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The Weighted Hellinger Distance for Kernel Distribution 
Estimator of Function of Observations 

 
Abdel-Razzaq Mugdadi 

Jordan University of Science and Technology, 
Irbid, Jordan 

 
 
The asymptotic mean weighted Hellinger distance (AMWHD) is derived for the kernel distribution 
estimator of a function of observations. In addition, the AMWHD is compared with the asymptotic mean 
integrated square error (AMISE) of the estimator. A completely data based method is proposed to select 
the bandwidth in the estimator using the mean weighted Hellinger distance (MWHD). 
 
Key words: Kernel estimation, distribution function estimation, bandwidth, Hellinger distance, mean 

square error, function of random variables. 
 
 

Introduction 
Given a random sample nXXX ,...,, 21  from a 

distribution )(xF  with unknown density 

function )(xf , the kernel density estimator 

(Rosenblatt, 1956) of )(xf  is given by 
 


=







 −=

n

i

i

b
Xxk

nb
xf

1

1
)(ˆ , 

 
where b  is the smoothing bandwidth and k  is a 

symmetric function satisfying  = 1)( dxxk . 

The kernel distribution function estimator 
(Nadaraya, 1964)    of    )(xF     is    given    by 
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where K  is the distribution function of the 

kernel k , ( ) ( )( )
x

K x k u du
−∞

=  , and b  is the 

bandwidth. 
Consider the function 

),...,,( 21 mXXXg  that depends on 1≥m  

observations. Assume that g  is a real value and 

is symmetric in its m  arguments. Frees (1994) 
proposed an estimate for the density function 

)(th  of random variable ),...,,( 21 mXXXg  

which is given by 
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where b  is the bandwidth, the sum extends over 
all niii m ≤<<<≤ ...1 21 , and (.)w  is a 

kernel function. If 1=m  and xxg =)( , then 

the estimator )(ˆ th  reduces to the estimator 

)(ˆ xf . 
 



ABDEL-RAZZAQ MUGDADI 
 

269 
 

The estimator )(ˆ th  has many 
applications in real life. For example, in spatial 
statistics g  can be the inter point distance 

between pairs of objects and in insurance g  can 

be the sum of m  claims (Frees, 1994; Ahmad & 
Fan, 2001; Mugdadi & Ahmad, 2004). 

Nadaraya (1964) and Mugdadi and 
Ghebregiorgis (2005) proposed a kernel 
distribution estimator of the distribution function 
of function of observations )(tH  as: 
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where 
∞−

=
x

dttwxW )()( , b  is the bandwidth 

and the sum extends over all 
niii m ≤<<<≤ ...1 21 . Theoretical and 

simulation analyses show that choice of kernel is 
not crucial for distribution function estimation in 
the case of independent and identically (i.i.d) 
random variables; the most important choice is 
that of bandwidth. A typical way to select the 
bandwidth is to minimize one error measure, and 
the most commonly used is the mean integrated 
square error (MISE) and its asymptotic 
(AMISE), where 
 

2ˆ ˆ( ( )) [ ( ) ( )] .MISE H t E H t H t dt= −  

 
Another criterion is the mean Hellinger distance 
(MHD), where 

1 1
22 2ˆ ˆ( ( )) [ ( ) ( )] .MHD H t E H t H t dt= −  

 
Kanzawaa (1993) discussed the relationship 
between the asymptotic mean Hellinger distance 

(AMHD) and the AMISE for )(ˆ xf , Ahmad and 
Mugdadi (2006) examined the relationship 
between asymptotic mean weighted Hellinger 
distance (AMWHD) and the AMISE for both 

)(ˆ xf  and )(ˆ xF , and Mugdadi (2004) studied 

the AMWHD for )(ˆ th . This investigation 

examines the relationship between the AMWHD 

and the AMISE for )(ˆ tH  and proposes a data 

method to select the bandwidth for )(ˆ tH  based 

on the AMWHD ( )ˆ ( )H t . 

 
The Asymptotic Mean Weighted Hellinger 
Distance 

One error criterion used to evaluate the 
estimator is the mean weighted Hellinger 
distance (MWHD) and its asymptotic 

(AMWHD), where MWHD ( )ˆ ( )H t  is defined 

by: 
1 1

22 2ˆ ˆ( ( )) [ ( ) ( )] ( ) .MWHD H t E H t H t H t dt= −  

 
It can be argued that 
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assuming that )()(ˆ tHtH ≈  results in: 
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Next, the ))(ˆ( tHAMWHD  is derived and 

compared with the ))(ˆ( tHAMISE . Mugdadi 
and Ghebregiorgis (2005) derived 

))(ˆ( tHAMISE  as: 
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where 



WEIGHTED HELLINGER DISTANCE FOR KERNEL DISTRIBUTION ESTIMATOR 

270 
 

= duuwuuWw )()(2)(ρ ,  

 

 −= dttHtHHT )](1)[()(   

and 

= dtthhR )()( 2 . 

 
Theorem 

If the fourth derivative of )(tH  exists, 
then 
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Proof 
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Using integration by parts and expanding 

)( butH −  in a 2nd order Taylor’s series about t  
results in: 
 

1 2

( , )

2 2
'

3 3 (3) 4 4 (4)

4

2 " 4
(4)

2 4

( , ,..., )1ˆ( ( ))

"( )
( ) ( )

2

( ) ( )
( )

6 24

( )

( )
( ) ( ) ( ) ( )

2 24

m

n m

t g X X XE H t E W
n b
m

b u H tH t buH t

b u H t b u H tw u du

o b

b H t bH t w w H tμ μ

 
 −  =      
  
  

 
− + 

 
 = − + 
 

+ 
 
 

≈ + +





 
therefore, 
 

2
2 2

4
(4)4

ˆ[ ( ) ( )]

( )
( ) "( ) ( )

2     
( )

( ) ( )
24

E H t H t dt

b wH t dt H t H t dt

b w H t H t dt

μ

μ

≈

 
+ 

 
 +  



 



 

 
If Z  is a random variable with a standard 
normal distribution, then 
 

))(ˆ())(ˆ()(ˆ tHVarZtHEtH +≈ . 

 
Mugdadi and Ghebregiorgis (2005) derived 

))(ˆ( tHVar , this is given by: 
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Under these conditions, the following corollaries 
can be proven. 
 
Corollary 1 
 

.
4

)(ˆ(
))(ˆ(

tHAMISEtHAMWHD ≈  

 
Similar to Powell and Stocker (1996), the 
optimal bandwidth to minimize the 

))(ˆ( tHAMWHD  is shown in corollary 2. 
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Corollary 2 
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Bandwidth Selection 

The choice of bandwidth is very 
important in the Kernal density estimator as well 
as in the Kernal distribution estimator. One of 
the simplest methods to select bandwidth is 
based on equation (2.8).  Assume that the data is 
from a normal distribution with mean equal to 

zero and variance 2
1σ . If 2s  is the variance of 

the data ),...,( 1 imi XXg  for all 

nii m ≤<<≤ ...1 1 , then 
34
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This shows that optb  depends only on the 

standard deviation and on the Kernel function. 
A completely different data based 

method is proposed to select the bandwidth for a 
Kernal distribution estimator of the function of 
observations. The method is based on 

minimizing the ))(ˆ( tHMWHD . The 

)(ˆ( tHMWHD  is defined as: 
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Minimizing ))(ˆ( tHMWHD  is therefore 

equivalent to minimizing ))(ˆ(1 tHMWHD , 
where, 
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Thus, ))(ˆ(1 tHMWHD  can be estimated as 

follows. Let )1(m  be a fixed choice of m  

variables and let )(AI  be the indicator function. 
Also, define 
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which is the distribution estimated based on a 
sample with )1(m  deleted. Thus, 

))(ˆ(1 tHMWHD  is estimated by 
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As noted, there are many applications for )(ˆ tH . 
One example, introduced by Free (1993), 
regards an insurance claims problem. Table 1 
shows total hospital charges (in dollars) in one 
Wisconsin (USA) hospital for females aged 30-
49 in the year 1989. 

Consider the case 2=m  and the 
function 2121 ),( XXXXg += . By 

minimizing ESTMWHD. , the bandwidth is 
determined to be 0.437. Figure 1 shows the 
kernel distribution function for ),( 21 XXg  
using data in Table 1. It is clear that the kernel 
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estimate is smooth and )(ˆ tH  is 0 when 0≤t  
because the sum of the charges should be 

positive; also, 1)(ˆlim =∞→ tHt . 
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Table 1: Total 1989 Hospital Charges (USD) 
for Females Aged 30-49 

 

2337 1765 1802 

2179 2467 2011 

2348 3609 2270 

4765 2141 3425 

3041 1850 3558 

2088 3191 2315 

2872 3020 1642 

1924 2473 5878 

2294 1898 2101 

2182 7787 2242 

2138 6169 5746 

 

Figure 1: Kernel Distribution Function for ),( 21 XXg  
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