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The Wilcoxon-Mann-Whitney test, as well as modern improvements, are based in part on an estimate of  
p = P(D < 0), where D = X−Y and X and Y are independent random variables; a common goal is to test 
H0: p = 0.5. This corresponds to testing H0: ξ0.5 , where ξ0.5 is the 0.5 quantile of the distribution of D. If 
the distributions associated with X and Y do not differ, then D has a symmetric distribution about zero. In 
particular, ξq + ξ1-q = 0 for any q ≤ 0.5, where ξq is the qth quantile. Methods aimed at testing H0: p = 0.5 
are generalized by suggesting a method for testing H0: ξq + ξ1-q = 0, q < 0.5 
 
Key words: Bootstrap methods, Harrell-Davis estimator, tests for symmetry, tied values, Well Elderly 

study. 
 
 

Introduction 
Consider two independent random variables, X 
and Y, let D = X−Y and let ߬d, ߬x and ߬y be the 
population medians of D, X and Y, respectively. 
It is known that, under general conditions, the 
Wilcoxon-Mann-Whitney (WMW) test does not 
test H0: ߬x =	߬y (Fung, 1980). The WMW test is 
based on an estimate of p = P(X < Y), but under 
general conditions it uses the wrong standard 
error, in contrast to more modern methods aimed 
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at correcting this problem (Cliff, 1996; Brunner  
Munzel, 2000; Newcombe, 2006a, 2006b). The 
explicit goal of these improvements is making 
inferences about p, which includes the common 
goal of testing 

H0: p = 0.5.                          (1) 
 
Moreover, it is known, and fairly evident, that 
testing (1) corresponds to testing 
 

H0: ߬d = 0.                           (2) 
 
Inferences about p and ߬d are important and 
useful, but a deeper understanding of how two 
independent groups compare would result by 
knowing something about the quantiles of the 
distribution of D. 
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For illustrative purposes, imagine that 
some experimental method is being compared to 
a control group and that D > 0 indicates that the 
experimental method is more effective than no 
treatment. If D has a skewed distribution, it is 
possible that p is approximately 0.5 and that 
testing (1) has relatively low power, yet there is 
a sense in which the experimental method is 
beneficial. Let ߦq be the qth quantile of D and 
assume, for example, that 4− = 0.25ߦ and 6 = 0.75ߦ. 
Thus, for randomly sampled observations from 
each group, there is a sense in which the 
experimental treatment outweighs no treatment. 
If there are no benefits, then D should have a 
symmetric distribution about zero. In particular, 
it should be the case that 
 

H0: ߦq + 1ߦ-q = 0                        (3) 
 
is true for any q ≤ 0.5; consequently, this article 
suggests a method for testing (3). 

Note that information about ߦq + 1ߦ-q for 
a range of q values provides a more detailed 
sense about the distribution of D compared to 
using a single measure of location. For example, 
a portion of the study conducted by Jackson, et 
al. (2009) dealt with assessing the extent a 
particular intervention strategy reduced 
depression in older adults. An issue is whether 
the efficacy of the intervention changes as an 
individual moves from the center of the 
distribution of D to the tails. For the Jackson, et 
al. (2009) study, an estimate of the 0.9 quantile 
is 27.6 and the estimate of the 0.1 quantile is 
−19.7. That is, the drop in depression, 27.6, as 
reflected by the 0.9 quantile, exceeds the 
increase in depression, as reflected by the 
estimate of the 0.1 quantile, −19.7. For the 0.4 
and 0.6 quantiles, the estimates are −1 and 5, 
again suggesting that intervention is useful, but 
the impact of intervention is less striking. If the 
distributions differ in terms of a measure of 
location only, it would be the case that ߦq + 1ߦ-q 
does not vary with q. 

For completeness, Wilcox and Erceg-
Hurn (in press) considered the case where X and 
Y are dependent with two goals. The first is to 
compare the quantiles of the marginal 
distributions and the other is to test (3) but with 
D corresponding to the usual paired differences. 

Note that this differs from the situation at hand. 
For dependent groups, the goal is to assess 
changes within a subject in terms of the 
quantiles of D; here, the goal is make inferences 
about the difference between two randomly 
sample participants. A crude description of the 
method by Wilcox and Erceg-Hurn is that it 
generalizes the sign test for dependent groups. 
The suggestion is that a similar generalization of 
the Wilcoxon-Mann-Whitney test might be of 
interest. (Note that control over the Type I error 
probability is a function of both q and the 
sample sizes.) It was found that conditions under 
which good control over the Type I error 
probability is achieved differ to some degree 
from those when comparing dependent groups. 
 
Description of the Proposed Method 

A variety of methods for estimating the 
qth quantile have been proposed, comparisons of 
which are reported by Parrish (1990), Sheather 
and Marron (1990) and Dielman, Lowry and 
Pfaffenberger (1994). The simplest approach is 
to estimate the qth quantile using a single order 
statistic. Another approach is to use an estimator 
based on a weighted average of two order 
statistics while other estimators are based on a 
weighted average of all the order statistics. 
Regarding the issue of which estimator is best, 
the only certainty is that no single estimator 
dominates in terms of efficiency. For example, 
the Harrell and Davis (1982) estimator has a 
smaller standard error than the usual median 
when sampling from a normal distribution or a 
distribution that has relatively light tails, but for 
sufficiently heavy-tailed distributions, the 
reverse is true (Wilcox, 2012, p. 87). 

Consider the special case where the goal 
is to estimate the population median. Currently 
all methods that are based in part on an estimate 
of the standard error of the usual sample median 
can perform poorly when tied values occur 
(Wilcox, 2006).  

There are two problems: The first is 
obtaining a reasonably accurate estimate of the 
standard error. Many estimators have been 
proposed, all of which can be highly inaccurate 
when there are tied values. The second general 
concern is that, when tied, values occur the usual 
sample median is not necessarily asymptotically 
normal. Wilcox (2012) illustrated this result 
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when the cardinality of a sample space is 
relatively small. To date, the only method 
known to perform reasonably well in 
simulations is a slight generalization of the 
standard percentile bootstrap method (Wilcox, 
2006). Thus, an obvious speculation is that when 
the goal is to make inferences about the 
quantiles of the distribution associated with D, 
the same percentile bootstrap method might 
perform well. However, simulations indicate that 
this is not necessarily the case. 

Let nj be the sample size for the jth group 
(j = 1, 2). Consider, for example, the situation 
where n1 = 20, n2 = 30 and observations are 
generated from a binomial distribution with 
probability of success 0.4 and when the sample 
space is 0(1)7. When testing at the 0.05 level, 
simulations indicate that the actual level is 
approximately 0.102. Due to the difficulty of not 
being able get a reasonably accurate estimate of 
the standard error when sampling from a discrete 
distribution, bootstrap methods based in part on 
an estimate of the standard error hold little 
promise. 

Here, the one method that performed 
well in simulations was based in part on the 
estimator derived by Harrell and Davis (1982) 
that estimates the qth quantile using a weighted 
average of all the order statistics. More 
precisely, let Y be a random variable having a 
beta distribution with parameters a = (n + 1)q 
and b = (n + 1)(1 − q). That is, the probability 
density function of Y is 
 

( )b 1a 1Γ
y

( )

Γ(
1

(
,

)
y

)Γ
−− −+a b

a b
 

 
where Γ is the gamma function. 

Let 
 

Wi= P((i-1)/n ≤ Y ≤i/n). 
 
For the random sample X1, …, Xn, let X(1) ≤ 
…≤X(n) denote the observations written in 
ascending order. The Harrell-Davis estimate of ߦq is q i (i)

ˆ W X .=ξ  In terms of its standard 

error, Sfakianakis and Verginis (2006) show that 
in some situations the Harrell-Davis estimator 
competes well with alternative estimators that 

use a weighted average of all the order statistics, 
but there are exceptions. For example, 
Sfakianakis and Verginis (2006) derived 
alternative estimators that have advantages over 
the Harrell-Davis in some situations, but it was 
found that when sampling from heavy-tailed 
distributions the standard errors of their 
estimators can be substantially larger than the 
standard error of Harrell-Davis estimator. 

To describe the details of the proposed 
test of (3), let X1, …, and Y1, …, be random 
samples of size n1 and n2, respectively, and let 
Dik = Xi-Yk (i = 1, …, n1; k = 1, …, n2). The qth 
quantile of distribution of D, ߜq, is estimated via 
the Harrell-Davis estimator, applied to the Dik 
values, yielding ܦq. Next, generate a bootstrap 
sample from the jth group by resampling with 
replacement nj observations from group j. Let ܦ෩q 
be the estimate of qth quantile of D based on 
these bootstrap samples and let d = ܦ෩q + ܦ෩1-q. 
Repeat this process B times yielding db, b = 1, 
…, B; here, B = 1,000 is used. Let ℓ	= ߙ B/2, 
rounded to the nearest integer, and let u = B − ℓ. 
Letting d(1)≤…≤d(B) represent the B bootstrap 
estimates written in ascending order, an 
approximate 1 − ߙ confidence interval for ߜq + 1ߜ-q is (݀(ℓାଵ), ݀(௨)). This will be called method 
DHD. 

Let A denote the number of times d is 
less than zero and let C be the number of times   
d = 0. Letting 
 

.5
ˆ ,

+= A Cp
B

 

 
a (generalized) p-value is 2min(̂-1 ,̂) (Liu & 
Singh, 1997). 
 

Results 
Simulations were used to study the small-sample 
properties of method DHD. The sample sizes 
considered were (n1, n2) = (10, 10), (20, 20), (10, 
30) and (20, 30). Estimated Type I error 
probabilities were based on 2,000 replications. 
Two values for q were considered: 0.25 and 0.1. 
Both continuous and discrete distributions were 
used. The four continuous distributions were 
normal, symmetric and heavy-tailed, asymmetric 
and light-tailed and asymmetric and heavy-
tailed. More precisely, four g-and-h distributions 
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were used (Hoaglin, 1985) that contain the 
standard normal distribution as a special case. If 
Z has a standard normal distribution, then 
 

( ) 2

2

exp 1
exp( ),  if  g 0,

2

( ),  if  0
2

W

g

−
>

=

=
gZ Zh
g

Z= Zexp h
 

 
has a g-and-h distribution where g and h are 
parameters that determine the first four 
moments. The four distributions used here were 
the standard normal (g = h = 0), a symmetric 
heavy-tailed distribution (h = 0.2, g = 0.0), an 
asymmetric distribution with relatively light tails 
(h = 0.0, g = 0.2), and an asymmetric 
distribution with heavy tails (g = h= 0.2). Table 
1 shows the skewness (1ߢ) and kurtosis (2ߢ) for 
each distribution. Additional properties of the g-
and-h distribution are summarized by Hoaglin 
(1985). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To gain perspective on the effects of tied 
values, data were generated from a discrete 
distribution having a sample space consisting of 
the integers 0 through 7; more precisely, data 
were generated from a binomial distribution 
with probability of success equal to 0.4. First 
consider the four g-and-h distributions when 
testing at the 0.05 level and n1 = n2 = 10. As 
indicated in Table 2, if q = 0.25, in which case 
the goal is to test (3) with q = 0.25, then α̂ , the 
probability  of  a Type I error, is estimated to be  
 

close to the nominal level. Note that the 
estimates barely change among the continuous 
distributions considered. However, when q = 
0.1, the estimated Type I error probability can 
exceed 0.1. Increasing one of the sample sizes to 
30 improves the estimate, but it still exceeds 
0.075. Although the seriousness of a Type I 
error can depend on the situation, Bradley 
(1978) suggested that, as a general guide, when 
testing at the 0.05 level the actual level should 
not exceed 0.075. With n1 = 20 and n2 = 40, 
again the estimate can exceed 0.1. With n1 = n2 = 
30 (not shown in Table 2), reasonably accurate 
control over the probability of Type I error is 
achieved. Increasing both sample sizes to 40, the 
probability of Type I error is estimated to be 
between 0.045 and 0.051 among all situations 
considered. 

Generating data from the binomial 
distribution gave results similar to those in Table 
2. For n1 = n2 = 10 and q = 0.25, α̂  = 0.065. For 

n1 = n2 = 20 α̂  = 0.056 and 0.063 for q = 0.25 
and 0.1, respectively. For n1 = 20 and n2 = 30 the 
estimates are 0.056 for both q = 0.25 and q = 
0.1. 

How the power of method DHD 
compares to other methods depends in part on 
the nature of the distributions being compared. 
As is evident, different methods are sensitive to 
different features of the data. However, to 
provide at least some perspective, some results 
are reported when distributions differ in location 
only. In particular, consider D = X−Y+λ for 
some constant λ where both X and Y have mean 
zero and variance one. Under normality, it can 
be seen that ߜq + 1ߜ-q = 2λ. Thus, when 
comparing means, rather than testing (3), this 
suggests that method DHD might have relatively 
high power under normality despite the sample 
mean having a smaller standard error than the 
Harrell-Davis estimator. Table 3 reports some 
simulation power estimates when q = 0.25. The 
column headed by Welch indicates the estimated 
power when using the method from Welch 
(1938) to test the hypothesis of equal means. As 
shown, the power of method DHD compares 
well to Welch’s method – and that DHD seems 
to have a slight advantage. 
 
 

Table 1: Some Properties of the g-and-h 
Distribution 

 

g h 1κ  2κ  

0.0 0.0 0.0 3.0 

0.0 0.2 0.0 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 
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An Illustration 

Consider the Jackson, et al. (2009) study 
described in the introduction that used sample 
sizes of 232 and 140. Figure 1 shows an estimate 
of ߜq + 1ߜ-q, indicated by *, as a function of q, 
where the q values are 0.05(0.05)0.40. The 
corresponding p-values are 0.002, 0.004, 0.008, 
0.010, 0.016, 0.020, 0.020 and 0.020. The + 
above and below the * indicate a 0.95confidence 
interval. These results suggest that intervention 
is effective and that this is the case particularly 
in terms of more extreme quantiles. 
 

Conclusion 
In terms of controlling the probability of a Type 
I error, method DHD generally performs well in 
simulations. The restriction is that as q 
approaches zero larger samples size are needed, 
particularly when the sample sizes are unequal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For n1 = n2 = 10, all indications are that method 
DHD performs reasonably well for q		≥ 0.2. For 
n1 = 10 and n2 = 30, this is not the case, however, 
for min(n1, n2) ≥	20 , control over the Type I 
error probability was found to be reasonably 
satisfactory. 

It is not suggested that method DHD 
should be used to the exclusion of all other 
techniques aimed at comparing two independent 
groups. Rather, the suggestion is that multiple 
techniques are needed to obtain a good 
understanding of how two groups compare and 
the DHD method helps achieve this goal. 

Finally, method DHD can be applied 
with the R function cbmhd. The R function 
qwmwhd applies the method using a range of q 
values. The plot in Figure 1 was created with the 
latter function.  
 

Table 2: Estimated Type I Error Probability, α = 0.05 
 

q n1 n2 g h  

0.25 

10 10 

0.0 0.0 0.069 

0.0 0.2 0.066 

0.2 0.0 0.072 

0.2 0.2 0.073 

20 20 

0.0 0.0 0.060 

0.0 0.2 0.056 

0.2 0.0 0.060 

0.2 0.2 0.058 

10 30 0.0 0.0 0.082 

20 30 0.0 0.0 0.062 

0.10 

10 10 

0.0 0.0 0.092 

0.0 0.2 0.104 

0.2 0.0 0.091 

0.2 0.2 0.108 

20 20 

0.0 0.0 0.065 

0.0 0.2 0.069 

0.2 0.0 0.065 

0.2 0.2 0.067 

20 30 0.0 0.0 0.060 
 

α̂
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Table 3: Estimated Power, α = 0.05, λ = 1 
 

q n1 n2 g h DHD WELCH 

0.25 10 10 

0.0 0.0 0.62 0.55 

0.0 0.2 0.60 0.54 

0.2 0.0 0.43 0.36 

0.2 0.2 0.42 0.35 

 
 
 

Figure 1: Estimates of ߦq + 1ߦ-q 
 

 
 

0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

0 2 4 6 8 1 0 1 2

Quantile

S u m o f q a n d 1 − q Q u a n t i le s

+

+

+

+
+

+
+

+

+
+

+
+

+
+

+
+

*

*
*

*
*

*
*

*



A QUANTILE GENERALIZATION OF THE WILCOXON-MANN-WHITNEY TEST 

302 

These R functions are included in a package that 
can be downloaded from http:// 
college.usc.edu/labs/rwilcox/home. 
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