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Ordinal Regression Analysis: Using Generalized Ordinal Logistic Regression 
Models to Estimate Educational Data 

 
Xing Liu Hari Koirala 

Eastern Connecticut State University, 
Willimantic, CT 

 
 
The proportional odds (PO) assumption for ordinal regression analysis is often violated because it is 
strongly affected by sample size and the number of covariate patterns. To address this issue, the partial 
proportional odds (PPO) model and the generalized ordinal logit model were developed. However, these 
models are not typically used in research. One likely reason for this is the restriction of current statistical 
software packages: SPSS cannot perform the generalized ordinal logit model analysis and SAS requires 
data restructuring. This article illustrates the use of generalized ordinal logistic regression models to 
predict mathematics proficiency levels using Stata and compares the results from fitting PO models and 
generalized ordinal logistic regression models. 
 
Key words: Generalized ordinal logistic regression models, proportional odds models, partial 

proportional odds model, ordinal regression analysis, mathematics proficiency, stata, 
comparison. 

 
 

Introduction 
Ordinal data in education are substantive. 
Perhaps the most well-known model for 
estimating an ordinal outcome variable is the 
proportional odds (PO) model (Agresti, 1996, 
2002, 2007; Anath & Kleinbaum, 1997; 
Armstrong & Sloan, 1989; Hardin & Hilbe, 
2007; Long, 1997; Long & Freese, 2006; 
McCullagh, 1980; McCullagh & Nelder, 1989; 
O’Connell, 2000, 2006; Powers & Xie, 2000). 
Current general-purpose statistical software 
packages, such as SAS, SPSS and Stata, use this 
model as the default for ordinal regression 
analysis. The PO model is used to estimate the 
cumulative probability of being at or below a 
particular level of a response variable, or being 
beyond a particular level, which is the 
complementary direction. In this model, the 
effect  of  each  predictor  is  assumed  to  be  the 
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same across the categories of the ordinal 
dependent variable. This means that for each 
predictor, the effect on the odds of being at or 
below any category remains the same within the 
model. This restriction is referred to as the 
proportional odds, or the parallel lines, 
assumption.  

The assumption of proportional odds is 
often violated, however, because it is strongly 
affected by sample size and the number of 
covariate patterns – for example, including 
continuous covariates or interactions as the 
predictors (Allison, 1999; Brant, 1990; 
O’Connell, 2006). It is misleading and invalid to 
interpret results if this assumption is not tenable. 
It has been suggested that the separate 
underlying binary logistic regression models are 
fitted and then are compared with the original 
PO model (Allison, 1999; Bender & Grouven, 
1998; Brant, 1990; Clogg & Shihadeh, 1994; 
Long, 1997; O’Connell, 2000, 2006). Although 
this strategy would help researchers identify the 
reason why the overall PO assumption is 
violated, it is not clear how a well-fitting 
parsimonious model with a violated PO 
assumption is developed and interpreted.  

To address this issue, the partial 
proportional odds (PPO) model (Peterson & 
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Harrell, 1990) and the generalized ordinal logit 
model (Fu, 1998; Williams, 2006) were 
developed. The PPO model allows for 
interactions between a predictor variable that 
violates the PO assumption and different 
categories of the ordinal outcome variable. The 
analysis of a PPO model using SAS GENMOD 
procedure requires a restructured data set, which 
includes a new binary variable indicating 
whether an individual is at or beyond a 
particular level (O’Connell, 2006; Stokes, Davis 
& Koch, 2000).  

The generalized ordinal logit model 
developed by Fu (1998) and William (2006) 
relaxes the PO assumption by allowing the effect 
of each explanatory variable to vary across 
different cut points of the ordinal outcome 
variable without data restructuring. In addition, 
this model estimates parameters differently from 
the PPO model using SAS. Williams’ gologit2 
program (2006) for Stata is a more powerful 
extension of Fu’s gologit (1998); it can estimate 
the generalized ordered logit model, the PPO 
model, the PO model and the logistic regression 
model within one program. 

In educational research, the PO model is 
widely used. However, the use of the 
generalized ordinal logit model appears to be 
overlooked even in cases where the PO 
assumption is violated. One likely reason for this 
is the restriction of current statistical software 
packages: SPSS cannot perform the generalized 
ordinal logit model analysis and SAS requires 
data restructuring prior to data analysis, 
therefore, it is important to help educational 
researchers better understand this model and 
utilize it in practice.  

The purpose of this study is to illustrate 
the use of generalized ordinal logistic regression 
models to predict mathematics proficiency levels 
using Stata and to compare the results of fitting 
PO and the generalized ordinal logistic 
regression models. This article is an extension of 
previous research focusing on the PO model 
(Liu, 2009), and the Continuation Ratio model 
with Stata (Liu, O’Connell, & Koirala, 2011). 
Ordinal regression analyses are based on data 
from the 2002 Educational Longitudinal Study 
(ELS) in which the ordinal outcome of students’ 
mathematics proficiency was forecast from a set 

of predictors, such as, using computers for fun, 
school work and to learn on their own. 

Theoretical Framework 
General Logistic Regression Model and the 
Proportional Odds Model 

The binary logistic regression model 
estimates the odds of success or experiencing an 
event for the dichotomous response variable 
given a set of predictors. The logistic regression 
model can be defined as (Allison, 1999; Menard, 
1995): 
 

( )
( )

1 1 2 2 p p

ln(Y )  logit [π(x)] 
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In an ordinal logistic regression model, 

the outcome variable has more than two levels. 
It estimates the probability being at or below a 
specific outcome level given a collection of 
explanatory variables. The ordinal logistic 
regression model can be expressed in the logit 
form (Liu, 2009; Long, 1997; Long & Freese, 
2006) as follows: 
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(2) 
 
where πj(x) = π(Y ≤ j | x1,x2, …, xp) is the 
probability of being at or below category j, given 
a set of predictors, j =1, 2, …, J−1, αj are the cut 
points and β1, β2, …, βp are logit coefficients. 
When there are j categories, the PO model 
estimates J-1 cut points. This PO model assumes 
that the logit coefficient of any predictor is 
independent of categories, i.e., the coefficients 
for the underlying binary models are the same 
across all cutpoints. The equal logit slope or the 
proportional odds assumption can be assessed by 
the Brant test (Brant, 1990), which estimates 
logit coefficients for underlying binary logistic 
regressions, and provides the chi-square test 



GENERALIZED ORDINAL LOGISTIC REGRESSION MODELS 

244 
 

statistics for each predictor and the overall 
model in Stata. 

To estimate the ln (odds) of being at or 
below the jth category, the PO model can be 
rewritten as the following form:  
 

( )
( )
( )

p

1 2 p

1 2 p

j 1 1 2 2 p p

logit [π Y j | x1, x2, , x ]

π Y j | x , x ,..., x
       ln

π Y j | x , x ,..., x

       α ( β X β X β X ).

≤ …

 ≤
 =
 > 
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(3) 
 
Thus, this model predicts cumulative logits 
across J−1 response categories. The cumulative 
logits can then be used to calculate the estimated 
cumulative odds and the cumulative 
probabilities being at or below the jth category.  

Different software packages may 
estimate parameters differently and the ordinal 
logistic regression model can be expressed in 
different forms (Liu, 2009). For example, Stata 
follows the above form with a negative sign 
before the logit coefficients. SAS, however, uses 
a different form when estimating the cumulative 
odds of being at or below a particular category 
using the ascending option. 
 
The Generalized Ordinal Logistic Regression 
Model 

The generalized ordinal logistic 
regression model extends the PO model by 
relaxing the PO assumption. In this model, if the 
assumption is violated by a certain predictor, 
then its effect can be estimated freely across 
different categories of the dependent variable. 
The model is expressed as: 
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The above form can also be expressed as 
proposed by Fu (1998) and Williams (2006): 
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where, in both equations, αj are the intercepts or 
cutpoints, and β1j, β2j, …, βpj are logit 
coefficients. This model estimates the odds of 
being beyond a certain category relative to being 
at or below that category. A positive logit 
coefficient generally indicates that an individual 
is more likely to be in a higher category as 
opposed to a lower category of the outcome 
variable. To estimate the odds of being at or 
below a particular category, however, the signs 
before both the intercepts and logit coefficients 
in equation (5) must be reversed. 

In this expression, all of the effects of 
the explanatory variables are allowed to vary 
across each of the cutpoints. If some of these 
effects are found to be stable, they can be 
constrained to be equal as in the PO model; thus, 
generalized ordinal logistic regression model 
refers to the case where at least one of the 
coefficients for a predictor varies across 
categories. Compared to SAS, neither data 
restructuring nor interactions between categories 
and predictor variables with non-proportional 
odds are required by Stata – this makes data 
analysis of the generalized ordinal logit model 
much easier. 
 

Methodology 
Sample 

The data used in this study are from the 
Educational Longitudinal Study of 2002 (ELS: 
2002). The ELS 2002 study, conducted by the 
National Center for Educational Statistics 
(NCES), was designed to provide longitudinal 
data regarding high school students’ 
achievement, attitude and experiences, and their 
postsecondary school education and the labor 
market. In the 2002 base year of the study a 
cohort of more than 15,000 high school 
sophomores from a national sample of 752 
public and private high schools participated in 
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the study by taking cognitive tests and 
responding to surveys.  

The outcome variable was students’ 
mathematics proficiency levels in high school, 
which was an ordinal variable with five levels (1 
= students can do simple arithmetical operations 
on whole numbers; 2 = students can do simple 
operations with decimals, fractions, powers, and 
root; 3 = students can do simple problem 
solving; 4 = students can understand 
intermediate-level mathematical concepts and/or 
find multi-step solutions to word problems; and 
5 = students can solve complex multiple-step 
word problems and/or understand advanced 
mathematical material) (Ingels, Pratt, Roger, 
Siegel, & Stutts, 2004, 2005). These five 
proficiency domains were hierarchically 
structured: mastery of higher proficiency level 
indicated mastery of all previous levels. Those 
students who failed to pass through level 1 were 
assigned to level 0. Table 1 provides the 
categories and frequencies of all mathematics 
proficiency levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Analysis.  
After the PO model was fitted with a 

single explanatory variable using the Stata ologit 
command the full-model was then fitted with all 
three explanatory variables. The brant test 
command, one of the Stata SPost (Long & 
Freese, 2006) routines for the analysis of post-
estimations, was used to examine the PO 
assumption and identify predictors that violated 
the assumption. Stata gologit (Fu, 1998) and 
gologit2 (Williams, 2006) commands were then 
used to fit the generalized ordinal regression 
models and the results from both PO models and 
the generalized ordinal regression models were 
compared. 
 

Results 
Proportional Odds Model with a Single 
Explanatory Variable 

A PO model with a single predictor, 
using computers for fun, was fitted first using 
the Stata ologit command with the logit function 
as default. Table 2 provides the results for the 
single-predictor PO model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, 
ELS 2002 (N = 15,976) 

Proficiency 
Category 

Description 
Frequency and 

Percent of Total Sample 

0 Did not pass level 1 
842 

(5.27%) 

1 Can do simple arithmetical operations on whole numbers 
3,882 

(24.30%) 

2 
Can do simple operations with decimals, fractions, powers, 

and root 
3,422 

(21.42%) 

3 Can do simple problem solving 
4,521 

(28.30%) 

4 
Can understand intermediate-level mathematical concepts 

and/or find multi-step solutions to word problems 
3,196 

(20.01%) 

5 
Can solve complex multiple-step word problems and/or 

understand advanced mathematical material 
113 

(0.71%) 
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The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 992.52, p < 
0.001, indicated that the logit regression 
coefficient of the predictor (using computer for 
fun) was statistically different from 0, therefore, 
the model with one predictor provided a better 
fit than the null model with no independent 
variables. The Pseudo R2 = 0.023, which is the 
likelihood ratio R2

L, suggested that the 
relationship between the response variable, 
mathematics proficiency, and the predictor, 
using computer for fun, was small.  

The estimated logit regression 
coefficient, β = 0.384, z = 31.28, p < 0.001, 
indicated that the predictor variable, using 
computers for fun, had a significant effect on 
mathematics proficiency. Substituting the value 
of the coefficient into formula (3), logit [π(Y ≤ j 
| X1)] = αj + (−β1X1), logit [π(Y ≤ j | fun)] = 
αj −0.384 (fun). OR = e(−0.384) = 0.681, indicated 
that the odds of being at or below a particular 
proficiency level relative to beyond that level 
decreased by a factor of 0.681 with one unit 
increase in the frequency of using computers for 
fun. In other words, a higher frequency of using 
computers for fun was related to the likelihood 
of being in a higher proficiency level. To 
estimate the probability of being beyond a 
category of mathematics proficiency, which is 
the complement of the probability of being at or 
below a category, it is only necessary to 
exponentiate 0.384; this results in OR = 1.468, 
indicating that the odds of being beyond a 
proficiency level was 1.468 time greater with 
one unit increase in the frequency of using 
computers for fun. 
 
Full Proportional Odds Model with Three 
Predictor Variables 

Next, the full PO model with all three 
predictor variables was fitted. Table 2 provides 
the results of the full model. The log likelihood 
ratio Chi-Square test, LR χ2

(3) = 1391.45, p < 
0.001, indicated that the full model with three 
predictor provided a better fit than the null 
model with no independent variables. The 
likelihood ratio R2

L = 0.032 was larger than that 
of the single-variable model, but was still small. 
Compared with the single-variable model 
(3.020), the AIC statistic indicated that the full-
model fitted the data slightly better (2.992). 

The logit effects of all three predictors 
on mathematics proficiency were significant. 
Similar to the single variable PO model, the 
estimated logit regression coefficient for using 
computers for fun (fun), β = 0.314, z = 22.44, p 
< 0.001; the logit coefficient for using 
computers for school work (schoolwk), β = 
0.307, z = 19.815, p < 0.001; and finally, for 
using computers to learn on their own (learn), β 
= −0.072, z = −5.295, p < 0.001. The predictors, 
using computers for fun and using computers for 
school work, were positively associated with the 
odds of being beyond a proficiency level. In 
terms of odds ratio (OR), the odds of being 
beyond a proficiency level were 1.369 times 
greater with one unit increase in the frequency 
of using computers for fun, and 1.360 times 
greater with one unit increase in the frequency 
of using computers for school work. For every 
one unit increase in using computers to learn on 
their own, however, the odds of being beyond a 
particular category decreased by a factor of 
0.931 (OR = 0.931). 

The full model also estimated five 
cutpoints, which were used to differentiate 
adjacent categories of the mathematics 
proficiency. α1 = −1.022, which was the cutpoint 
for the cumulative logit model for Y > 0; α2 was 
the cutpoint for the cumulative logit model for 
Y > 1; the final α5 was used as the cutpoint for 
the logit model when Y > 4. 
 
Brant Test of the Proportional Odds Assumption 

The Brant test of the PO assumption was 
examined using the brant command of the Stata 
SPost (Long & Freese, 2006) routines. Stata 
Brant test provided results of a series of separate 
binary logistic regression across different 
category comparisons, univariate Brant test 
results for each predictor and the omnibus test 
for the overall model. Table 3 shows five (j−1) 
associated binary logistic regression models for 
the full PO model, where each split compares Y 
> cat. j to Y≤ cat. j because data were 
dichotomized according to probability 
comparisons. Examining the logit coefficient of 
all three variables across five logistic regression 
models, it is evident that the effect of using 
computers for fun was similar across these 
models. The effect of using computers for 
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school work was similar across the first three 
models but it increased from model 3 to 5. The 
logit coefficient in model 5 was almost double 
that observed in model 1. The effect of using 
computers to learn on their own was close 
among the first four logistic regression models, 
however, the direction of this effect changed in 
model 5. Visual examination provided only 
preliminary results of whether the parallel 
effects assumption was tenable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To test the PO assumptions, the Brant 
test provided the results for the overall model 
and each predictor. Table 4 presents χ2 tests and 
p values for the full PO model and separate 
variables. The omnibus Brant test for the full 
model, χ2

12 = 29.59, p = 0.003, indicates that the 
proportional odds assumption for the full model 
was violated. To identify which predictor 
variables violated the assumption, separate Brant 
tests were examined for each predictor variable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Results of the Single-Variable PO Model and the Full PO Model 

 Single-Variable Model Full Model 

Variable b (se(b)) OR b (se(b)) OR 

α1 -1.488  -1.022  

α 2 .627  1.20  

α 3 1.571  2.082  

α 4 2.900  3.437  

α 5 6.475  7.033  

fun .384** 1.468 .314** 1.369 

schoolwk   .307** 1.360 

learn   -.072** .931 

LR R2 .023 .032 

Brant Test 
(Omnibus Test) 

χ2
4 = 5.14 χ 2

12 = 29.59 ** 

Model Fit χ 2
1 = 992.52** χ 2

3 = 1391.45** 

* p< 0.05; **p< 0.01 

 
Table 3: A Series (j−1) of Associated Binary Logistic Regression Models for the Full PO Model, 

Each Split Compares Y > cat. j to Y≤ cat. j 

 Y > 0 Y > 1 Y > 2 Y > 3 Y > 4 
Brant Test 

p Value 

Variable Logit (b) Logit (b) Logit (b) Logit (b) Logit (b)  

Constant 1.00 -1.091 -2.014 -3.485 -8.523  

fun .357 .327 .316 .285 .316 .328 

schoolwk .286 .278 .293 .351 .492 .02* 

learn -.094 -.067 -.081 -.068 .144 .094 

* p< 0.05; **p< 0.01 
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Results revealed that the univariate Brant tests 
for the PO assumption were upheld for using 
computers for fun and using computers to learn 
on their own. Conversely, the Brant test was 
violated for using computers for school work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results of the Generalized Ordinal Logistic 
Regression Model Using Stata gologit 

When the PO assumption is not 
satisfied, Stata gologit (Fu, 1998) relaxes the 
proportionality assumption by allowing the 
logits effects of predictor variables to vary 
across cutpoints, which dichotomize the 
underlying proficiency outcome. Similar to a 
series of underlying binary logistic regression 
models where the data were dichotomized across 
different categories, the effects of the predictor 
variables estimated by the generalized ordinal 
logistic regression model could vary freely.  

Table 5 and Figure 1 show the results of 
the generalized ordinal model. The logit effects 
and corresponding odds ratios (OR) of all three 
variables were different across all five models 
comparing probabilities of being beyond 
category j versus at or below that category. For 
example, the odds ratios for using computers for 
fun across five comparisons were 1.428, 1.385, 
1.368, 1.322 and 1.314, respectively. They were 
similar because the equal slopes assumption test 
was tenable for this predictor variable. After 
relaxing the PO assumption, Stata gologit 
estimated 12 more parameters in the generalized 
ordinal logistic regression model than the full 
PO model by Stata ologit. 
 

Results of the Generalized Ordinal Logistic 
Regression Model Using gologit2 

Stata gologit2 (Williams, 2006) is an 
extension of gologit (Fu, 1998), and can estimate 
various types of generalized models, including 
the partial proportional odds model (PPO), the 
PO model and the binary logistic regression 
model. Although Stata gologit2 allows the 
effects of all predictor variables to vary even 
when some violate the PO assumption, it can 
relax the PO assumption and put equal-slope 
constraints on those variables whose effects are 
constant across cutpoints: The model is then 
referred to as the PPO.  

Table 6 and Figure 2 show the results of 
the generalized ordinal logistic regression model 
or the PPO model using gologit2. Because only 
one predictor variable, using computers for 
school work, violated the PO assumption, the 
other two variables, using computers for fun and 
using computers to learn on their own, were held 
constant in the PPO model. For example, the 
logit coefficients and odds ratios for using 
computers to learn on their own were the same 
across five comparisons (OR = 0.913). The OR 
for using computer for school work were 
different across each cutpoint, they were: 1.331, 
1.329, 1.342, 1.436 and 1.906, respectively. The 
PPO model estimated by Stata gologit2 was 
more parsimonious than the generalized ordinal 
logistic regression model by gologit because the 
former model estimated five fewer parameters 
than the latter. 

In terms of odds ratio, using computers 
for fun was positively associated with the odds 
of being above a particular mathematics 
proficiency level as opposed to being at or 
below that level (OR = 1.372); however, using 
computers to learn on their own had a negative 
effect on the odds of being above a particular 
proficiency level (OR = 0.93). Because the 
effect of using computers for school work was 
not invariant across five comparisons, separate 
interpretations were required. Using computers 
for school work was associated with the 
likelihood of being in a higher mathematics 
proficiency level. The effects became much 
stronger when mathematics proficiency level 
moved from low to high, further, the largest 
effect was identified among the final comparison 
(proficiency level 5 versus from 0 to 4). 

Table 4: Brant Tests of the PO Assumption for 
Each Predictor and the Overall Model 

Variable Test p Value 

fun χ2
4 = 4.62 .328 

schoolwk χ2
4 = 11.55 .021* 

learn χ2
4 = 7.93 .094 

All 
(Full-Model) χ2

12 = 29.59 .003** 

* p < 0.05; **p < 0.01 
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Conclusion 
This article reviewed the proportional odds 
model and demonstrated the use of generalized 
ordinal regression models to estimate 
mathematics proficiency. The results of fitting 
the PO models and the generalized ordinal 
logistic regression models were interpreted. In 
addition, two different methods used to estimate 
the generalized ordinal models by Williams 
(2006) and Fu (1998) were illustrated and 
compared. 

Compared to the PO model, the 
generalized ordinal logistic model provides a 
better solution when the proportional odds 
assumption is violated. The effects of the 
predictors which meet the PO assumption can be 
interpreted in the same way as that in the PO 
model. The effects of explanatory variables that 
violate the PO assumption must be interpreted 
separately    at    each   comparison   (i.e.,   being 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

beyond a particular category versus at or below 
that category), and need more attention. 

When the proportional odds assumption 
is untenable, the generalized ordinal logistic 
model proposed by Fu (1998) may be used for 
preliminary analysis. Williams’ model (2006) is 
a more powerful extension of that of Fu (1998) 
in that it incorporated and expanded Fu’s 
procedure. Numerous different types of 
generalized ordinal models can be estimated by 
Williams’ gologit2 procedure, including the 
commonly used partial proportional odds model 
(PPO), which only relaxes the PO assumption 
when it is violated by one or a few predictors, 
but holds constant for those which have equal 
effects. Although not provided herein, methods 
of model diagnostics for ordinal logistic 
regression models were introduced by 
O’Connell and Liu (2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Results of the Generalized Ordinal Logit Model Using Stata gologit 
(Y > cat. j vs. Y ≤ cat. j) 

 Y > 0 vs. Y ≤ 0 Y > 1 vs. Y ≤ 1 Y > 2 vs. Y ≤ 2 Y > 3 vs. Y ≤ 3 Y > 4 vs. Y ≤ 4 

Variable 
b 

(se(b)) 
OR 

b 
(se(b)) 

OR 
b 

(se(b)) 
OR 

b 
(se(b)) 

OR 
b 

(se(b)) 
OR 

fun 
.356 

(.030)** 
1.428 

.326 
(.016)**

1.385
.313 

(.016)**
1.368

.279 
(.022)**

1.322 
.273 

(.129)* 
1.314 

schoolwk 
.276 

(.037)** 
1.318 

.277 
(.019)**

1.319
.299 

(.018)**
1.348

.370 
(.023)**

1.447 
.540 

(.116)**
1.716 

learn 
-.091 

(.035)** 
.913 

-.067 
(.017)**

.935 
-.081 

(.016)**
.922 

-.066 
(.019)**

.936 
.180 

(.093) 
1.197 

 α1= 1.022 α2 = -1.083 α3 =-2.024 α4 =-3.520 α5= -8.642 

LR R2 0.033 

Model 
Fit 

χ2
15 = 1429.62 

* p < 0.05; **p < 0.01 



GENERALIZED ORDINAL LOGISTIC REGRESSION MODELS 

250 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Generalized Ordinal Logistic Model Using Stata gologit 
 

gologit Profmath BYS45A_REC BYS45B_REC BYS45C_REC 

Iteration 0:  Log Likelihood = -21943.368 

Iteration 1:  Log Likelihood = -21237.489 

Iteration 2:  Log Likelihood = -21228.561 

Iteration 3:  Log Likelihood = -21228.555 

Iteration 4:  Log Likelihood = -21228.555 

 

Generalized Ordered Logit Estimates                 Number of obs    =   14207 

                                                    Model chi2(15)   = 1429.62 

                                                    Prob > chi2      =  0.0000 

Log Likelihood = -21228.5552037                     Pseudo R2        =  0.0326 

 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

mleq1        | 

  BYS45A_REC |    .356211   .0303759    11.73   0.000     .2966753    .4157468 

  BYS45B_REC |   .2763788   .0372811     7.41   0.000     .2033091    .3494484 

  BYS45C_REC |  -.0914208   .0350232    -2.61   0.009    -.1600651   -.0227765 

       _cons |   1.021761   .1098978     9.30   0.000     .8063653    1.237157 

-------------+---------------------------------------------------------------- 

mleq2        | 

  BYS45A_REC |   .3257729     .01639    19.88   0.000     .2936492    .3578967 

  BYS45B_REC |   .2768884   .0189779    14.59   0.000     .2396925    .3140843 

  BYS45C_REC |  -.0673821   .0171035    -3.94   0.000    -.1009042   -.0338599 

       _cons |  -1.082717   .0676152   -16.01   0.000     -1.21524   -.9501931 

-------------+---------------------------------------------------------------- 

mleq3        | 

  BYS45A_REC |   .3134542   .0163592    19.16   0.000     .2813907    .3455177 

  BYS45B_REC |   .2989051   .0178569    16.74   0.000     .2639063     .333904 

  BYS45C_REC |   -.081139   .0155428    -5.22   0.000    -.1116022   -.0506758 

       _cons |   -2.02405   .0716248   -28.26   0.000    -2.164432   -1.883668 

-------------+---------------------------------------------------------------- 

mleq4        | 

  BYS45A_REC |   .2787754   .0223384    12.48   0.000      .234993    .3225578 

  BYS45B_REC |   .3697106   .0227828    16.23   0.000     .3250571    .4143642 

  BYS45C_REC |  -.0657926    .018757    -3.51   0.000    -.1025556   -.0290296 

       _cons |  -3.530265   .1037457   -34.03   0.000    -3.733603   -3.326927 

-------------+---------------------------------------------------------------- 

mleq5        | 

  BYS45A_REC |     .27337   .1291764     2.12   0.034     .0201889    .5265512 

  BYS45B_REC |   .5401159   .1155738     4.67   0.000     .3135954    .7666363 

  BYS45C_REC |    .180175   .0928936     1.94   0.052    -.0018932    .3622431 

       _cons |  -8.642421   .6316348   -13.68   0.000    -9.880403   -7.404439 

------------------------------------------------------------------------------ 
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Compared to SAS, fitting generalized 
ordinal regression models using Stata is more 
straightforward because Stata does not require 
data restructuring and the results are easier to 
interpret (SAS needs an interaction term 
between the predictor with the violated effect 
and ordinal categories). The latest VGAM 
package (v. 0.8.3) for R (Yee, 2010, 2011) 
includes the functions of fitting the non-
proportional odds and the partial proportional 
odds models, which is similar to Stata gologit 
and gologit2. Although different statistical 
packages may have advantages of fitting these 
models, the choice is left to researchers; this 
study does not imply an overall preference of 
one over another. 

In educational research, the use of 
ordinal categorical data is common, thus, it is 
crucial for researchers to determine the most 
appropriate      models      to     analyze     ordinal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

categorical dependent variables. It is hoped that 
this demonstration clarifies some of the issues 
that researchers must consider in selecting 
appropriate statistical models for analyzing 
ordinal data when the PO assumption is violated. 
 
 
 

Notes 
Previous versions of this article were presented 
at the Modern Modeling Methods Conference in 
Storrs, CT (May, 2011), the 76th Annual and the 
17th International Meeting of Psychometric 
Society (IMPS) in Hong Kong (July, 2011), the 
Northeastern Educational Research Association 
Annual Conference in Rocky Hill, CT (October, 
2011), and the Annual Meeting of American 
Educational Research Association (AERA), 
Vancouver, British Columbia, Canada (April, 
2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Results of the Generalized Ordinal Logit Model/Partial Proportional Odds Model Using Stata 
gologit2 (Y > cat. j vs. Y ≤ cat. j) 

 Y > 0 vs. Y ≤ 0 Y > 1 vs. Y ≤ 1 Y > 2 vs. Y ≤ 2 Y > 3 vs. Y ≤ 3 Y > 4 vs. Y ≤ 4 

Variable 
b 

(se(b)) 
OR 

b 
(se(b)) 

OR 
b 

(se(b)) 
OR 

b 
(se(b)) 

OR 
b 

(se(b)) 
OR 

fun 
.317 

(.014)** 
1.373 

.317 
(.014)**

1.373
.317 

(.014)**
1.373

.317 
(.014)**

1.373 
.317 

(.014)**
1.373 

schoolwk 
.286 

(.032)** 
1.331 

.284 
(.018)**

1.329
.294 

(.017)**
1.342

.362 
(.022)**

1.436 
.645 

(.116)**
1.906 

learn 
-.072 

(.014)** 
.931 

-.072 
(.014)**

.931 
-.072 

(.014)**
.931 

-.072 
(.014)**

.931 
-.072 

(.014)**
.931 

 α 1= 1.073 α 2 = -1.060 α 3 =-2.053 α 4 =-3.650 α 5= -8.357 

LR R2 .032 

Model 
Fit 

χ2
7 = 1414.05 

* p < 0.05; **p < 0.01 
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Figure 2: Generalized Ordinal Logistic Model Using Stata gologit2 
 

. gologit2 Profmath BYS45A_REC BYS45B_REC BYS45C_REC, pl(BYS45A_REC BYS45C_REC) 

>  lrforce 

 

Generalized Ordered Logit Estimates               Number of obs   =      14207 

                                                  LR chi2(7)      =    1414.05 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -21236.343                       Pseudo R2       =     0.0322 

 

 ( 1)  [0]BYS45A_REC - [1]BYS45A_REC = 0 

 ( 2)  [0]BYS45C_REC - [1]BYS45C_REC = 0 

 ( 3)  [1]BYS45A_REC - [2]BYS45A_REC = 0 

 ( 4)  [1]BYS45C_REC - [2]BYS45C_REC = 0 

 ( 5)  [2]BYS45A_REC - [3]BYS45A_REC = 0 

 ( 6)  [2]BYS45C_REC - [3]BYS45C_REC = 0 

 ( 7)  [3]BYS45A_REC - [4]BYS45A_REC = 0 

 ( 8)  [3]BYS45C_REC - [4]BYS45C_REC = 0 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

0            | 

  BYS45A_REC |    .316712   .0140561    22.53   0.000     .2891625    .3442615 

  BYS45B_REC |   .2857963   .0322509     8.86   0.000     .2225857    .3490069 

  BYS45C_REC |  -.0718391   .0135787    -5.29   0.000    -.0984529   -.0452254 

       _cons |   1.073406   .0995634    10.78   0.000     .8782656    1.268547 

-------------+---------------------------------------------------------------- 

1            | 

  BYS45A_REC |    .316712   .0140561    22.53   0.000     .2891625    .3442615 

  BYS45B_REC |   .2841401   .0181596    15.65   0.000     .2485479    .3197323 

  BYS45C_REC |  -.0718391   .0135787    -5.29   0.000    -.0984529   -.0452254 

       _cons |  -1.060135   .0650042   -16.31   0.000    -1.187541    -.932729 

-------------+---------------------------------------------------------------- 

2            | 

  BYS45A_REC |    .316712   .0140561    22.53   0.000     .2891625    .3442615 

  BYS45B_REC |   .2938264   .0173751    16.91   0.000     .2597717     .327881 

  BYS45C_REC |  -.0718391   .0135787    -5.29   0.000    -.0984529   -.0452254 

       _cons |  -2.052606   .0673611   -30.47   0.000    -2.184631   -1.920581 

-------------+---------------------------------------------------------------- 

3            | 

  BYS45A_REC |    .316712   .0140561    22.53   0.000     .2891625    .3442615 

  BYS45B_REC |   .3620197   .0216704    16.71   0.000     .3195466    .4044928 

  BYS45C_REC |  -.0718391   .0135787    -5.29   0.000    -.0984529   -.0452254 

       _cons |  -3.650049   .0877478   -41.60   0.000    -3.822031   -3.478066 

-------------+---------------------------------------------------------------- 

4            | 

  BYS45A_REC |    .316712   .0140561    22.53   0.000     .2891625    .3442615 

  BYS45B_REC |   .6451267   .1084022     5.95   0.000     .4326623    .8575912 

  BYS45C_REC |  -.0718391   .0135787    -5.29   0.000    -.0984529   -.0452254 

       _cons |  -8.357108   .4475284   -18.67   0.000    -9.234247   -7.479968 

------------------------------------------------------------------------------ 
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