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Multiple regression coefficients split by the levels of the dependent variable are examined. The 
decomposition of the coefficients can be defined by points on the ordinal scale or by levels in the 
numerical response using the Gifi system of binary variables. This approach permits consideration of 
specific values of the coefficients at each layer of the response variable. Numerical results illustrate how 
to identify levels of interpretable regression coefficients. 
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Introduction 
Interpretation of ordinary least squares (OLS) 
multiple linear regression with multicollinearity 
is a well-known problem that has been described 
in numerous works. The problem is caused by a 
deteriorating effect that multicollinearity 
between predictors can produce on OLS 
coefficients. OLS yields the best aggregate of 
predictors to fit data – and it is perfect for 
prediction – but it was not designed to obtain 
meaningful coefficients for individual predictors 
in regression (Abraham & Ledolter, 1983; 
Weisberg, 1985; Andersen & Skovgaard, 2010). 
Depending on the data, such a model could be 
useless in analyzing predictor impact on the 
dependent variable (DV) because multicollinearity 
yields inflated regression coefficients, pushing 
them  towards  large   values  of  both   signs.   For 
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example, if multicollinearity yields a negative sign 
for a presumably useful variable in the model, it is 
difficult to decide whether it makes sense to 
increase the value of such a variable to obtain a 
lift in the output. The techniques for constructing 
regression models with interpretable coefficients 
and contributions to the explained variance 
include ridge regressions (Hoerl & Kennard, 
1970, 2000) and various other techniques, 
particularly: Shapley value regression, logit and 
multinomial parameterization of coefficients, and 
models by data gradients (Lipovetsky & Conklin, 
2001, 2010c; Lipovetsky, 2009, 2010a, b; 
Nowakowska, 2010). 

The possibility of splitting regression 
coefficients by the levels of the response 
variable and studying them separately is 
considered herein. This will help identify how 
the obtained coefficients are composed 
depending on the different values reached by the 
dependent variable (DV), and how this 
composition creates the total values of the 
coefficients. The technique is demonstrated for a 
DV measured using a numerical and rating scale 
(such as a Likert-type scale from 1 to 5 or 1 to 
10), using the so-called Gifi system of binary 
multivariables (Gifi, 1990; Michailidis & de 
Leeuw, 1998; Mair & de Leeuw, 2010), where a 
variable on a several-point scale can be 
represented as a set of binary variables – one for 
each level. For example, a DV on a 5-point scale 
is presented as the first binary variable with ones 
in the place of 1s in the original variable and 
zeroes otherwise, up to the fifth binary variable 
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where ones represent 5s in the original variable 
and zeroes otherwise. It is sometimes convenient 
to consider a fewer number of binary variables, 
for example, in key dissatisfaction analysis 
(Conklin, et al., 2004), it is sufficient to use only 
three binary variables: dissatisfaction (lower 
levels), neutral (middle), and enhanced values 
(upper levels). Regressions with interpretable 
coefficients attained by the split solutions help 
decision makers and managers understand the 
results of statistical modeling. 
 
Regression Coefficients by Levels of the DV 

A multiple linear regression can be 
presented as the model 
 

iinniiii xaxaxaxay ε+++++= ...221100

(1) 
 
where yi and xij are ith observations (i = 1, ..., N) 
by the DV y and by each jth independent variable 
xj (j = 0, 1, 2, ..., n), aj are coefficients of the 
regression, including the intercept a0 related to 
the identity variable x0, and iε  denotes added 

random noise. The OLS objective minimizes the 
squared errors iε  and yields the solution which, 

in matrix notation, is: 
 

1a (X X) X y−′ ′=                      (2) 
 
where a denotes the vector of all coefficients of 
regression (1), X is the design matrix of N by 
1+n order of all the predictors, prime denotes 
transposition and vector y is of the Nth order.  

Formula (2) shows that the regression 
coefficients are linear combinations of the y 
values aggregated with the coefficients of the 

transfer operator XXXT ′′≡ −1)(  which 
depends only on the independent variables. Each 
jth coefficient aj is defined as a scalar product of 
the vector y and the values in the jth row of this 
matrix T. Therefore, if the vector y is presented 
as a sum of several sub-vectors then it is 
possible to obtain the coefficients (2) related to 
each of these components. 

Suppose y is measured in a rating scale 
of K values, so it can be presented as: 
 

KK dmdmdmy +++= ...2211 , 
(3) 

 
where each dk (k = 1, 2, …, K) is a binary vector 
of the Nth order, which has ones in the positions 
where yi has the value k, otherwise it consists of 
zeros. For example, if yi = 3 for i = 10, 15 and 
18, then the binary vector d3 has ones in the 
same 10th, 15th and 18th places, otherwise zero, 
and similarly with the other vectors. Such a 
system of binary variables is called the Gifi 
system. The constant coefficients mk in (3) for a 
Likert scale with ratings from 1 to K coincide 
with these values, so mk = k. If y is a numerical 
variable, then it can be divided into several 
segments by its increasing values, and 
coefficients mk represent the mean y values 
within each segment while the Gifi binary 
vectors dk  show by 1 and 0 values the particular 
segment to which each yi belongs. 

Substituting (3) into (2) yields the 
decomposition of the regression coefficients by 
the levels of y: 
 

( )1

1 1 2 2 K K

1 1

1 1 2 2

1

K K

a (X X) X m d m d ... m d

m (X X) X d m (X X) X d

      ... m (X X) X d

−

− −

−

′ ′= + + +

′ ′ ′ ′= +

′ ′+ +
(4) 

 

Each matrix product kdXXX ′′ −1)(  in (4) is the 

vector of regression coefficients of the binary 
variable dk by all the predictors x. It can also be 
described as the Fisher discriminator of the 
observations’ assignment to each kth segment of 
the data, thus the total regression coefficients are 
presented as the linear combination of these 
discriminators. For each particular level of y-
values the coefficients of the Gifi response 
regressions can be denoted as: 
 

(k ) 1

kb (X X) X d ,−′ ′≡                (5) 

 
and the items in decomposition (4) of the total 
vector of regression coefficients by the 
coefficients defined on each y-level are: 
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(k ) (k )

k

1

k k

a m b

m (X X) X d−

=

′ ′=
. 

(6) 
 
It is also possible to consider regression results 
split by the independent variables, but the analysis 
becomes more complicated (Lipovetsky & 
Conklin, 2005). 

Regression coefficients (2) or (4) can be 
presented as a sum of the by-level coefficients 
(6): 

)()2()1( ... Kaaaa +++= .          (7) 
 
This result is very useful for practical 
applications of regression modeling because it 
permits consideration of the increments which 
can be reached specifically at any level of the 
dependent variable. For example, in marketing 
research studies on satisfaction with a product or 
service, it is useful to consider the regression 
subsets related to the lower levels of 
dissatisfaction and upper levels of enhanced 
satisfaction. The cumulative subtotal of 
coefficients can also be obtained by adding the 
needed vectors (7): its application to the 
multicollinearity problem is discussed next using 
numerical examples. 
 
Numerical Examples 

Consider a marketing research project 
with 623 respondents evaluating their 
satisfaction with a bank on a Likert scale from 1 
(worst value) to 5 (best value). The variables 
are: y, overall satisfaction; x1, customer service 
regarding checking account; x2, explanations of 
features; x3, kept informed of changes; x4, 
convenient branch locations; x5, convenient 
ATM locations; x6, error free checking; x7, 
representative solves problems; and x8, clear 
comprehensive statements. The constructed OLS 
regression model (1)-(2) is: 
 

1 2

3 4 5

6 7 8

y 1.664 0.155x 0.150x

     0.123x 0.005x 0.012x

 0.044x 0.137x 0.012x

= + +

+ + −

+ + −
. 

(8) 

The main impact on overall satisfaction comes 
from predictors x1, x2, x3 and x7. Despite the 
positive impact that can be assumed for each 
driver on satisfaction, which is supported by 
positive pair correlations of each x with y, 
multicollinearity makes x4 and x6 negligibly 
small coefficients and yields a negative 
influence on both x5 and x8. 

The five Gifi binary regressions for each 
level of overall satisfaction estimated by (5) are 
presented in the columns of Table 1. It is evident 
that the predictors have mixed coefficients for 
all levels of y, except the top level (k = 5), which 
has all positive coefficients of regression (the 
negative is the intercept).  

Multiplying vectors (5) in the columns 
of Table 1 by the values mk = k transforms them 
into the components (6) of the original 
regression. These coefficients (6) and their total 
(7) are shown in Table 2. The coefficients of the 
last column in Table 2 coincide with the 
coefficients of the OLS model (8). In contrast to 
these OLS coefficients with both signs, the k = 5 
model yields all positive coefficients. 

Another useful way to consider the 
regression coefficients by splitting the 
cumulative levels of the response is shown in 
Table 3. It is clear from relation (7) that it is 
possible to consider subtotals of the split to 
lower and upper levels. Table 3 presents pairs of 
the models of the first level versus all other 
levels (columns denoted as 1 vs. 2:5), two lower 
and three upper levels (columns 1:2 vs. 3:5), 
three lower and two upper levels (columns 1:3 
vs. 4:5), then four lower versus one upper level 
(columns 1:4 vs. 5), and finally the total 
regression by all the levels together (1)-(2). The 
last row in Table 3 presents the coefficients of 
multiple determination, R2, well-known as a 
convenient characteristic of quality of the 
regression model. The sum of the coefficients in 
each pair of lower and upper models yields the 
total OLS coefficients of the last column in 
Table 3. This is not true with the coefficient of 
multiple determination, R2, which is not a linear 
function of the DV values.  

It is observed that a sum of two R2 
values in the paired columns in Table 3 can be 
higher or lower but not equal to R2=0.297 of the 
total model. Table 3 also shows that the 
expected signs of the predictors’ relation to the 
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dependent variable are given only by the upper 
level of overall satisfaction. Similar results are 
observed in various data sets. 
 

Conclusion 
Decomposition of multiple regression 
coefficients by the levels of the dependent 
variable was considered using the Gifi system of 
binary variables. The coefficients’ split by the 
levels of the response variable can be easily 
performed with any software for ordinary least 
squares regression. The results of this 
decomposition help identify the subsets of the 
coefficients not distorted by multicollinearity 
and find an adequate interpretation of the 
regression coefficients that will be useful for 
managerial decisions. 
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