2399 0.7526 0.5180 1.3107 0.8213 

10 

0.50 

02,03 4.8368 0.3626 4.8418 0.3629 0.9737 0.0933 1.2338 0.1153 

10,06 4.8905 0.3657 4.7321 0.3559 0.9049 0.0880 1.1338 0.1057 

30,11 5.0740 0.3764 4.2866 0.3297 0.5090 0.0525 0.2913 0.0298 

1.00 

02,03 4.8368 0.9901 4.8420 0.9903 0.9737 0.2977 1.3538 0.3923 

10,06 4.8905 0.9976 4.7943 0.9843 0.9049 0.2833 1.2602 0.3689 

30,11 5.0740 1.0225 4.6961 0.9708 0.5090 0.1769 0.4723 0.1598 

1.50 

02,03 4.8368 1.6626 4.8461 1.6646 0.9737 0.5517 1.4573 0.7545 

10,06 4.8905 1.6742 4.8244 1.6604 0.9049 0.5279 1.3707 0.7208 

30,11 5.0740 1.7125 4.8414 1.6639 0.5090 0.3412 0.6191 0.3880 

15 

0.50 

02,03 0.3405 0.0259 0.3434 0.0312 0.1351 0.0121 0.1536 0.0164 

10,06 0.3488 0.0264 0.4113 0.0333 0.1200 0.0110 0.2155 0.0179 

30,11 0.3695 0.0276 0.3085 0.0239 0.0756 0.0073 0.0843 0.0080 

1.00 

02,03 0.3405 0.0713 0.3881 0.0778 0.1351 0.0369 0.1644 0.0427 

10,06 0.3488 0.0725 0.4367 0.0803 0.1200 0.0338 0.2174 0.0445 

30,11 0.3695 0.0754 0.3326 0.0702 0.0756 0.0236 0.1025 0.0298 

1.50 

02,03 0.3405 0.1203 0.3939 0.1273 0.1351 0.0659 0.1861 0.0728 

10,06 0.3488 0.1221 0.4865 0.1300 0.1200 0.0608 0.2617 0.0746 

30,11 0.3695 0.1265 0.3414 0.1205 0.0756 0.0438 0.1117 0.0578 
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