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Invited Debate: Target Article 
You Think You’ve Got Trivials? 

  
Shlomo S. Sawilowsky 

Educational Evaluation & Research 
Wayne State University University 

 
 
Effect sizes are important for power analysis and meta-analysis. This has led to a debate on reporting effect 
sizes for studies that are not statistically significant. Contrary and supportive evidence has been offered on the 
basis of Monte Carlo methods. In this article, clarifications are given regarding what should be simulated to 
determine the possible effects of piecemeal publishing trivial effect sizes. 
 
Key words: Trivial effect sizes, meta-analysis, Monte Carlo, simulation, Monte Carlo simulation 
 
 

Introduction 
 
“It would seem that power analysis has arrived” 
(Cohen, 1988, p. xiii). This was the conclusion of 
the late Jacob Cohen in reviewing twenty-six years 
of the literature since he brought the importance of 
effect size (and sample size) to the attention of 
behavioral and social science researchers (Cohen, 
1962). The explosion of meta -analyses being 
published, which followed Gene Glass’ 
presidential address to the American Educational 
Research Association (AERA) in April of 1976, 
also depends on the proliferation of effect sizes. 
 Researchers and editors, after neglecting 
power analyses in the past, or to provide raw 
materials for future meta-analyses, are now being 
asked to report effect sizes associated with 
statistically non-significant results. A recent 
motivating example of this call was made by 
Thompson (1996, 1999), who recommended effect 
sizes “can and should be reported and interpreted 
in all studies, regardless of whether or not 
statistical tests are reported” (1996, p. 29), and 
“even [for] non-statistically significant effects” 
(1999, p. 67). 

 
 
Shlomo S. Sawilowsky is Professor of Educational 
Evaluation and Research (EER), College of 
Education, Wayne State University, Detroit, MI. 
He is the program coordinator of (EER), and 
Wayne State University Distinguished Faculty 
Fellow. Email: shlomo@wayne.edu. The title of 
this article is based on Gerrold (1973). 

 Robinson and Levin (1997; see also Levin 
& Robinson, 1999) gave a reasoned approach to 
the reporting of effect sizes. On the basis of a 
thought experiment, they concluded that it is better 
to “First convince us that a finding is not due to 
chance, and only then, assess how impressive it is” 
(p. 23). Knapp and Sawilowsky (2001) added 
additional heuristic arguments against the practice. 
 Sawilowsky and Yoon (2001, 2002) 
conducted a Monte Carlo simulation to provide 
rigor for this position. Their results indicated that 
“effect sizes should not be reported or interpreted 
in the absence of statistical significance” 
(Sawilowsky & Yoon, 2002, p. 144). In contrast, 
Roberts and Henson’s (2002) Monte Carlo study 
came to the opposite conclusion. The purpose of 
this paper is to bring resolution to these opposing 
results. 
 
High Quality Monte Carlo Simulation & Sampling 
With Replacement 
 It is necessary to preface with a brief 
discussion of (a) simulation, (b) Monte Carlo, (c) 
Monte Carlo simulation, (d) sampling with vs 
without replacement, and (e) characteristics of a 
high quality Monte Carlo simulation. This will 
clarify the study conducted by Sawilowsky and 
Yoon (2001, 2002), and explicate the flaws in the 
design and conclusion of the study conducted by 
Roberts and Henson (2002). It will also serve as a 
brief review of Monte Carlo simulation methods. 
(For more complete coverage of the Monte Carlo 
simulation method, see Sawilowsky & Fahoome, 
2003). 
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Simulation 
 A simulation “mimics important 
elements” (Roberts, et. al, 1983, p. xi) of a system 
or phenomenon. It is “a representation ...in 
simplified form to study its behavior” (p. 452). 
Negoita and Ralescu (1987) noted that “In 
science... ‘simulation’ is forming an abstract 
model from a real situation in order to understand 
the impact of modifications and the effect of 
introducing various” (p. 29) interventions. 
 Norlén (1975) stated that simulation can 
be viewed as a “numerical technique for the 
carrying out of experiments” (p. 15). As an 
example, consider simulating the tossing of a fair 
die. This may be accomplished by accessing an 
uniform pseudo-random number generator that 
produces a value on the interval [0,1]. Draw a 
variate from the generator. Suppose it is .1770 
(rounding to four significant digits, or to as many 
significant digits as desired). Using the assignment 
in Table 1 below, this process results in the 
simulation of throwing a fair die and having two 
spots surface. 
 

Table 1. Simulation of a fair die  
using uniform variates on the 

interval [0,1]. 
 

Outcome Assignment 

.0000 - .1666 1 spot 

.1667 - .3333 2 spots 

.3334 - .5000 3 spots 

.5001 - .6666 4 spots 

.6667 - .8333 5 spots 

.8334 - 1.000 6 spots 
 
Monte Carlo 
 Monte Carlo, in the sense it is being used 
in this article, is of rather recent origin (Metropolis 
& Ulam, 1949). Its usage appeared over a half 
century ago in reference to the gaming 
establishments of previous centuries of a famous 
city in the Monaco principality. It is an explicit 
reference to the use of repetition as a method of 
discovery of the long run outcome of an event. 

 More technically, it is the “use of 
stochastic techniques to solve... a deterministic 
problem” (Moshman, 1967, p. 250). As such, “one 
of the simplest and most direct applications of the 
Monte Carlo methods is to the evaluation of 
integrals” (Kahn, 1966, p. 249-250), or the area of 
any geometric figure, but particularly those 
irregular in shape. (The first moment of the 
uniform distribution over the interval [0,1] can be 
obtained via the calculus:

 
1

0
xdx .5=∫ . 

 
This result could be estimated via Monte Carlo 
methods by drawing a large number of variates 
from a uniform pseudo-random number generator 
and computing the mean, but usually there is little 
point in doing so.)  
 As an example, consider the problem of 
determining the area of an irregular closed figure 
that is unwieldy to the calculus. Inscribe the figure 
within a unit square. Draw two variates from the 
uniform pseudo-random number generator to 
represent Cartesian coordinates for the ordered 
pair (x, y), and plot them accordingly. Repeat the 
previous step many times. The area of the irregular 
geometric figure is estimated (as accurately as 
desired) by the ratio of the number of dots that fall 
within the figure, divided by the total number of 
repetitions (i. e., pairs of dots created). Note, 
however, that no system or phenomenon was 
simulated. 
 A famous example of the Monte Carlo 
method was undertaken in 1908 by William Sealy 
Gosset (Student, 1908a, 1908b), a chemist 
working for the Guinness brewing company. He 
bolstered his analytical expression of the 
distribution of the Pearson product-moment 
correlation coefficient on small samples via a 
Monte Carlo conducted by hand. Similarly, he 
supported the derivation of the t statistic with a 
Monte Carlo demonstration of the sampling 
distribution of t. 
 
Monte Carlo Simulation 
 Statistical historians (e.g., Hald, 1998, p. 
196 - 201) noted that multinomial outcomes, such 
as tossing a fair die with equiprobability of one 
through six spots surfacing, was determined 
mathematically by Laplace in 1774. As an 
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alternative to the mathematical approach, the 
Monte Carlo simulation approach arose with 
Buffon in 1777, who tossed a coin 2,048 times and 
recorded the results. The distribution of outcomes 
indicated an expectation of heads to occur in 
50.693% of the tosses. In 1837, Poisson 
determined 0.48468 < p < 0.52918 to be what he 
called the 99.555% interval of the probability “p” 
representing the chance of a heads occurring. 
 A famous Monte Carlo simulation was 
reported in 1900 by the eugenicist, Karl Pearson. 
His zoologist colleague and co-founder of 
Biometrika, Walter Frank Raphael Weldon, tossed 
twelve dice at the same time, recorded the results, 
and repeated the process 26,306 times. Pearson 
(1900) procured this data set and applied his newly 
developed goodness of fit P2 test to demonstrate 
the frequency of obtained outcomes were as 
expected due to combinatorial analysis. 
 Norlén noted (1975) “the advent and use 
of computers... freed the method from manual 
calculations... and... afford richer possibilities for 
the creation of complex, dynamic, and multi-
variate” (p. 20) problems. Thus, the modern Monte 
Carlo simulation obviates the physical tossing of a 
die (or flipping of a coin). The combination of 
assignment in Table 1 (simulation) with many 
repetitions (Monte Carlo) via computer software 
and hardware results in the Monte Carlo 
simulation of the probability of outcomes in 
tossing a fair die with far more accuracy than 
could be achieved with the manual methods used 
by Buffon or Weldon. 
 The richness of possibilities for Monte 
Carlo simulation are truly amazing. Some 
examples include annealing, electromagnetism, 
image processing, and genetic linkage (Robert & 
Casella, 1999); inventory control, queuing systems 
at a two-minute car wash, expected waiting times, 
management planning, short-term forecasting, 
consumer behavior of switching brands, and 
customer product ordering behavior, (McMillan & 
Gonzalez, 1968); mass-supply systems, and 
quality and reliability of products (Sobol, 1974); 
growth of yeast in a sugar solution, cooling 
temperature of coffee, development of ability to 
perform pushups, estimating migration patterns, 
material or time delays, ecology of the Kaibab 
Plateau on the rim of the Grand Canyon, urban 
growth, sale and consumption of commodities, 
controlling dam water, projection of discovery of 

natural gas reserves, and heroin addiction’s impact 
on a community (Roberts et. al, 1983); and 
studying random neutron diffusion in fissile 
material in the development of the atom bomb 
during World War II. 
 
Sampling With vs Without Replacement 
 Sampling via Monte Carlo simulations can 
be conducted with or without replacement. In the 
examples using dice or coins, the correct sampling 
technique is with replacement. Once the result for 
the experiment has been recorded, the value 
obtained from the uniform pseudo-random number 
generator is returned to the repository of values 
that may again be drawn. This is because the spots 
don’t leave the dice after being tossed and the 
heads don’t leave the coin after being flipped. 
 Conversely, sampling without replacement 
would be appropriate in simulating the turning of 
cards. Once the Queen of Hearts has been turned, 
it is no longer in the deck, and cannot reappear. 
The Queen of Hearts must be prevented from 
further assignment. The choice of which technique 
to use in a Monte Carlo simulation is determined 
by what is being simulated. 
 The matter of sampling with vs without 
replacement is practically irrelevant when drawing 
variates from the continuous uniform distribution, 
which is represented by an infinite number of real 
numbers, each in turn with an infinite string of 
digits. Furthermore, this consideration is often 
moot with asymptotically large data sets. 
However, Monte Carlo simulation based on 
discrete and bounded distributions, and even more 
so with small sample data sets, may lead to 
different results based on which sampling 
technique is used. 
 
Characteristics Of A High Quality Monte Carlo 
Simulation 
 There are a variety of factors that must be 
attended to in order to assure a Monte Carlo 
simulation is correct and useful. Some of these 
factors are as follows: 
 

• the pseudo-random number generator has 
certain characteristics (e. g. a long 
“period” before repeating values) 

• the pseudo-random number generator 
produces values that pass tests for 
randomness 
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• the number of repetitions of the 
experiment is sufficiently large to ensure 
accuracy of results 

• the proper sampling technique is used 
• the algorithm used is valid for what is 

being modeled 
• the study simulates the phenomenon in 

question 
  

Sawilowsky and Yoon (2001, 2002) vs Roberts 
and Henson (2002) 

 
 The Monte Carlo simulation by 
Sawilowsky and Yoon (2001, 2002) was 
conducted with 
 

A Fortran 95 program “written to 
randomly draw variates from a de 
Moivreian (i. e., normal) 
distribution and then randomly 
assigned to two groups (n1 = n 2 = 
10), with the first group 
designated the treatment group 
and the second the control. A two-
sided two independent samples t 
test was conducted with nominal 
" = 0.05. 10,000 repetitions were 
conducted. (p. 143). 

 
Under the truth of the null hypothesis, the results 
indicated that the average of the absolute values of 
the effect size, Cohen’s d, was not near zero, but 
rather, was approximately what Cohen (1988) 
categorized as a small treatment effect. Thus, the 
conclusion of their brief report was the publishing 
of the constituent effects sizes would be 
misleading. 
 The Monte Carlo study by Roberts and 
Henson (2002) was designed to examine the 
“amount of bias in the effect size” (p. 241). They 
used an S-Plus macro to 
 

generate two normally distributed 
populations of 1 million cases... 
the factors in this simulation study 
included the size of Cohen’s d in 
the population, the standard 
deviation of the two populations, 
and the sample sizes of the two 
groups... A total of 5,000 pairs of 

samples were drawn from the 
populations within each condition 
of the simulation study. (p. 245) 

 
The results of their study found “the amount of 
bias in d remained small under most conditions of 
consideration” (p. 247). Because the “average 
across samples tended to more closely 
approximate zero” under the truth of the null 
hypothesis, meaning “Cohen’s d does not appear 
to be biased in practical terms” (p. 252), they 
concluded the opposite of Sawilowsky and Yoon 
(2001). Therefore, they supported the reporting of 
effect sizes for results that are not statistically 
significant. 
  
Criticism of Roberts and Henson’s (2002) Study 
Nine Minor Criticisms 
 (1) Roberts and Henson (2002) claimed 
that “effect sizes can serve a valuable function to 
help evaluate the magnitude of a difference or 
relationship” (p. 241). Although effect sizes do 
quantify the magnitude of a difference or 
relationship, they do not evaluate it. Content 
knowledge of the research question is required to 
decide if the difference or relationship is of 
theoretical, clinical, or practical importance. 
 (2) Their Monte Carlo study was written 
in a recent albeit dated version of S Plus, which is 
a superb statistical package. There are advantages 
of using statistical packages over programming 
languages, such as ease of use. There have been 
bugs, however, in this software’s pseudo-random 
number generator (e.g., see the discussion at www. 
insightful.com/support/faqdetail.asp?FAQID=137
&IsArchive=0). 
 On the positive side, if a glitch due to this 
bug occurred it should have produced an 
observable error message. The built generator has 
an excellent period length (i. e., 264 - 232) 
compared with most other statistical packages, but 
the algorithm it is based on fails at least four 
DIEHARD tests of randomness (available at 
http://stat.fsu.edu/~geo/. The default option 
requires the programmer to reset the seed, which 
was not mentioned by Henson and Roberts (2002). 
Otherwise, the two “populations” of 1 million 
values would be identical. The current version of S- 
Plus eliminated these potential concerns. 



YOU THINK YOU’VE GO TRIVIALS? 222 

 (3) The entry of .0611 for the maximum r2 
when d = .00 and n 1 =  n 2 = 10 in Table 2 is 
obviously a typographical error. 
 (4) They presented “descriptive statistics” 
(p. 247), including the minimum and maximum d, 
in Tables 1 - 3. Roberts and Henson (2002) 
mistakenly labeled and considered the strongest  
negative effect size as a “minimum”. Although 
mathematically it is a “minimum”, in the context 
of effect sizes, the minimum d is, of course, 
defined as zero. 
 (5) Whereas Sawilowsky and Yoon (2001, 
2002) used 10,000 replications and reported 
results to three significant digits, Roberts and 
Henson (2002) used 5,000 repetitions , but reported 
results to four significant digits. The number of 
repetitions was likely due to the limitations of 
using an S-Plus macro instead of Fortran, as the 
latter is far more flexible to program and faster in 
terms of execution. (It is not uncommon to use 
millions of repetitions to gain precision.) 
 (6) Roberts and Henson (2002) conducted 
their study on “5,000 pairs of samples” that “were 
drawn from the populations” ( p. 245). Thus, they 
used sampling without replacement. This is 
incorrect if the intent was to simulate the 
occurrence of test scores, group means, p values, 
or effect sizes. For example, the appearance of an 
IQ score of 107.5 as one sample mean should not 
preclude another sample from having the same 
mean. Each sample mean of a pair must be 
returned to the population, with the chance of 
being drawn again being equal to every other 
possible sample mean. This is accomplished by 
sampling with replacement. 
 (7) Because the study was conducted on 
Cohen’s d (and r2), which is a standardized value, 
there was no need for Roberts and Henson (2002) 
to include three different population standard 
deviations, and hence, two-thirds of their study (i. 
e., Tables 2 - 3) is redundant. 
 (8) There is little justification for 
publishing Monte Carlo work when results can be 
computed easily and directly. The bias in d can be 
computed analytically under population normality, 
which is the only distribution Roberts and Henson 
(2002) examined. Cohen (1988) noted: 
  

It has been shown by Hedges 
(1981) and Kraemer (1983) , in the 
context of the use of ds in meta-

analysis that the absolute value of 
ds is positively biased by a factor 
of approximately (4df - 1)/(4df - 
4), which is of little consequence 
except for small samples. (p. 66) 

 
Their Monte Carlo results for the bias of Cohen’s 
d = .2, .5, and .8 in Table 2 for n1 = n2 = 10 differ 
from (4df - 1)/(4df - 4) by only .005, -.014, and -
.013, respectively. The results should converge as 
the number of repetitions in their Monte Carlo study 
increase. 
 (9) Roberts and Henson (2002) cited 
literature reviews indicating authors inadequately 
documented effect sizes. They cited editors who 
promoted citing effect sizes. They cited the same 
list of journals previously given by Thompson 
(2001, p. 83), whose editors require reporting of 
effect sizes. Their point is well taken, despite the 
apparent recanting of this form of persuasion by 
Thompson (2002), who cautioned “headcounts of 
views are not perfect indicators of truth” (p. 85). 
Nevertheless, Roberts and Henson’s (2002) Monte 
Carlo study did not present any compelling reason 
to report effect sizes when the null hypothesis 
remains tenable. 
 
Major Criticism 
 Sawilowsky and Yoon (2001, 2002) never 
“argued that small effects can in some cases be 
due solely to sampling error” (Roberts & Henson, 
2002, p. 245), as claimed by Roberts and Henson 
and which was the premise of their counter-study. 
Instead, Sawilowsky and Yoon (2002) 
demonstrated the trouble with reporting effect 
sizes for studies that were not statistically 
significant by simulating the process and 
examining the false impression that would 
subsequently be created in the literature. The 
following fabricated data sets (Data Set A and 
Data Set B) represent two possible patterns of 
results in terms of effect sizes when the null 
hypothesis is tenable. 
 
Table 2. Hypothetical Effect Sizes (e. g., Cohen’s 
d) For Data Sets A & B Over Six Replications. 
 

A .001 -.004 .003 .008 -.003 -.005 

B .23 .12 -.07 .17 -.27 -.17 
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 To appreciate the impact of the 
information (hypothetical results) in the table above, 
consider the following vignette. First, consider 
Data Set A. Readers of the literature will see an 
effect size of .001 published in a study of interest, 
-.004 in the subsequent study, and so forth. If the 
reader has a good memory, it would be 
remembered that the typical positive effect size 
averaged .004, and the typical negative effect size 
averaged -.004. The sign of the effect size, to be 
discussed further below, depends on the context of 
the study. Prior to the sought-after and highly 
prized meta-analysis, what message will have 
formed in the mind of the reader of the literature? 
Most likely, there isn’t much here. 
 Now consider Data Set B. The effect size 
for the first study was .23. Although marginally 
respectable, the study was published to publicize a 
subtle, yet detectable treatment effect in education 
or psychology research. A year later, a replication 
study appeared in the literature. The magnitude of 
the effect size was only .12. Explanations were 
given for the reduction (e. g., the reliability 
estimate was lower, the sampling plan was 
inadequate, the period of treatment was reduced). 
After another year passed and the next replication 
appeared in the literature, serious questions 
regarding the veracity of the intervention arose. 
This was because the effect size for the third non-
statistically significant study was only -.07. 
 This impression dissipated somewhat with 
the appearance of the fourth study and its effect 
size of .17. After the fifth and six studies, 
however, readers of the literature were thoroughly 
confused on the effectiveness of the intervention. 
What message might be formed in their minds? A 
reader with a good memory may recall the 
magnitude of the effect sizes averaged 
approximately .2, indicating there was a small but 
important treatment effect. Readers who (a) 
recalled the oldest studies maintained the direction 
was positive, or (b) recalled the newest studies 
maintained the direction was negative. 
 When the readers are presented with the 
published meta-analysis on the series of non-
statistically significant studies, they will realize 
they have been misled. In the absence of a Type I 
error, the meta-analytic synthesis will determine 
the studies conducted over the past half-decade are 
not statistically significant. The meta-analysis, and 
the misconceptions it clarified, would have been 

obviated initially had effect sizes for non-
statistically significant studies not been published 
in the first place. 
 The Sawilowsky and Yoon (2002) Monte 
Carlo was a simulation designed to determine 
which type of data set should readers of the 
literature expect to see under the truth of the null 
hypothesis. Are the magnitudes clustered about 
0.0? The absolute value was taken, and it was 
determined that the typical magnitude expected is 
not near zero, but rather, what Cohen (1988) labels 
a small treatment outcome. Their simulation 
showed readers should expect to see results such 
as that depicted by Data Set B, not Data Set A. In 
contrast, Roberts and Henson’s (2002) work was a 
Monte Carlo study of the bias of d, which does not 
relate to the process being simulated. 
 (Without remarking on it, Roberts and 
Henson, 2002, with slightly different study 
parameters,  found  the  strongest effect sizes to be
-2.31 and 2.06 for negatively and positively signed 
d’s, respectively. You think you’ve got trivials? 
These huge results occurred with a treatment 
modeled by random numbers! Publishing specious 
effect sizes of such astronomically high magnitude 
(i.e., ±2.19) could wreak havoc in the literature. 
Sawilowsky and Yoon, 2001, 2002, considered 
reporting results in this fashion. It was decided, 
however, that to be realistic, the simulation should 
depict the typical magnitude expected, not 
extrema.) 
 

Conclusion 
 
Consider the chaotic fashion in which meta-
analyses are currently being conducted. One 
researcher is not the holder of results from many 
tightly integrated experiments, publishing only the 
final meta-analysis. If that were the case, the 
presence of effect sizes for non-statistically 
significant results, duly noted and preserved as 
they occurred, would never become a misleading 
menace to the public. 
 Therefore, Sawilowsky and Yoon’s (2001, 
2002) brief report was based on taking the 
absolute value of Cohen’s d to determine the 
typical magnitude expected when an intervention 
was  random numbers. Roberts and Henson’s 
(2002) argument against taking the absolute value 
was “in real experiments, it is known which group 
received the intervention” (p. 244). Is their 
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position correct as far as readers of the literature 
are concerned? In some treatment vs control 
studies, the effect of the treatment is demonstrated 
when the mean of the treatment group is higher 
than that of the control group; in other contexts 
when the mean of the treatment group is lower 
than that of the control group. For example, the 
same intervention might be used to increase self-
esteem scores (treatment group mean is greater 
than control group mean), and reduce the number 
of times per week the bed was wet (treatment 
group mean is lower than control group mean).  
 The direction (sign of + or -) of that same 
intervention is entirely arbitrary. The sign depends 
on the context of the use of the intervention. If one 
researcher held all of the interim results, then the 
interpretation could safely rest on the meta-
analysis, as the context would be known. 
However, the reader of the literature, who is 
getting these results piecemeal, will have the nigh 
impossible task of making sense of the contexts of 
a series of independently conducted studies 
published sporadically over time. 
 In addition to the above vignette, consider 
using a compound designed to block the serotonin 
uptake pump in a treatment one vs treatment two 
study on patients at risk for suicide. Suppose 30 
mg, a common dosage for depression, was being 
compared with 70 mg, a common dosage for 
trichotillomania and other obsessive-compulsive 
disorders. Which dosage is the intervention? 
Clearly, the resulting direction (sign of + or -) is 
arbitrary. Thus, both the magnitude and the sign of 
published effect sizes for non-statistically 
significant studies mislead the public. 
 Cohen (1988) noted the researcher “hardly 
needs convincing of the centrality of the concept 
of effect size (ES) to the determination of power 
or necessary sample size in research design” (p. 
531). “It is, after all, what science is all about” (p. 
532).Yet, Cohen (1988, p. 10) opined that of all 
the factors in research design, behavioral scientists 
understand effect size the least. “Whatever the 
manner of representation of a phenomenon ... the 
null hypothesis always means the effect size is 
zero...[but] when the null hypothesis is false, it is 
false to some specific degree, i.e., the effect size 
(ES) is some specific nonzero value in the 
population” (Cohen, 1988, p. 10). Thompson 
(1996, 1999), supported by Roberts and Henson 
(2002), called for publishing specific nonzero 

values under the truth of the null hypothesis. 
According to Cohen (1988), however, “the ES 
serves as an index of degree of departure from the 
null hypothesis” (p. 10, italics added for 
emphasis). 
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