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The Length-Biased Lognormal Distribution and Its Application in the 
Analysis of Data from Oil Field Exploration Studies 

 
Makarand V. Ratnaparkhi Uttara V. Naik-Nimbalkar 

Wright State University, 
Dayton, OH 

Pune University, 
Pune, India 

 
 
The length-biased version of the lognormal distribution and related estimation problems are considered 
and sized-biased data arising in the exploration of oil fields is analyzed. The properties of the estimators 
are studied using simulations and the use of sample mode as an estimate of the lognormal parameter is 
discussed. 
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Introduction 
The term length-biased data refers to sample 
data where the probability of recording an 
observation depends on the magnitude, for 
example x, of the observation. In particular, the 
larger the observation, the higher the probability 
of observing the related event and, hence, 
including the corresponding observation in the 
sample. Length-biased data occur in many 
research areas and in fields of application, such 
as, medical science, ecology and geological 
sciences. Further, the term size-biased data is 
used to describe the situation where the 
probability of inclusion of an observation 
depends on a certain function: w(x) > 0 of x.  
The length-biased version of the original 
probability density function (pdf.) that is of 
interest as a model is considered for modeling 
length-biased data. The lognormal distribution 
(LN) with parameters ( , )μ σ  is known to be a 
useful model in many applications. Therefore, it 
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is natural to expect the applications of length-
biased lognormal distributions (LBLN) in some 
data analysis problems. For example, the 
lognormal distribution is commonly used in the 
analysis of data in geological studies, and 
Meisner and Demirmen (1981) observed that 
size-biased data occur in oil-field exploration 
studies. Yan (2004) considered the presence of 
length-biasedness in data on incubation periods 
arising in the SARS epidemic. Among many 
probability models that are considered for the 
analysis of these data, the length-biased 
lognormal distribution is one such model. Quin, 
et al. (2002) considered such a distribution for 
data on Breslow thickness in cancer research.  

With respect to the properties of the 
length-biased lognormal distribution, in general, 
if ( ; )f x θ is the original pdf of a non-negative 

random variable X  with ( )E X <∞ , then its 
length-biased version is given by  
 

( ; *) ( ; ) / ( ), 0g x x f x E X xθ θ= > , 
 
where θ ε Ω is a scalar or a vector of the 
parameters of the original distribution of X  and 
θ  ∗  ε Ω∗ denotes a scalar or a vector of the 
parameters of the corresponding length-biased 
version. In some cases θ  ∗  is the same as θ. In 
practical situations, the interest is in estimating
θ , the parameter(s) of the original distribution 
using length-biased data. However, due to the 
nature of the available data (length-biased data) 
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the experimenter has no other choice but to use 
the length-biased version of the original 
distribution. Thus, there is a need to study the 
properties of the θ  estimator with respect to g(x; 
θ∗), but such an estimation problem is not 
straightforward for the lognormal distribution. 
 

Methodology 
The random variable X is said to have a 
lognormal distribution with parameters (μ, 
σ) (denoted by LN (μ, σ)), if its pdf is 
 

2
2

1 1
( ; , ) exp[ (log ) ],  

22
f x x

x
μ σ μ

σσ π
= − −

(1) 
where 

0 , , 0.x μ σ> − ∞ < < ∞ >  
 
Length-Biased Lognormal Distribution-
Definition and Properties 

Using the definition of length-biased 
distribution, the pdf of the length-biased 
lognormal distribution (denoted by LBLN (μ, 
σ)) is given by 
 

( )

( )( )2
2

2

: ,

1 1
exp log

22

g x

x
x

μ σ

μ σ
σσ π

=

 − − +  

 

(2) 
 
where 

>0,  ,  .x − ∞ < μ < ∞ σ > α  
 
For convenience (2) will be expressed as  
 

2
2

1 1
( ; , ) exp[ (log *) ],

22
g x x

x
μ σ μ

σσ π
= − −

 (2a)  
where 
 

20, * ,  and 0.x μ μ σ μ σ> = + −∞ < < ∞ >

 
 
The properties of the pdfs (1) and (2) are 
presented in Table 1. The mode of LBLN shown 
in Table 1 depends only on μ and not on σ2 as 
for  LN.  From  Table  2,   it   is   clear   that   the  

structure of the Fisher information for LBLN is 
not the same; hence the related results will not 
be the same when LBLN is used instead of LN 
in data analysis. 
 
Parameter Spaces of LN (μ , σ)  and LBLN (μ , 
σ) 

In practical situations, for the analysis of 
length-biased data, the LN (μ , σ) is replaced by 
LBLN (μ , σ) . Further, examination of the pdfs 
for (1), (2) and (2a) shows that, although the 
listed pdfs seem to have the same form, there 
exists an in-built relationship between the 
parameters (μ , σ) of LBLN (μ , σ). Thus, 
studying the implications of this relationship is 
necessary for the interpretation and estimation of 
parameters. A brief discussion related to the 
parameter spaces of (μ , σ) for these two 
distributions is useful for identifying the 
underlying problems in data analysis. 

Let Ω1 and Ω2 denote the respective 
parameters of LN (μ , σ) and LBLN (μ , σ). 
Then, 
 

1 {( , )| , 0}μ σ μ σΩ = − ∞ < < ∞ >     (3) 

and 
 

2

2

{( , )| *

, 0}.

μ σ μ
μ σ σ

Ω = − ∞ <

= + <∞ >
         (4) 

 
From (3) and (4) it is clear that if the LBLN (μ , 
σ) is used as a model with μ∗ = 0, then it will 
represent only those members of the original LN 

(μ , σ) model for which 2*μ μ σ= + = 0, i.e. 
2μ σ= − . A similar restriction will arise for 

other values, μ∗ = c for example, of μ*, where c 
is some constant. Thus, there is a built-in 
restriction on the choice of the LBLN 
distribution with respect to the selection of the 
appropriate model for representing the original 
LN. 
 
Maximum Likelihood Estimation (MLE) 

Let 1 2( , ,. . . )nX X X be a random 

sample from a LBLN (μ , σ) distribution. The 
log-likelihood function l(μ, σ) is then given as 
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2 2
2

( , ) log log

1
              log 2 (log ) .

i

i

l n x n

x

μ σ σ

π μ σ
σ

= − −

− − −




 

 (5) 
 

The solutions to likelihood equations 0
l
μ

∂ =
∂

 

and 0
l
σ

∂ =
∂

 give the MLEs as: 

 
2ˆ ˆ( log / )ix nμ σ= −  

 
and 

2 2 21
ˆ [ (log ) ( log ) / ]i ix x n

n
σ = −  . 

(6) 
 

To study the properties of 2ˆ ˆ( , )μ σ  the 
transformation Y = log X is considered in (2). It 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is known that Y ~ Normal (μ +σ2 , σ). This leads 
to the following estimates corresponding to (6): 
 

2 ,ˆ Y cSμ = +  
 

where ( 1) / ,c n n= − −  2 2 ,
( 1)ˆ =
n S

n
σ −

 and 

for the sample 
 

log , 1,2,..., , i
i i

Y
n

Y X i n Y= = =  

and 
2

2 ( )
.

( 1)
iY Y
n

S −
−

=                       (7) 

 
From (7), it is clear that μ̂  is a biased estimator 

of μ. Further, the distribution of μ̂  cannot be 
expressed in closed form. Thus, the 
distributional properties of μ̂ , unlike in the case 
of the original LN distribution, are not readily 

Table 1: Properties of LN (μ, σ)  and LBLN (μ, σ )
 

Property LN (μ, σ) LBLN(μ, σ) 

Mean 2exp( / 2)μ σ+  2exp( * / 2)μ σ+  

Median exp( )μ  exp( *)μ  

Mode 2exp( )μ σ−  2exp( * )μ σ− = exp( )μ  

Variance 2 2exp(2 ){exp( ) 1}μ σ σ+ − −  2 2exp(2 * ){exp( ) 1}μ σ σ+ − −  

 
 

Table 2: The Fisher Information Matrix of LN (μ, σ) and LBLN (μ, σ) 
 

Fisher 
Information 

Matrix 

LN(μ, σ) LBLN(μ, σ) 

I1=
2

2

1/ 0

0 2 /

σ
σ

 
 
 

 I2=
2

2

1/ 2 /

2 / 4 2 /

σ σ
σ σ

 
 + 
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available for statistical inference. Therefore, 
simulations are considered in order to 
understand the properties of the above defined 
estimator of μ. In particular, finding the 
confidence interval (C.I.) for μ  is not 
straightforward. Hence, the bootstrap method for 
constructing the confidence interval for μ was 
considered to obtain the results. 
 

Results 
To illustrate the use of the methodology 
introduced above, data from oil field 
explorations (Meisner & Demirmen, 1981) was 
analyzed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MLE of the Parameters (μ, σ) of LBLN 

The MLE’s of μ and σ were obtained 
(see Table 4) using the formulas in (7). The 
amount of bias in the estimate of μ  can also be 
estimated using (7). 
 
 
 
 
 
 
 
 
 

Simulations for Studying the Properties of μ̂  

As noted, the distribution of μ̂  is not 
available in closed form (see equation (7)); 
therefore, to understand the properties of μ̂  
simulations were conducted. In particular, the 
amount of bias in the estimates of values of μ is 
of interest. For these simulations, different 
values of n and (μ, σ)  were used. The 
simulation results for n = 20 and certain values 
of (μ, σ) are shown in Table 5. Results obtained 
were expected from (7), and show that the 
absolute value of the bias in the estimate μ̂  of μ 

increases as σ  increases. Results from the 
simulations for other values of n were not 
different from those recorded above and 
therefore for brevity are not included. 
 
Estimation of μ Based on the Mode of LBLN 
(μ, σ) 

The mode M of the LBLN (μ, 
σ) distribution from Table 1 is given by M = 
exp(μ ) which is free of σ2 and, hence, leads to 
the formula μ = ln(M). This expression can be 
employed to estimate μ using the sample mode. 
Note that such estimate of μ, unlike the MLE of 
μ, does not depend on the estimate of σ 2.  

For data presented in Table 3, the 
estimate of μ using the sample mode is 2.1747. 
This estimate is comparable with the MLE 
estimate of 2.0748 (see Table 4); however, 
because the sample mode is not known to be an 
efficient estimator of the location parameter it is 
not considered further. 
 
Bootstrap Estimation of μ 

As noted previously, because the 
distribution of μ̂  is not available in closed form, 
the nonparametric bootstrap method was used to 
estimate μ  and its related confidence interval; 
results are shown in Table 6. Based on these 
results, the 95% and 90% C.I.s can be 
constructed. 

The purpose of the above computations 
is for illustration, not for comparison of the 
results obtained herein with those obtained by 
Meisner and Demirmen (1981). However, the 
definition of the size-biased (also known as the 
weighted distribution) version of the LN (μ, σ) 

Table 3: Sizes of Oil Fields Data 
(X = Field Size, Oil (106 BBLS), n = 58) 

 

28 26 775 114 31 

337 41 113 1328 21 

13 455 89 482 70 

215 62 58 6.9 154 

177 43 33 178 15 

22 11 8.1 35 25 

170 19 56 42 335 

21 50 181 93 75 

8.8 29 450 5.9 8.8 

49 100 10 8.8 17 

12 125 20 8.8 8.8 

6.9 25 100   
 

Table 4: Estimates of μ and σ
 

Parameter Estimate Standard Error 

μ 2.0748 0.3729 

σ 1.3317 0.1236 

 



RATNAPARKHI & NAIK-NIMBALKAR 
 

259 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
given, and also considered by Meisner and 
Demirmen, may be useful to some readers. 

Let ~ ( ; ).X f x θ  If ( ) > 0w x  is a 

function of x such that [ ( )] < ,E w X ∞  then the 
weighted distribution of X is defined by the pdf 
 

( ; ) ( ) ( ; ) / [ ( )],g x w x f x E w Xθ θ=  
(8) 

 
where w(x) is referred to as the weight function 
and θ is a scalar or a vector of parameters. 

Meisner and Demirmen (1981) assumed 
that the original distribution of the size of the oil 
field, denoted by X, is LN (μ, σ). Further, in the 
exploration of the oil field, the probability of 
discovering an oil field depends on the size of 
the oil field. Therefore, for modeling the 
collected sample data of the oil fields Meisner 
and Demirmen considered the weighted 
lognormal (WLN) with weight function 

( ) .w x xβ=  Using (8) , the distribution of 

interest, the WLN (μ, σ) with the pdf is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

2 2
2

( ; , )

1 1
exp[ (log ( )) ],

22

g x

x
x

μ σ

μ βσ
σσ π

=

− − +
 

(9) 
 
where 

0, , 0x μ σ> −∞< <∞ >  
 
and β may have a known or unknown value. 

Meisner and Demirmen (1981) 
discussed the possible values of β. In particular, 
they noted that, because the sizes of oil fields 
change with the exploration period, the values of 
β  could be in a two-sided neighborhood of the 
value 1. Therefore, this illustration, considering 
β = 1, that is assuming the sizes of the oil fields 
have the LBLN (μ, σ)  distribution given by 
(2.2), is justified. Table 7 shows the estimates of 
μ  for the other values of β ; Meisner and 
Demirmen considered β  as a random variable 
and developed a Bayesian approach for the 
analysis of these data. To construct the estimates 

Table 5: Simulation Results for the Properties of μ̂  (# of simulations = 5,000) 
 

μ σ 
Mean

ˆof μ
 MSE μ σ 

Mean

ˆof μ
MSE μ σ 

Mean

ˆof μ
MSE 

-2 0.5 -1.98 0.0186 0 0.5 0.0122 0.0186 1 0.5 1.0111 0.0189

-2 1.0 -1.94 0.1416 0 1.0 0.0548 0.1486 1 1.0 1.0559 0.1417

-2 1.5 -1.89 0.6199 0 1.5 0.1187 0.6086 1 1.5 1.1146 0.5893

-2 2.0 -1.79 1.7518 0 2.0 0.2132 1.7597 1 2.0 1.2008 1.7003

 
 

Table 6: Bootstrap Estimate of μ  for the Oil Fields Data 
(Number of Replications: 3,000) 

 

Summary Statistics Observed Bias Mean SE 

Parameters 2.075 0.03512 2.11 0.265 

BCa Percentiles 2.5% 5% 95% 97.5% 

Parameters 1.5028 1.5857 2.4702 2.5518 
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in Table 7, the modified version of (7) for 
accommodating β  was used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the estimate 2.1747 of μ  is acceptable, then 
considering that the mode of LBLN (μ, σ) is a 
function of μ  alone, it can used for finding a 
value of β (a sort of ad hoc estimate of β) by 
extending Table 5 to include more values of β 
than may be necessary. In particular, using such 
a table it can be shown that if β = 0.94 then μ̂  = 
2.17 (approximately), which is close to the 
above estimate 2.1747.  

Note that, in view of the unstable 
behavior of the sample mode, such an estimate 
should be carefully considered. However, in this 
analysis, observations show that the assumption 
of β  = 1 (which is close to the value of β = 
0.94) used for modeling the data from Table 4 
has some relevance. Further, it should be noted 
that other more robust methods exist for locating 
the sample mode (Bickel & Fruthworth, 2006). 
The traditional method was used in this study for 
demonstration purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
The length-biased lognormal distribution was 
introduced along with an application in the 
analysis of data from oil field explorations. The 
maximum likelihood estimation of the 
parameters of the length-biased lognormal was 
discussed briefly. In particular, the properties of 
the estimator of μ are not tractable. Therefore, 
the related properties were studied using 
simulations. Results presented regarding the 
modal value of the length-biased lognormal 
show that the estimation of μ using the sample 
mode is straightforward, but the efficiency of 
such an estimator is doubtful. The concepts of 
weighted lognormal distribution as a 
generalization of the length-biased lognormal 
and related modeling problems were also briefly 
mentioned. 
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Table 7: Changes in the Estimate of μ  
for Values of β 

 

β 0.9 1.0 1.1 

μ Estimate 2.25 2.07 1.89 
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