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Inverted Exponential Distribution Under a Bayesian Viewpoint

Gyan Prakash
S. N. Medical College, Agra,
U. P., India

The objective of this study was to examine the properties of Bayes estimators of the parameter, reliability
function and hazard rate under the symmetric and asymmetric loss functions for the inverted exponential
model. The Bayes predictive interval and the Bayes estimate of shift point are also determined. A
simulation study was carried out to study the properties of the Bayes estimators.

Key words: Bayes estimators, LINEX loss function, squared error loss function, prediction limits.

Introduction

The exponential distribution is frequently used
in lifetime data analysis, but its suitability is
restricted to constant hazard (failure) rates. For
situations where a failure rate is monotonically
increasing or decreasing, the two-parameter
Weibull and the Gamma distributions are
popular for analyzing lifetime data. Both
distributions have increasing and decreasing
hazard rates depending on the shape parameter.
However, one of the major disadvantages of the
Gamma distribution is that its distribution and
survival functions cannot be expressed in a
closed form if the shape parameter is not an
integer. Moreover, there are terms involving the
incomplete Gamma function, thus, it is
necessary to obtain distribution, survival or
hazard functions by numerical integration. This
makes the Gamma distribution less popular
compared to the Weibull distribution, which has
a closed form for the hazard and survival
functions, but the Weibull distribution also has
disadvantages. Bain & Engelhardt (1991)
demonstrated that the maximum likelihood
estimators of the Weibull distribution might not
behave properly for all parametric ranges.

Recently two new distributions have
been introduced: the generalized Exponential
(two - parameter) and the inverted Exponential
(one - parameter) distributions. The generalized
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exponential distribution can be used effectively
in situations where a skewed distribution is
needed. Gupta & Kundu (1999, 2002) and
Raqgab & Ahsanullah (2001) investigated several
properties of the two parameter generalized
exponential distribution.

It is remarkable that most of the
Bayesian inference procedures have been
developed with the usual squared error loss
function (SELF), which is symmetrical and
associates equal importance to losses due to
overestimation and underestimation of equal
magnitude. However, such a restriction may be
unrealistic in the most situations of practical
importance. For example, in estimating
reliability and hazard rate functions, an
overestimation is usually much more serious
than an underestimation. The use of a
symmetrical loss function in Bayesian
framework might be inappropriate (Parsian &
Kirmani, 2002).

A useful asymmetric loss function
known as the LINEX loss function (LLF) was
introduced by Varian (1975) and has been used
in several studies. The LLF for any parameter 0
is given by

L(A)=e"-aA-1;A=0-0 (L]

A

where a( #0) is the shape parameter and 0 is
any estimate of the parameter 0 .

The
represents

'

of 'a
of

sign
the

and magnitude
direction and degree
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asymmetry respectively. The positive (negative)
value of 'a' is used when overestimation is

more (less) serious than underestimation. The
LLF (1.1) is approximately squared error and

almost symmetric if ‘a‘ is near zero. Many

authors have discussed estimation procedures
under a LLF criterion, however a few recently
presented studies using Bayesian and/or LLF
criterions, for example see Xu & Shi (2004),
Ahmadi, et al. (2005), Son & Oh (2006), Singh,
et al. (2007) and Prakash (2011).

Present article examine the properties of

Bayes estimators for the - power of the
parameter 0, reliability function, hazard rate
and the shift point. Both the symmetric (SELF)
and asymmetric (LLF) loss functions were
considered and the behavior of the future
observations is predicted in terms of the
predictive interval.

The Model and the Prior Distributions

The model considered is the inverted
Exponential distribution with a distribution
function

F(x; 0) =e ",

x>0,0>0. (2.1)

This distribution has no finite moments.

The reliability function and hazard rate for a
specific mission time t( > 0) are obtained as

l//(t) — 1 _ efl/te
and

1 _
p(t)=%(eme _1) ‘.

If x,,X,,..,X, are nindependent

random samples from model (2.1), then the
likelihood function is obtained as

2.2)
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The maximum likelihood estimate

~ 1
(MLE) of the parameter 0 is 6 =—T . Further,
n

-
X, ;1=1,2,

parameter 0, and the distribution of T is a

...nare iid Exponential with

Gamma distribution with a probability density
function (pdf)

n-1 T,
f(T,)= an e 0" T, >0.  23)

It is assumed that, from a Bayesian
viewpoint, there is clearly no way in which it
can be stated that one prior is better than another
(Arnold & Press, 1983). More frequently the
case is that attention to a given flexible family of
priors is restricted and a prior is chosen from
that family. Thus, in present case the conjugate
prior of the parameter O is considered as
inverted Gamma distribution and is given as:

a B
2,(0) :B—O*(““)e > >0, >0. (2.4)
la

Further, in a situation where a researcher
has no or very little prior information about the

parameter 0, a family of priors defined as

2,(0)=0";8>0, (2.5)

If =0 a diffuse prior is obtained, and
if 0=1 a non-informative prior is obtained.
The posterior density of 0 under the prior g,(0)

is given by

a+n | +B
Z (G)Z(Tn +B) e_ (Te )e—(a+n+1).
: ['(a+n)

(2.6)

This is an inverted Gamma distribution
(a+n) (T,+B).
of 0

with  parameters and

Similarly, the
corresponding to g, (0) is

posterior  density
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)8+n—l T

2@ =T vgem,

_ 2.7
I'G+n-1)
Bayes Prediction Limits

Predicting the nature of the future
behavior of an observation when sufficient
information regarding the past and present
behavior of an event or an observation are
known or given is an important problem in
lifetime models. Statistical prediction limits
have many applications in quality control and
reliability problems and the determination of
these limits has been extensively investigated. It
may be desirable to obtain confidence limits not
only for any parameter of a distribution, but also
for a future observation drawn from the same
model. Such limits are called prediction limits.

If a100€% prediction limit for an
additional observation is desired, for example
Y, given a random sample X =(X,, X,, ..., X, )
from model (2.1), the problem is equivalent to
determining the region R (X) such that R (X)

covers the average proportion €& of the

distribution of Y.

A wealth of literature is available
regarding predictive inference for future failure
distributions; examples of studies involving
predictive inference for future observations
include: Aitchison & Dunsmore (1975), Bain
(1978), Sinha (1990), Ragab (1997), Cramer &
Kamps (1998), Ragab & Madi (2002), Ahmed et
al. (2007) and Prakash & Prasad (2010).

In the context of prediction, it may be
stated that (/, u) is a 100(1—¢&)% prediction
interval for a future observation Y if

Pr(I<Y<u)=1-¢; (3.1
where [ and wuare the lower and upper
prediction limits for the random variable Y ,
and 1—¢ is termed the confidence prediction
coefficient.

The predicative distribution of a future

observation Y may be obtained from model
(2.1) by simplifying
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h(y [X)=[f(y;0)-Z(0)do

(Tn n B)n+a
(Tn —i—B + y_l )n+a+1 >

=h(yX)=n+a)y™”

3.2)

and 100(1—¢)% equal tail prediction interval is
obtained by solving

o t—

h(yX)dy=[h(yX)dy=>. (3)

Hence, the Bayes prediction limits and
length of the Bayes predictive interval are
obtained as

= {(T +B) {(gj—lmn) ) IHI |

(3.4)
c —1/(a+n) -l
fn{i-2) ]
(3.5)
and
I=u—1 (3.6)

Bayes Estimators for Reliability Function and
Hazard Rate
The Bayes estimates of /(t) and p(t)

under the SELF corresponding to the posterior
Z,(0) are obtained as

—(o+n)
1
v, =E, (w(1)= 1—[1 +mj

4.1
and

1
P =E;p (p(t)) :t_zl(()’ ©, p51);

Psi = Z<eZ/t _1)_1 >
4.2)
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T a+n g,
I(Zla zZ,, 1, ) = ﬂ J.fz . e_(Tn‘*'ﬁ)ZZan—le‘

I'(a+n)

Here f, is a function of z and suffix P

indicates the expectation taken under posterior
density.

Similarly, the Bayes estimators of the
reliability function and hazard rate under the
LLF-criterion corresponding to the posterior

Z,(0) are obtained by solving

v, = —ilnEP (ev0)

1
= —;1n(e_al(09 oo, WLI))’

W, , =exp (ae_Z/t )

and

0, = —ilnEp (e_"‘p(t))

1
:—EIHI (O, °°,le),

a
Pu = eXp(t_zpmj-

The expressions of the risks for these
estimators under the SELF and the LLF loss

criterions are Rg (¥;), Ry, (%), Ry (2)
and R (p,); i=1,2. Note that these do not

exist in closed form. However, a numerical
study has been carried out in later section.

The Bayes Estimator for Shift Point

In order to obtain information about
their endurance, manufactured items such as
mechanical or electronic components, are often
put to life tests and life times are observed
periodically. Physical systems manufacturing
different items are often subject to random
fluctuations and it may happen that, at some
point, there is a change in the parameter. The
objective of this study was to determine when
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and where this change starts occurring; this is
called the shift point inference problem.
Bayesian modeling may play an important role
in the study of such shift point problems
(Broemeling & Tsurumi, 1987; Jani & Pandya,
1999).

Consider first a sequence of independent

random sample of size n such as x|,

Xy oy Xh X ., X, from model (2.1) with

m? “m+l> **
a reliability function ¥,(t) at mission time
t(>0). If it is later found that there was a
change in the system at some point in time m,
this will be reflected in the sequence after x
by a change in the reliability /,(t) at mission

time t.
Thus, from model (2.1), the pdf of the
random samples X,, X,, ..., X, of size M 1is

L oexp - |:
0,x, P 0,x, )

., m, 0 >0.

given by
f(x;30,)=

i=1,2,.

Similarly, the remaining
X, a1 Xpags -+ X, components of size (n—m)
follow model (2.1) with the pdf

1 1
f(x;0,)=——=exp| —— |;
(xi:8:) 0,x; p( 92Xi] (5.2)
i=m+1,m+2,..,n,0,>0
If prior information regarding the

parameter is considered as the conjugate prior,
then prior g,(0) is redefined as

g (GA):ﬁeA—wme*eﬁi.
W)=Y ’ (5.3)

a>0, p>0,i=1, 2.

Further, the prior distribution for shift point mis
considered to be discrete uniform over the set
{1,2,..,n—1}. Hence, the joint posterior

density for the parameters 0,,0, and m is
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Z, (91, 0,, m) =
k—lex —&_& e—m—a—le—mm_a_l;
p[ 0, o, } 1 2
5.4)
where

m+a n—-m+a

A= I'm+o)'(n—m+a)
0‘)1 ('02 ’

m
-1
o, =B+ Z X;
i=1
and

0, =B+ Zn: x; .

i=m+l

This case may be verified without considering
shift point situations with 0, =0,.

The marginal posterior density for shift
point mis

Z,(m)=k'A. (5.5)

Therefore, the Bayes estimator for shift point m
under the SELF and LLF are obtained
respectively as (suffixes Sand Lindicates the
loss criterion selected as the SELF and LLF
respectively)

n—1
g =k (mA)
m=]

and

(5.6)

If no further information regarding 0.;1=1, 2

is available and they are assumed as a priori
independent random variables, then the non-
informative prior is considered from (2.7) with
(6 =1) such that
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1 .
g4 (61)29_5 1:152 )

The Bayes estimators for shift point m under
SELF and LLF are obtained from (5.6) by
replacing B=0=a as:

and
4 1 -1 < —am A /
L =——In{k; (e A )
a m=1
5.7
where
n—1
k'=2 A,
m=1
ot
®; O,
o; = z Xi_l
i=1
and

The Bayes Estimator for Parameter 0

The Bayes estimator for 0" (T being
any integer) obtained corresponding to the
posterior Z,(0) under the SELF is

A~ I(n+o-r)

6 =97 (7 gy,

° I'h+a) 6.1

In particular, the Bayes estimators for the
1
parameters O(r=1) and 6(r=—1) are given

respectively as

D>

_ T, +P
> n+a-1
and
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(6.2)

Similarly, the Bayes estimator for 0" under the
LLF is obtained with respect to the posterior

Z,(0) by solving

Qz—éMI@pgew)

(6.3)

The Bayes estimator for parameter 0 does not
exist in a closed form. However, the Bayes
estimator for 6 is given as

éj=[n+“jm(yr a j. 6.4)
a T +B

Note that, all results discussed thus hold for the
posterior distribution Z,(0) if a(=6-1) and
B (= 0) are substituted.

Numerical Analysis

To assess and study the properties of the
proposed Bayes estimators and prediction
interval, the random samples are generated as
follows:

1. For the given values of prior parameters o
and B, generate 0 using the prior density

2,(0). The values of o and B are chosen

to maintain the prior variance at 1.00and
the considered values are (B, a ) = (02, 03),

(10, 06) and (30, 11).

2. Using 0 obtained in (1), generate 10,000
random samples size n = 5, 10, 15 from the
considered model (2.1).

Bayes Prediction Interval

The Bayes prediction intervals were
obtained with the level of significance
€ =99%, 95%, 90% and results are presented in
Table 1. The intervals tend to be wider as the
sample size n increases when other parametric
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values are fixed. The opposite trend was
observed when a combination of the prior
parameters increases. It is also noted that when
the confidence level decreases the intervals also
decrease.

Bayes Estimators for Reliability Function
Results for a=10.50,1.00,1.50 and

t =2.50 (hours) are presented in Table 2. As
Table 2 shows, the risk of Bayes estimators ¥/,

and W, decrease as sample size n increases

under both loss criteria, SELF and LLF. In
addition, the risk of ¥/, increases as 'a' increases

under a LLF loss criterion. A similar trend was
observed for {, when 'a' increases under both

loss criteria. A decreasing trend in risk was
observed when a set of prior parameters

increased only for ¥, under both loss criterions

with other fixed parametric values. The
magnitude of the risk is nominal for both
estimators under the LLF.

Bayes Estimators for Hazard Rate
The numerical findings are presented in
Table 3 for a similar set of values of 'a' and t.

The performances of Bayes estimators p, and
p, are similar to the Bayes estimators of the

reliability functions ¥, and ¥, when sample

size¢ n or 'a' increase respectively. The

magnitude of the risk is nominal for both
estimators under the LLF loss criterion.

Bayes Estimators for Shift Point

For a similar set of values considered
earlier with a =0.25,0.50, 1.00, 1.50, samples
were generated for n =10, 15,20and results are
presented in Tables 4 and 5. It was observed
that, when sample size 1n increases, the
magnitude of the Bayes estimator (under SELF)
increases but the increment in magnitude is
nominal (robust). Further, an opposite trend was
observed when values of the set of prior
parameters increase. Similar properties have
been noted for the Bayes estimate of the shift
point under LLF, and a decreasing trend in the
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magnitude of the estimate has also been
observed when 'a' increases.

Bayes Estimators for the ™ Power of the
Parameter

The numerical findings presented in
Tables 6 and 7 are for a =0.50, 1.00, 1.50 and
r==1, +2.Based on results show in the tables
it may be concluded that the magnitude of the
risk increases (decreases) when a(n) increases
when other parametric values are fixed. The
increasing trend in the magnitude has also been
observed when prior parameters increase (only
for r=—1, —2). Further, the magnitude of the

risk is smaller for these estimators under the
LLF.
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Table 1: Bayes Prediction Limits

€=99% €=95% €=90%
n . / u / u / u
02,03 1.2272 1.2648 1.2662 1.4722 1.2825 1.7349
05 10,06 0.8442 0.8697 0.9292 1.0784 0.8212 1.1070
30,11 0.5941 0.6118 0.5458 0.6326 0.5265 0.7077
02,03 2.2409 2.3083 2.0216 2.3447 1.3851 1.8645
10 10,06 1.3329 1.3727 1.2600 1.4604 1.0571 1.4209
30,11 0.8032 0.8271 0.7453 0.8631 0.6920 0.9287
02,03 2.0570 2.1284 2.7406 3.1751 1.7060 2.2914
15 10,06 1.4661 1.5097 1.4084 1.6311 1.3485 1.8098
30,11 0.8807 0.9068 0.9548 1.1052 0.7790 1.0445
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Table 2: Risks for Bayes Estimate of Reliability Function

n| a B, o v, Ro(w) | Ro(w) ¥, Ro(w,) | Ry(w,)
02,03 | 0.1125 | 147296 | 1.0523 | 0.0123 | 147012 | 1.0502

050 | 10,06 | 00903 | 147612 | 1.0541 | 00780 | 14.8141 | 1.0607
30,11 0.0584 | 14.8300 | 1.0578 | 0.0055 | 142740 | 1.0266

02,03 | 01059 | 147296 | 2.8066 | 02646 | 14.7132 | 2.8041

05 |1.00| 1006 | 00818 | 147612 | 2.8106 | 0.1418 | 14.8245 | 2.8180
30,11 0.0559 | 14.8300 | 2.8191 | 0.0567 | 14.5478 | 2.7834

02,03 | 0.1190 | 147296 | 4.6586 | 02088 | 147194 | 4.6564

150 | 10,06 | 0.0847 | 147612 | 4.6647 | 0.1302 | 14.8335 | 4.6724
30,11 0.0561 | 14.8300 | 4.6777 | 00339 | 14.6418 | 4.6416

02,03 | 0.1827 | 59753 | 04270 | 08166 | 6.0077 | 0.4283

050 | 10,06 | 01179 | 59827 | 04274 | 13328 | 58511 | 0.4193
30,11 0.0768 | 6.0081 | 0.4288 | 05438 | 5.1131 | 0.3785

02,03 | 0.1348 | 59753 | 1.1389 | 02641 | 6.0863 | 1.1399

10 [ 1.00] 1006 | 01057 | 59827 | 1.1398 | 0.6477 | 59076 | 1.1298
30,11 0.0729 | 6.0081 | 1.1429 | 02365 | 55525 | 1.0852

02,03 | 0.1668 | 59753 | 1.8905 | 0.0643 | 6.1807 | 1.8912

150 | 10,06 | 0.1119 | 59827 | 1.8919 | 05157 | 59292 | 1.8813
30,11 0.0734 | 6.0081 | 1.8967 | 0.0950 | 57037 | 1.8382

02,03 | 01932 | 04478 | 00321 | 15324 | 04472 | 0.0372

050 | 10,06 | 01434 | 04489 | 00321 | 1.0564 | 05884 | 0.0393
30,11 0.0856 | 04517 | 0.0323 | 0.8032 | 03951 | 0.0291

02,03 | 02639 | 04478 | 0.0856 | 03801 | 04658 | 0.0913

15 [1.00| 1006 | 01468 | 04489 | 0.0857 | 03046 | 0.6159 | 0.0938
30,11 0.0824 | 04517 | 00861 | 02365 | 04217 | 0.0822

02,03 | 02005 | 04478 | 0.1421 | 07962 | 04796 | 0.1480

150 | 10,06 | 0.1315 | 04489 | 0.1423 | 02168 | 0.6929 | 0.1505
30,11 0.0870 | 04517 | 0.1429 | 00306 | 04310 | 0.1388
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Table 3: Risks for Bayes Estimate of Hazard Rate

n| a B, a P Rs(o) | Rio(p) P, Rs(p) | Ri(p)
02,03 0.1181 14.1954 1.0230 0.3540 14.1651 1.0208

0.50 10,06 0.1238 14.1827 1.0223 0.0195 14.2119 1.0294
30,11 0.1398 14.2215 1.0244 0.1485 13.6402 0.9914

02,03 0.1411 14.1954 2.7397 0.1463 14.1760 2.7368

05 | 1.00 10,06 0.1216 14.1827 2.7381 0.3392 14.2227 2.7464
30,11 0.1291 14.2215 2.7430 0.1184 13.9077 2.7026

02,03 0.1157 14.1954 4.5564 0.0612 14.1813 4.5534

1.50 10,06 0.1148 14.1827 4.5540 0.2712 14.2315 4.5631

30,11 0.1317 14.2215 4.5615 0.1289 13.9996 4.5181
02,03 0.1944 5.7601 0.4152 0.0918 5.7696 0.4169
0.50 10,06 0.0770 5.7694 0.4157 1.2395 5.6419 0.4077
30,11 0.1676 5.8155 0.4182 0.3497 4.8807 0.3650
02,03 0.1936 5.7601 1.1119 0.1672 5.7782 1.1138

10 | 1.00 10,06 0.0883 5.7694 1.1130 0.6489 5.6963 1.1031

30,11 0.1692 5.8155 1.1189 0.1737 5.3099 1.0537
02,03 0.1841 5.7601 1.8493 0.1399 5.7825 1.8514
1.50 10,06 0.0745 5.7694 1.8510 0.4315 5.7171 1.8404
30,11 0.1730 5.8155 1.8599 0.0694 5.4577 1.7899
02,03 0.1314 0.4286 0.0310 1.1623 0.5327 0.0364

0.50 10,06 0.1164 0.4258 0.0308 0.3103 0.4731 0.0386

30,11 0.1303 0.4386 0.0316 0.5889 0.3813 0.0283

02,03 0.2328 0.4286 0.0832 0.8862 0.5482 0.0897

15 | 1.00 10,06 0.1980 0.4258 0.0828 0.0166 0.5017 0.0921

30,11 0.1870 0.4386 0.0844 0.0024 0.4074 0.0804

02,03 0.0677 0.4286 0.1384 0.5436 0.5566 0.1455

1.50 10,06 0.1858 0.4258 0.1379 0.3606 0.5479 0.1479

30,11 0.1560 0.4386 0.1403 0.0739 0.4165 0.1360
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Table 4: Bayes Estimate of Shift Point Under SELF

Prior Density B, a) ln— 10 15 20
02,03 4.9919 5.0069 5.0169
Conjugate 10,06 4.9493 4.9641 4.9740
30,11 4.4590 4.4724 4.4813
Non-Informative 00,00 4.8946 49112 4.9472
Table 5: Bayes Estimate of Shift Point Under LLF
Prior Density n (Ba)la— 0.25 0.50 1.00 1.50
02,03 4.0051 | 3.2058 | 3.1096 | 3.0163
10 10,06 3.7951 | 3.1965 | 3.1006 | 3.0076
30,11 3.7196 | 3.1806 | 3.0852 | 2.9926
02,03 42321 | 3.6035 | 3.4954 | 3.3905
Conjugate Prior 15 10,06 3.8554 | 3.2342 | 3.1372 | 3.0431
30,11 3.7907 | 3.2191 | 3.1225 | 3.0288
02,03 4.5051 | 3.7436 | 3.6313 | 3.5224
20 10,06 3.8015 | 3.3673 | 3.2663 | 3.1683
30,11 3.8356 | 3.3249 | 3.2252 | 3.1284
10 00,00 3.9477 | 3.2412 | 3.1440 | 3.0497
Non-Informative Prior | 15 00,00 4.0255 | 4.0184 | 3.9657 | 3.8467
20 00,00 4.0926 | 4.0783 | 4.0424 | 3.9502
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Table 6: Risks for the Bayes Estimate of 0"

r=-2 =2

R(S)(é;) R(L)(ég) R(S)(é;) R(L)(éi) R(S)(é;) R(L)(ég) R(S)(éi) R(L)(é;)

02,03 | 13.288 | 0.9700 | 13.343 | 09726 | 10.285 | 4.5467 | 1.6360 | 1.9821

0.50 | 10,06 | 13.719 | 0.9961 | 13.804 | 1.0061 | 11.384 | 7.0496 | 0.7671 1.5262

30,11 | 14.246 | 1.0258 | 13.706 | 0.9949 | 14.270 | 9.1108 | 2.0452 | 2.9854

02,03 | 13.288 | 2.6178 | 13.440 | 2.6363 | 10.285 | 6.0364 | 2.3876 | 2.5377

05 | 1.00 | 10,06 | 13.719 | 2.6776 | 13.816 | 2.6959 | 11.384 | 9.8003 1.6753 | 2.2181

30,11 | 14.246 | 2.7460 | 13.981 | 2.7115 | 14.270 | 9.7628 | 5.7040 | 3.6989

02,03 | 13.288 | 4.4315 | 13.518 | 4.4154 | 10.285 | 8.4251 | 7.7043 | 2.8013

1.50 | 10,06 | 13.719 | 4.4615 | 13.859 | 4.4899 | 11.384 | 11.112 | 6.9306 | 2.4745

30,11 | 14.246 | 4.5661 | 14.082 | 4.5336 | 14.270 | 10.550 | 5.9482 | 4.2190

02,03 | 5.4663 | 0.3986 | 5.4705 | 0.3995 | 3.9248 | 0.9999 | 0.1222 | 0.0180

0.50 | 10,06 | 5.5413 | 0.4029 | 5.3734 | 0.3929 | 3.6741 | 09096 | 0.2512 | 0.0331

30,11 | 5.7225 | 0.4131 | 4.8579 | 0.3637 | 9.1533 | 3.4073 | 0.6589 | 0.8112

02,03 | 54663 | 1.0738 | 5.4805 | 1.0754 | 3.9248 | 1.2036 | 0.1302 | 0.0354

10 | 1.00 | 10,06 | 5.5413 | 1.0838 | 5.4371 | 1.0701 | 3.6741 | 8.8628 | 0.2709 | 0.0474

30,11 | 5.7225 | 1.1071 | 5.2914 | 1.0512 | 9.1533 | 4.6310 | 0.6659 | 0.8903

02,03 | 5.4663 | 1.3599 | 5.4858 | 1.7949 | 3.9248 | 2.0292 | 0.1518 | 0.1044

1.50 | 10,06 | 5.5413 | 1.8063 | 5.4661 | 1.7915 | 3.6741 | 9.0630 | 0.2838 | 0.0675

30,11 | 5.7225 | 1.8419 | 5.4438 | 1.7871 | 9.1533 | 54232 | 0.7181 | 0.9334

02,03 | 0.3864 | 0.0286 | 0.4302 | 0.0342 | 0.0087 | 0.0009 | 0.0368 | 0.0038

0.50 | 10,06 | 0.3975 | 0.0292 | 0.4434 | 0.0364 | 0.0045 | 0.0005 | 0.0443 | 0.0045

30,11 | 0.4208 | 0.0306 | 0.3550 | 0.0267 | 0.1127 | 0.0203 | 0.0034 | 0.0004

02,03 | 0.3864 | 0.0666 | 0.4416 | 0.0847 | 0.0087 | 0.0028 | 0.0462 | 0.0097

15 | 1.00 | 10,06 | 0.3975 | 0.0791 | 0.4818 | 0.0873 | 0.0045 | 0.0017 | 0.0628 | 0.0104

30,11 | 0.4208 | 0.0822 | 0.3807 | 0.0769 | 0.1127 | 0.1251 | 0.0045 | 0.0019

02,03 | 0.3864 | 0.1225 | 0.4565 | 0.1379 | 0.0087 | 0.0054 | 0.0525 | 0.0182

1.50 | 10,06 | 0.3975 | 0.1322 | 0.5402 | 0.1406 | 0.0045 | 0.0034 | 0.0737 | 0.0178

30,11 | 0.4208 | 0.1369 | 0.3900 | 0.1307 | 0.1127 | 0.4628 | 0.0070 | 0.0062
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Table 7: Risks for the Bayes Estimate of 0"
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r=-1 r=1

PP TR (8 R (82) [ R (01 [ R (60 [ R (B2) | R (62) [ R (6) R (81)
02,03 | 12.002 | 0.8972 | 12.029 | 0.8983 | 2.0144 | 0.1875 | 2.3556 | 0.2156

0.50 | 10,06 | 12.224 | 0.9110 | 12.332 | 0.9193 | 1.6934 | 0.1622 | 2.1786 | 0.2043
30,11 | 12.723 | 0.9401 | 12.246 | 0.9116 | 0.7526 | 0.0784 | 0.7404 | 0.0763

02,03 | 12.002 | 2.4474 | 12.082 | 2.4583 | 2.0144 | 0.5928 | 2.7107 | 0.7636

05 | 1.00 | 10,06 | 12.224 | 2.4806 | 12.333 | 2.4953 1.6934 | 0.5180 | 2.4282 | 0.7162
30,11 | 12.723 | 2.5485 | 12.510 | 2.5191 | 0.7526 | 0.2664 | 1.0455 | 0.3536

02,03 | 12.002 | 4.1081 | 12.129 | 4.1356 | 2.0144 | 1.1044 | 3.0264 1.5302

1.50 | 10,06 | 12.224 | 4.1595 | 12.337 | 4.1834 | 1.6934 | 0.9617 | 2.6799 | 1.4354
30,11 | 12.723 | 4.2639 | 12.610 | 4.2399 | 0.7526 | 0.5180 | 1.3107 | 0.8213

02,03 | 4.8368 | 0.3626 | 4.8418 | 0.3629 | 0.9737 | 0.0933 1.2338 | 0.1153

0.50 | 10,06 | 4.8905 | 0.3657 | 4.7321 | 0.3559 | 0.9049 | 0.0880 | 1.1338 | 0.1057
30,11 | 5.0740 | 0.3764 | 4.2866 | 0.3297 | 0.5090 | 0.0525 | 0.2913 | 0.0298

02,03 | 4.8368 | 0.9901 | 4.8420 | 0.9903 | 09737 | 0.2977 1.3538 | 0.3923

10 | 1.00 | 10,06 | 4.8905 | 0.9976 | 4.7943 | 0.9843 | 0.9049 | 0.2833 1.2602 | 0.3689
30,11 | 5.0740 | 1.0225 | 4.6961 | 0.9708 | 0.5090 | 0.1769 | 0.4723 | 0.1598

02,03 | 4.8368 | 1.6626 | 4.8461 | 1.6646 | 0.9737 | 0.5517 | 1.4573 | 0.7545

1.50 | 10,06 | 4.8905 | 1.6742 | 4.8244 | 1.6604 | 0.9049 | 0.5279 | 1.3707 | 0.7208
30,11 | 5.0740 | 1.7125 | 4.8414 | 1.6639 | 0.5090 | 0.3412 | 0.6191 | 0.3880

02,03 | 0.3405 | 0.0259 | 0.3434 | 0.0312 | 0.1351 | 0.0121 0.1536 | 0.0164

0.50 | 10,06 | 0.3488 | 0.0264 | 0.4113 | 0.0333 | 0.1200 | 0.0110 | 0.2155 | 0.0179
30,11 | 0.3695 | 0.0276 | 0.3085 | 0.0239 | 0.0756 | 0.0073 | 0.0843 | 0.0080

02,03 | 0.3405 | 0.0713 | 0.3881 | 0.0778 | 0.1351 | 0.0369 | 0.1644 | 0.0427

15 | 1.00 | 10,06 | 0.3488 | 0.0725 | 0.4367 | 0.0803 | 0.1200 | 0.0338 | 0.2174 | 0.0445
30,11 | 0.3695 | 0.0754 | 0.3326 | 0.0702 | 0.0756 | 0.0236 | 0.1025 | 0.0298

02,03 | 0.3405 | 0.1203 | 0.3939 | 0.1273 | 0.1351 | 0.0659 | 0.1861 | 0.0728

1.50 | 10,06 | 0.3488 | 0.1221 | 0.4865 | 0.1300 | 0.1200 | 0.0608 | 0.2617 | 0.0746
30,11 | 0.3695 | 0.1265 | 0.3414 | 0.1205 | 0.0756 | 0.0438 | 0.1117 | 0.0578
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