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REGULAR ARTICLES
Rank-Based Procedures for Mixed Paired and Two-Sample Designs

Suzanne R. Dubnicka
Department of Biostatistics
The University of North Carolina
at Chapel Hill

R. Clifford Blair
Department of Epidemiology and Biostatistics
College of Public Health, &
Jaeb Center For Health Research
University Of South Florida

Thomas P. Hettmansperger
Department of Statistics
The Pennsylvania State University

This paper presents a rank-based procedure for parameter estimation and hypothesis testing when the data are a mixture
of paired observations and independent samples. Such a situation may arise when comparing two treatments. When
both treatments can be applied to a subject, paired data will be generated. When it is not possible to apply both treat-
ments, the subject will be randomly assigned to one of the treatment groups. Our rank-based procedure allows us to use
the data from the paired sample and the independent samples to make inferences about the difference in the mean
responses. The rank-based procedure uses both types of data by combining the Wilcoxon signed-rank statistic and the
Wilcoxon-Mann-Whitney statistic. The exact and asymptotic distributions of the test statistic under the null hypothesis
are determined as well as the limiting distribution of the point estimate. We also consider the Pitman efficacy of our
rank-based procedure and its efficiency with respect to mean-based procedures.

Keywords: Wilcoxon signed-rank statistic, Wilcoxon-Mann-Whitney statistic, Pitman efficacy.

Introduction

The purpose of this paper is to introduce a simple robust,
nonparametric approach to testing and estimation in mixed
paired and two sample designs. The new methods are more
robust and have excellent efficiency when compared to
more traditional methods based on the means. In addition,
they are easy to compute and apply to data. Mixtures of
paired and unpaired data may be realized in a variety of
research contexts. We consider measurement data in this
article. For a discussion of categorical data see Thompson
(1995) and references therein.

For example, in a clinical trial designed to com-
pare two methods of laser surgery that are used to correct
a certain eye condition, patients with both eyes eligible for
study may have one eye assigned to one surgical method,
but the other treated with the competing method. Visual
acuity or other measures taken on the treated eyes will likely
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be correlated, thereby producing paired data. However,
patients who have only one eye eligible for study will have
the one eye randomly assigned to one of the competing
treatments. This produces unpaired observations.

Other examples include designs in which subjects
are to be observed at two points in time with some inter-
vention between observations. Often in such situations,
data may be missing at either the first or second observa-
tion times. Subjects with no missing data will thereby pro-
duce paired sets, while those with a missing data point will
be unpaired. A special case of this example arises when
pairwise comparisons are performed in repeated measures
designs with missing observations.

Finally, in matched pair designs, some subjects
in the pool may not have suitable matches. In such situa-
tions, the unmatched subjects can simply be randomly as-
signed to treatments, thereby taking advantage of all eli-
gible study subjects.

As willbe noted in one of the example analyses
presented below, researchers are often uncertain as to how
such data might be efficiently analyzed. Unfortunately,
strategies wasteful of available information are often em-
ployed. When the underlying distributions are normal, there
is a sufficient but not complete statistic. In this case, the
maximum likelihood estimators may not behave very well
and they are quite complex computationally. Consequently,
we do not attempt to develop optimal methods. Instead,
we suggest nonparametric methods that work well in a
broad spectrum of models. Bhoj (1989) presented a
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thorough summary of tests based on means when the un-
derlying distributions are normal. He proposed two new
tests and compared various methods via Monte Carlo simu-
lations. Perhaps the easiest version of such a test was pro-
posed by Morrison (1973). See Ekbohm (1976, 1981);
Hamdan, Khuri, and Crews (1978); and Woolson, Leeper,
Cole and Clarke (1976) for additional early work based on
means.

Simple Rank Methods

We consider the situation in which observations
come from a bivariate distribution f{x,y) with marginal
densities f,(x) and f(y); means 8, and 6, ; variances o7 and
o3 ; and correlation p . We will assume that the marginal
variances are equal and call this common variance ¢? . In
addition, we will assume that the marginal densities of X
and Y have the same shape and differ by at most a shift in
location. We are concerned with making inferences about
the difference in marginal means, A=6, -4, . In particu-
lar, we will be interested in comparing a new treatment
with an old treatment or with a control.

Paired data will be generated when the new and
old treatments can be applied to each of the subjects. When
complete pairs are available, we collect (X,,Y,)...(X,.Y,)
Let D; = X;-Y,,i=1,...,n. The D; have a probability density
function £, with E(D,)=A and Var(D,)= 26°(I- p).

Complete pairs may not always be available. In
some situations, it will only be possible to apply one of the
treatments to a subject. In this case, the treatments will be
randomly assigned to the subjects, and two independent
samples will be generated. We denote these samples of

sizes n; and n, as 7;,...T, and C,..C,,, where the T

have density f,(t-6,),E(7;)=6,,Var(l;)= o, and the C; have

density f,(c-6,),E(C;)=6,ar(C,)=0".

Combining the paired data and the independent
samples, we would like to make inferences about the pa-
rameter A . Inparticular, we would like to determine if the
new treatment is better than the old treatment, and to esti-
mate the difference between the treatments. Thus, we con-
structatest H,:A=0 vs H,:A>0, an estimate of A, and
a confidence interval for A .

An intuitively appealing statistic is the sum of the
usual rank statistics for paired data, the Wilcoxon signed-
rank statistic, and for two independent samples, the
Wilcoxon-Mann-Whitney statistic. Let

T*(A)=S*(a)+U*(a)

NNy

- zistI(Di ;Df > A]+ZZ[(]} -C;>4)

i=1 j=1
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=§RQDiI)I(D‘>O)+gRj—ﬁl(";_+1) .

where I(4) =1 if event 4 occurs and = 0 otherwise, RﬂD,|)
is the rank of |D,| among |D)|....|D,| and R; is the rank of

T; in the combined independent samples.

Distribution Theory
From Hettmansperger and McKean (1998, Sec-
tion 1.7 & 2.4) it follows immediately that, under H, :A=0,

£o(0)="+1) - ’)+”’% 2)
Var,T* (0) = n(n+12)£2n+1)+ n,nz(n,142-n2+1). 3)
Theorem 1

Under H,:A=0,as M —w,

7*(0)- E,7*(0) ©

Van,T*(0) ”

Z~N(01)

where

n n,+n n, n,

— >y, L2571y, -4, -4, and
m m n] +n2 n,+n2

M=n+n,+n,,0<y<1,and 0<i<].

Thus, an asymptotic size a test will reject
H,:A=0 infavorof H,:A>0 if

1°0)-E7(0)-
—_— 25,
\’VaroT + (0)
where Z, is the upper o quantile of the standard normal
distribution.
A convolution can be used to compute the exact
p-value. From the independence of s*(0) and U*(0),

Plrt21)= gP(U" >t-s)P(s* = s)
= gP(S’r > t—u)P(U+ = u)

Hence, tables of probabilities and tail probabilities can be

used to compute P(T+ 2 t). The exact distribution of 7*
can be constructed recursively as well.

4

Define Py n,(k) as the number of data configu-

n; +n,

rations such that 7* = .. Because there are 2" [ J such

configurations,
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I—Jn,n, ny (k )
n; +"2
W)
where k =0,1,...,[n(n+1)]/2 + n,n,. Note that 7" is distri-

bution-free. A recursive formula can be used to compute
F”'"I'”Z (k) .

P (0)=k)=

Theorem 2
Panyny (k)= Prmy-tng U = 13 )+ Prn, ny-1 ()
where I—Jh,i,j(k) =0 orlask<0or=0,and
Phio(k)=Pho,j(k) = Pu(k) = Pa-1(k — )+ Pi-s(k)

with Ps(k)=0 ifk<0and Po(k)=70r0ask=0or=0.
This recursive formula can be used to construct
an exact test for our problem. The exact test will reject

H,:A=0 in favor of H,:A>0 if T*(0)2c, where c is

chosen as P(r*(0)> ¢)= . S-plus functions and Fortran

programs have been written to compute the p-value for
this test, as well as construct upper tail probabilities for

the distribution of T* for given n, n, and n,. Table 1 was
constructed using the S-plus functions. In this table, we
have assumed that #, = n,and computed selected upper

quantiles for various values of # and n,. Because 7" is
discrete, it is not usually possible to obtain the exact quantile
desired. The values in the table give the values closest to
the upper 5%, 2.5%, and 1% quantiles.

We can also compute these upper quantiles using

the normal approximations. For example, when n =n, =

34

n,=S5, P(T+ 230) = (0.058 using the normal approxima-
tions in (4). Compare this to 0.059 in Table 1 using the
exact distribution. For the same sample sizes, P(T+ > 32) =

0.029 and P(T+ 2 34)-30.013. For larger sample sizes, the
approximations are even better. Forn =n, = n, = 10,

Plr*=105) = 0.051, Plr*=110) 0.026, and
P(T+ =11 6) = 0.011 using the normal approximation. No-

1

tice the first two agree with exact probabilities to three
decimal places and the third differs from the exact prob-
ability by only 0.001. We conclude that for most practical
situations the normal approximation is adequate.

Estimation

To estimate A, we consider the following form
of our estimating function:

T(a)= ZlSstgn(Di ;Dj —A]+ nZl”ngn(l} —Cj—A). %)

i=1 j=1

where sgn(x)=1 ifx >0,=0ifx =0, and = -1 if x < 0.
Notice that 7(a)= 27*(A)-[n(n+ 1)/2+n,n,] and E,T(A)=0.

We estimate A by A, so that 7(A, )= 0. We find

A a2
= me
R 2

,T,C—C,;ISiSan,ISkSn,,]SlSnZ}. (6)

Theorem 3

2
Under H,:A=0,as M — o provided 0 < Ifd <

Table 1: Upper Quantiles for the Distribution of T*: (P,,t) where P, = P(T* > t)

ny =n3
n 5 6 7 8 9 10
(0.056,30) (0.050,38) (0.047,47) (0.048,57) (0.051,68) (0 .047,81)
5 | (0.028,32) (0.026,40) (0.028,49) (0.024,60) (0.023,72)  (0.024,85)
(0.011,34) (0.012,42) (0.011,52) (0.011,63)  (0.012,83)  (0.011,89)
(0.044,35)  (0.049,42) (0.046,51) (0.046,61)  (0.048,72) (0 .051,84)
6 | (0.022,37) (0.027,44) (0.027,53) (0.023,64) (0.027,75) (O .027,88)
(0.014,38)  (0.010,47) (0.011,56) (0.011,67)  (0.009,80)  (0.010,93)
(0.044,40)  (0.046,47) (0.052,55) (0.050,65)  (0.050,76) (0 .053,88)
T | (0.023,42) (0.02749) (0.026,58) (0.027,68) (0.02580) (0 .024,93)
(0.011,44) (0.010,52) (0.011,61) (0.010,72)  (0.011,84)  (0.009,98)
(0.052,45)  (0.052,52) (0.05560) (0.051,70) (0.050,81) (0 .052,93)
8 | (0.023,48) (0.025,55) (0.023,64) (0.023,74) (0.02585) (0 .024,98)
(0.012,50) (0.010,58) (0.011,67) (0.009,78)  (0.009,90)  (0.010,103)
(0.045,52) (0.053,58) (0.055,66) (0.050,76)  (0.048,87) (0 .049,99)
9 (0.027,54) (0.028,61) (0.025,70) (0.024,80)  (0.02591) (0 .024,104)
(0.008,58)  (0.010,65) (0.009,74) (0.010,84) (0.010,96)  (0.010,100)
(0.045,59) (0.052,65) (0.052,73) (0.046,83) (0.051,93)  ( 0.051,105)
10 | (0.023,62) (0.023,69) (0.025,77) (0.023,87)  (0.024,98)  ( 0.026,110)
(0.011,65) (0.011,72) (0.010,81) (0.011,91) (0.010,103)  (0.010,116)
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2
and 0< Ifl <o _and the additional sample size limits in
Theorem 1 are satisfied,

V(G- 2)52 - N[o,éj

Cr+

™

where

sl R e V)
r 7+ - 21—y

is the Pitman efficiency of T*. See (26) in the appendix.

®

A Confidence Interval and the Standard Error of A
To construct a confidence interval for A, let

Yy <...<Yys be the ordered values of the combined
Walsh averages, (D, +D, )/ 2, and pairwise differences,
T, -C, N*=n(n+1)/2+nn,. Then
[Y(k+,),Y(N._k)) is a (1—a) 100% confidence interval for

A where P(T* <k)=P(T* >N*-k)=a/2. Using a
normal approximation with continuity correction

where

ki(y_(n;lhﬂ)_l_z \/n(n+])(2n+1)+n,n2(nl+n2+1).

4 2)2 % 24 12

This confidence interval can be used to estimate the

asymptotic variance of A - Note that

M [Y(N'—k) ~ Yoy ] p L
2Za/l .

i ©
See Hettmansperger and McKean (1998, Section 1.5 &

2.4). Hence, we say AR is approximately normally dis-

tributed with mean A and variance M ~'¢_!,

where 5;1
is defined by (9). In practice we would choose o around

0.10.

Example 1

The Krypton Argon Regression of
Neovascularization Study (KARNS) [The Krypton Argon
Regression of Neovascularization Research Study Group
(1993)] was designed to compare the efficacy of red kryp-
ton versus blue-green argon laser photocoagualation for
the management of high-risk proliferative diabetic retin-
opathy. To this end a randomized prospective clinical trial
was performed on patients with diabetes and
neovasculariztion of the optic disc. Patients were random-
ized in the following manner: Patients with both eyes eli-
gible for study had the right eye randomly assigned to one

DUBNICKA, BLAIR, & HETTMANSPERGER

of the treatments, with the left eye then being assigned to
the competing treatment. Patients who had only one eye
eligible for study had that eye randomly assigned to one of
the two treatments. As a result of this assignment scheme,
part of the outcome data were paired and part were un-
paired.

A variety of outcomes were measured 3 months
after surgery. One outcome of interest was visual acuity as
measured by the number of letters correctly read from the
Early Treatment Diabetic Retinopathy Visual Acuity Chart.
As noted by the authors, these measures had a substantial
negative skew. Although the KARNS authors do not indi-
cate exactly how these acuity scores were analyzed, they
do note for other outcomes that paired and unpaired data
were analyzed separately, thereby complicating the assess-
ment of a possible treatment effect.

We have selected a subset of the data from this
study to illustrate the rank-based methods of this paper;
see Table 2. For this example, we have n =20 pairs of
visual acuity measurements for those patients with both
eyes eligible for study. In addition, we selected 20 patients

with one eye eligible for study, with n; =10 in the group
receiving blue-green argon laser photocoagulation and
n, =10 in the group receiving red krypton. The rank based
estimate for the difference in mean visual acuities for the
two groups is the median of the combined 310 Walsh aver-
ages and pairwise differences: A z = 4.00. In addition, to
compute a 95% confidence interval for A,, we need to
find k such that P(T* <k)=P(T* >310-k) = 0.025.
the T,
P(T* <96) = P(T* > 214) = 0.0246. Thus, a 95% confi-

Using exact distribution for

dence interval for A, is [ Yio7ys Y(214) ) =[-3,9.5). Also, sup-
pose we are interested in testing that the mean visual acu-
ity score is higher for the blue-green argon group. In this

case, S* =135 and U* =189. Thus, our observed test sta-

tistic 7 =189 with an exact p-value of 0.126. Using nor-
mal approximation, the approximate p-value for this test
is 0.124. Note that there are 210 Walsh averages and 100
pairwise differences.

Example 2

Another situation in which these procedures may
be used is a repeated measures design in which data are
not available for all the time points. For example, the Optic
Neuritis Treatment Trial (ONIT)/Longitudinal Optic Neu-
ritis Study (LONS) [The Optic Neuritis Study Group
(1991)] was conducted to assess the relative benefit to vi-
sual function of two corticosteroid treatments as compared
with placebo for patients suffering from optic neuritis. This
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Table 2: Visual Acuity Measurements

Paired Data
X; 4 69 87 35 39 T9 31 79 65 95
Y 62 8 82 8 0 81 28 69 48 90
D; -8 -11 b5 -48 3 -2 3 10 17 b
X; 68 62 T 80 B84 79 66 75 59 77
Y, 63 77 0 55 83 8 54 72 58 68
Di 5 156 7 2 1 -6 12 3 1 9
Unpaired Data
T; 3 8 39 8 74 72 69 8 8 72
C; 8 8 78 30 58 45 78 64 87 65

disease is characterized by the fact that patients usually
experience a rapid loss of visual function over a period of
about one week, with most of this function subsequently
restored over a period of some months.

One of the important vision function measures
used in this trial was the Farnsworth Munsell 100-Hue
Test which assesses the patient’s ability to make fine color
discrimination. This test was administered to patients as
baseline, six months, one year, and annually thereafter un-
til the eighth year after disease diagnosis. A question arises
as to when along this temporal course changes in color
discrimination occur and when such changes no longer
occur. It is of interest then to perform pairwise compari-
sons to make these assessments. In this case we use data
from the placebo group, as interest lies in the natural course
of the disease.

Problematic is the fact that, as expected, some
patients miss their testing appointments for various rea-
sons, thereby producing missing observations in the longi-
tudinal data set. The testing procedures discussed in this
paper can be used to test pairwise hypotheses in the face
of missing data.

Weighted Rank Methods

Above, we based our inferences on simple sums
of one and two sample methods. It should be possible
with some added complexity to increase the efficiency by
considering weighted sums. The weights may be con-
structed to depend on sample size proportions and corre-
lation in the bivariate portion of the data. Of course, the
efficiency depends on the underlying model distribution.

36

In this section, we explore various ways to construct
weights, always trying to keep in mind the practical side of
computing and applying the methods.

Consider
2 1
= *+b U
i an(n+l) mn, (10)
where a+b=1. Then, T, is an estimate of

§=aP((D,+D,)/2>0)+bP(T-C>0) and under
H,:A=0,6=1/2.

Define, with N =n, +n, and a =nN/(nN +2nn,),
2N

T (N +2mmy)(n +1)

* +

(1

for testing H,: A=0.Under H,, E,T*=1/2 and

nN +2nn,

nN
nN +2n;n,

VaroT* = [

(

Also, under H,, T" has an asymptotic normal distribu-

S atn+D(2n+1) .
24

2nn,
nN +2nn,

’ nn,(N +1)
12

tion. Thus, one can construct an asymptotic size Ot test

based on T". This test is close to the optimal test derived
in the appendix when the underlying distribution is bivari-
ate normal.

We have, from (26) in the appendix,

_prifieaa-a-n

(12)
Jr+A1=2)(1-y)

T

For a bivariate normal with 4 i

Table 4 gives the effi-

T

opt,norma

ciency of T relative to , and relative to the sim-

pler T* from above. Note that T" loses very little
efficiency and is not below .95 for the range of » and p

values considered when compared to 7,,,, ,,,,, . On the other

hand, it is quite a bit better than T* for values of ¥ below

Table 3: Efficiency of T* (a) with respect to Toptnorm and (b) with respect to T+

i p=.2 p=:35 p=-8
(a) (b) (a) (b) (a) (b)
0987 1187 1000 1360 0952 1818
0990 1000 1000 1000 0975  1.000
0996 1058 1000 1034 0992 1001
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0.5. It remains to show that T" has robust efficiency against
its natural normal theory competition. This is shown later.
We complete this section with discussion of the correspond-
ing estimation and confidence interval.

Computing the rank estimate is not as straight-
forward as in the simple sum case. Again, we estimate A

by A’: such that T*(A:)= 1/2. In this case, T *(A) is a
nondecreasing step function which steps down
2N /[(nN + 2n,n,)(n +1)] units at each Walsh average and

2/(nN + 2n,n,) units at each pairwise difference. Because
the order of the Walsh averages and pairwise differences
depends on the actual data, this estimate cannot be written
in closed form. The estimate can be easily found in S-plus
or Minitab. First, list the Walsh averages and pairwise dif-
ferences along with the corresponding weights:
2N /[(nN +2n,n,)(n+1)] or 2/(nN + 2n,n,). Then, sort
the combined Walsh averages and pairwise differences with
the associated weights in descending order. Starting with
the largest item in the list, accumulate the weights until
1/2 is reached. The Walsh average or pairwise difference

corresponding to the weight required to reach 1/2 is A: .

A similar problem exists in constructing a confi-
dence interval for A . We use the asymptotic normality of

T". Thus, an approximate (1—a)100% confidence inter-

valfor A is (A,,A,) where

L

T*(AL)=E+ZG,21/VGVOT* (13)
A 1

T*(Au)ii_za/Z\/VaroT* (14)

where z,,, is the upper ¢ /2 quantile of the standard nor-
mal distribution. Then, use the sorting and accumulation

for the estimate to determine the A , and A y Vvalues.

Methodology

Comparison To Competitors
In this section, we compare T (or A : ) with various para-

metric and nonparametric competitors. We will use the Pit-
man efficiency as described in the appendix. Briefly, the

Pitman efficiency of T (or A: ) with respect to T(or A) is
the ratio e = (¢ */¢)?, where c is called the efficacy. Effi-

ciency values greater than one favor T (or A*). Pitman
R
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efficiency provides a single number comparison and has
been shown to reflect small sample size as well as asymp-
totic behavior; see Hettmansperger (1984).

We discuss the comparisons in terms of estimates.
The corresponding tests are often standardized versions of
these estimates. In all cases, the estimation and test effi-
ciency are identical and given by e. The competitors fall
into two groups. One group is based on a linear models
approach and includes a plug-in maximum likelihood esti-
mator and an estimator derived from a test proposed by
Bhoj (1989). The other group includes estimates for which
the design is initially ignored and all the treatment obser-
vations are compared with all the control observations.

Linear Model
Consider the following linear model:
Z=Xf+¢ (15)
where
X 1
Y 1 -1 B,
= , X = =
2= pX=|y g fP [B] (16)
C 1 -1
and
I pI 0 O
e ol T 00
Cove=X=c Io (17)
0 0 0 I

Note that zis a (2n+n, +n,)x1 matrix, x is
@n+n, +n,)x2, B is 2x1, £ is (2n+n, +n,) x
(2n+n;+n,). Then g= (Xz“lxylx'_z_ and
Varf = (X';;",Y)_l . Note that A = 28, . To compute this
estimate of A, one must know the correlation p .
Theorem 4

If pisknownand M =n+n, +n,,

1
(n+n)(n+ny)—nn, p*

-n(l- p)[(n,)?— n,¥)- (n,T"— nza)]}

AL (p)= {nM(/\_’—Y)+nln2(l—p2X7_"-—5)

(18)

_ _ 2
Varh gy ()= 200 0 1)1 )
(n+n)n+n)-nn,p

19

and as M — o, provided 0 < o> <« and the sample
size limits of Theorem 1 are satisfied,



RANK-BASED MIXED PAIRED AND TWO SAMPLE DESIGNS 38

IM(Ay(p) - A)—2>N(0,£%) Where

£ - 2y(1=p)+(1-7)1-p?) o2
[y+ra-p] [y +a-2a-pl-2a-0a-77%?

Note that ¢,y =&'. In practice we would use

(20)

A(r) where r is the correlation coefficient in the paired

data. This estimate of A is also obtained using the plug-in
method. For the assumed model, we derive the maximum
likelihood estimator of A assuming that p and o are
known. Because o and o are usually not known, we sub-
stitute, or plug-in, estimates of these unknown parameters

into the expression for the estimate of A. Using the

plug-in method, we get A=A 1w (r) where 7 is the

pmle
sample correlation coefficient for the paired data. Ekbohm
(1976) used this approach to construct test statistics and
compared various early approaches in a Monte Carlo study.
We do not recommend full maximum likelihood because
it is computationally quite complex and may not be stable
because there is no complete statistic for the model with
all parameters treated as unknown.

Bhoj (1989) compared six different test statistics
based on means in a Monte Carlo power study. The differ-
ent approaches entail refinements that yield approximate t
distributions for the test statistics. In addition, some ap-
proaches consider the unequal variances case. See Bhoj’s
paper and references for a survey of parametric methods.
We will concentrate on a new test proposed by Bhoj de-

noted Z, which emerged as generally superior to the other

tests based on sample averages. The corresponding esti-
mate was not explicitly developed by Bhoj, so we include
a brief description here.

We follow the notation of Bhoj (1989). Let

8=wb, +(1-w)5, where 5, =2T-X-¥ and

8, =X +Y -2C . The value of » dependson p and was

chosen to minimize Var(é‘) ; it is given by Formula (2.2)
in Bhoj (1989). Next, note that under normality

D=X-Y and § are independent. Hence, the linear com-

bination of D and & with minimum variance is

2 2
A 2 fo
A, = *—D+ =
b 2 2 2 2 (21)
0-5+0-5 0'3+0'5

where, in practice, unknown variances must be estimated.
Finally, the quantity relevant for the efficiency calculations

is o-ib = (0'52 + GLZ)ZTI . A formula for o7} is given by (2.3)

in Bhoj (1989). Although this estimate appears to be quite
different from the linear model estimate, in fact the

variance can be shown to be identical with the variance of

A, (r) defined in Theorem 4.
Hence, the linear model estimate includes the
plug-in MLE and the Bhoj estimator. Our efficiency com-

parison then will compare A: to A w (1),

The efficiency of A:with respect to the linear

model estimate is
eff (&:,&LM (p))= &% 22)
In the following discussion, we compare A’; to A w(P)
via (22). However, this is also the Pitman efficiency of the

rank test 7" relative to a test based on A w (p) . Table 4

gives the efficiencies of A : with respect to the linear model

estimate assuming an underlying bivariate normal distri-
butionand A =1/2.

Results

In Table 4, we see that when the underlying distribution is
bivariate normal, the linear model estimate with p known

is more efficient than the rank-based estimate when a * is
used regardless of the correlation, o, or the proportion of
paired data, Y. The efficiencies are close to one, indicat-

ing that too much efficiency is not lost using the rank
method.

Table 4: Efficiency of A';z with respect to ALM(p)

¥ p=.2 p=.5 p=.8
2 0.942 0.955 0.909
5 0.945 0.955 0.931
8 0.951 0.955 0.948

In practice, p would be estimated from the data.
When a Pearson correlation coefficient for the paired data
is used, this introduces more variability into the linear
model estimate of A . Simulations show that the linear
model estimate in which o is estimated is still more effi-

cient than the rank-based estimate using a * under bivari-
ate normality. In general, the gain in efficiency using this
linear model estimate over the rank-based estimate is not
great.

Instead of an underlying bivariate normal distri-
bution, suppose the data are selected from a contaminated
bivariate normal distribution. Let & represent the propor-
tion of contamination. Then with probability 1—¢, the
data will be selected from our usual bivariate normal dis-

tribution with equal marginal variances 0-12 = 0-22 =0o? and
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correlation p . The rest of the data will be selected from a
bivariate normal distribution with equal but larger mar-
ginal variances and possibly different correlation. It fol-
lows that the marginal distribution and distribution of dif-
ferences are univariate contaminated normal distributions.
Furthermore, if we mix a bivariate normal

(;1, =u,=0,0 =0} = l,p) with a bivariate normal

(;11 =, =0,0¢ =0, =0'2,pc) then

2 _ (1_5)2 £
i 2«/7?\/2(1—p)+2\/;\/202(1—p¢)
V2e(1-¢)

+
Vr\21- p)+257(1- p,)

05 I V2e(1-¢)
¥ 2r  2Wro Jrlivo?
Now c;. is compared using a * and (12).

When the data are a sample from a contaminated
bivariate normal distribution, the asymptotic variance of

A

A, is given by

£ u’ (= w)2yu? +(1-y)u+w)]
© A=)y + (=M1 - y)u? = A1 -A)(1-y)} WP

where u=(1-¢)+ec? and w=(1-¢)p+ep,0°. Recall

(23)

& is the proportion of contamination and p, and o2 are

the correlation and the marginal variance, respectively, in
the contaminated portion of the distribution. Thus, the ef-

ficiency of the 7° methods with respect to the linear model
methods under a contaminated bivariate normal distribu-

tion is given by £2c2,.

Suppose the data are sampled from the contami-
nated bivariate normal distribution with p, = 0. This simu-
lates the situation in which the components of the data are
contaminated independently, as in the case of gross errors.

Already for contamination of the order 5%, A: is more
efficient than A 1 - See Table 5 for efficiencies of A : with

respect to A e When £ =0.05 and o =2 . We find simi-
lar efficiencies for other levels of contamination and val-

ues of A #1/2. We conclude that 7* (and A: ) are often

more efficient than the linear based methods.

DUBNICKA, BLAIR, & HETTMANSPERGER

Table 5: Efficiency of A with respect to A,,, with €=0.05,6=2,
Pc=0, h=122

v p=2 p=5 p=38

2 1235 1232 1138

5 1039 1182 1187

8 1161 1160  1.146
Without Regard To Design

In addition to the mean-based linear combination
methods, one might consider a test statistic which treats
the data as if it only consists of two samples. Let

*

T;,...,T,,Jr,,l and C; ,...,C,:Mz represent observations from
subjects receiving the treatment and the control, respec-
tively. Then T."

1

is either an observation from the paired
data, X ;, or one from the independent samples, 7, . Simi-

larly, for C; . Let

1 n+ny

n+n, ,Z_.,:T' -

LS

n+n, ‘o

I*=

24

Thus, the computation of the statistic ignores the structure
of the data. This was first investigated by Lin and Stivers
(1974) and Ekbohm (1976). Bhoj (1989) included a ver-
sion of this statistic in his simulation study. Usual compu-

tations reveal that the Pitman efficacy of 7}, is

1
CE, —;

The efficiency of 7° with respect to T * is given under
bivariate normality in Table 6 where it can be seen that for

r+ra-v] [y +aQ-1)a-y)]
2(-p)y+1-y

25

moderate to high correlation 7" is superior even under
normality.

Table 6: Efficiency of T* with respect to L*, A =1/2

5y p=.2 p=.5 p=.8
2 0.95 1.06 1.56
5 0.96 1.06 1.59
8 0.93 1.00 1.24

The nonparametric counterpart to this approach
is based on the Wilcoxon-Mann-Whitney statistic. The test
consists of simply conducting the two sample rank test on
the treatment versus the control observations irrespective
of which part of the design they come from. The test will
not have the usual Wilcoxon-Mann-Whitney permutation
distribution. A normal approximation can be used to deter-
mine the p-value. However, certain quantities must be es-
timated. This approach was worked out in detail by Hol-
lander, Pledger, and Lin (1974). The corresponding
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estimator A, is simply the median of all the pairwise
differences between treatment and control observations.
In the case of bivariate normality, formulas from the paper
canAbe used to compute the efficiency of A: with respect
to Ayp, . However, we wish to make the comparison for
contaminated bivariate normal distributions as well. Hence,

we report simulated efficiencies in Table 7. They check
with the formula values for the bivariate normal case. Note

that 7* (and A: ) is generally superior to the rank test and

~

A HPL -

Table 7: Efficiency of A%, with respect to Agpr, A = 1/2

v p=.2 p=25 p=238
Norm CN Norm CN Norm CN
1.001 1.013 1.119 1.096 1.639 1.626
1.008 1.014 1.130 1.033 1.703 1.524
1.011 0.970 1.079 1114 1.362 1.579
Conclusion

A simple and efficient method for testing and estimation
when the data collected is a mixture of paired and unpaired
data is based on T*(A), (1). The test statistic, point esti-
mate, and confidence interval can be computed quickly
and easily. The exact p-value is easily computed with an S-
plus function for small sample sizes. The normal approxi-
mation works well for large sample sizes.

The T"(11) rank statistic is generally more effi-
cient than T*. The efficiency of 7" compares very favor-
ably with the optimal weighted rank statistic. The linear
model mean based estimate of A is a bit more efficient
than the R-estimate based on 7* for a bivariate normal
distribution, but we still estimate the correlation coeffi-
cient to use it. With a small amount of contamination the
rank methods are superior. In addition, the rank methods,
both test and estimate, are more robust in the sense that
outliers will have less effect on them than on the mean
based methods. In general, we recommend using 7" . How-
ever, if n > n, + n,, Table 3 suggests that 7+ is almost
as efficient as 7*. Hence, under those circumstances, we

recommend using the simple methods based on 7.
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Appendix

Proof of Theorem 1: This follows immediately from the
limiting normality of the stochastically independent
signed rank and rank sum statistics. See Dubnicka (1998)
for full details.

Proof of Theorem 2: Consider sequences that consists of
an arrangement of n + and - signs followed by an ordering
on n,T’sand n,C’s. A+inthe ;" position indicates that
the difference D; is positive and | D; | is ranked ;* among
IDy].....|D,| . A - in the i positive means the D; is nega-
tive and | D; | isranked ;* among the absolute values. Also,
a T(C) in the ;* position indicates that the ;* smallest
response was obtained from a subject receiving the
treatment (control). Then T+ is simply the sum of the ranks
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(positions) of the + signs plus the sum of the ranks of the
T’s minus [n, (n, + 1)]/2 .

When either i = 0 or j = 0, the independent
samples portion only contains observations from either the
control group or the treatment group. In these cases, the
independent samples do not contribute to the value of
T*(0). Thus, the value of T+(0) depends only on the ob-
servations from the paired data. Hence, when either i = 0
or j =0, we can ignore the subscripts i and j. This com-
pletes the proof.

Pitman Efficiency
The Pitman efficacy of a test statistic T is de-

fined as d
EEAT(O) la=0
cr = lim

Mo N,/VaroTiOi ’

This quantity measures the standardized rate of change of
the expected value of the statistic at the true value, 0 in this

case. Relatively large values of ¢; indicate high sensitiv-

(26)

ity of the test and hence large c; is desirable. The compu-
tation of ¢, depends on knowing the mean of T for gen-
eral A and the variance under the true value.

Suppose further than A is the estimate of A de-
rived from 7 then the asymptotic variance of /5| (A - A) is
c;?. The Pitman testing and estimation efficiency of 7,
(and A)) relative to T, (and A,) is e;,=(cr /e, ). See
Hettmansperger and McKean (1998) for details.

Proof of Theorem 3: The finiteness of the integrals is suf-
ficient to guarantee the existence of ¢,.. . Var,T*(0) is given
in (3). Also,

BT 0)=nli -y 1 M0 ({1 F, (2 2, G

+nn, I[I - Fy(x - 4))f; (x)az
where F,; represents the cumulative distribution function
of the D; in the paired data and F; is the common cumu-
lative distribution function of the 7; and C; in the unpaired
data. By symmetry,

:_AEAT+(0)|A=0= nfy (0)+ ”(” - I)dez (z)lz +nn, jflz (x)d"

Then

W20+ o 1) [ £ G+ mn, [ 17 (b

nin+D)@n+1)) nmy(n, +ny+1)
‘/ﬁ\/ 24 * 12

c.. = lim
T Moo

and the result immediately follows.
The Pitman efficiency (10) is given by

a 2[fi+b [r?
TR @7
ST )

We consider the weights that optimize the effi-
cacy. The following lemma gives a formula for determin-
ing these weights and the maximum efficacy when the ef-
ficacy is of a particular form.

Cry ="/ﬁ

Lemma 1: Let ¢’ = (ak, +bk2)/(a’k3 +b"k4)'/2, a+b=1.Then

¢ is maximized by a = k;k,/(k;k, +k,k;) and

Applying Lemma 1 to ¢z, we find that

Qopt = _[f i/ [)’ If i +241-12) Iﬁz] maximizes the efficacy
of T,, and the maximum efficacy is

cromes =N [12) +20-200-9) [17)

In order to develop an efficient and, at the same

time, practical statistic, consider a,,, when sampling from

a bivariate normal distribution. We find, using

J.fdz = 1{%/%) and If;z = 1/(2\/;) , that
Gaptmorm = W+ 2201 = 21 -y 2T = 7)]

A=n/(n, +n,) and ¥ in/(n+n,+n2). We could esti-

where

mate £ from the data; however, the efficiency is fairly flat
around p = 1/2, so we make that substitution to get

o nlyem)
y+27»(1—7\.)(1—y) = n(n, +1,)+2n;n,

This is the optimal weighted rank statistic when sampling

from a bivariate normal distribution with p = 1/2. T",

(11), isbasedon "~ .

*

Proof of Theorem 4: The expressions for the estimator

Apy(p) and its variance follow from routine but tedious

calculations of (X'Z" XT'X'Z" Z and (X IR ¢ )". The
limiting normality also follows immediately.
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