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The coefficient of variation (CV), which is used in many scientific areas, measures the variability of a 
population relative to its mean and standard deviation. Several methods exist for testing the population 
CV. This article compares a proposed bootstrap method to existing methods. A simulation study was 
conducted under both symmetric and skewed distributions to compare the performance of test statistics 
with respect to empirical size and power. Results indicate that some of the proposed methods are useful 
and can be recommended to practitioners. 
 
Key words: Coefficient of variation, simulation, size, power of a test, symmetric distribution, skewed 

distribution. 
 
 

Introduction 
The coefficient of variation (CV), which is the 
ratio of the standard deviation to the mean, was 
first introduced by Karl Pearson in 1896. This 
dimensionless relative measure of dispersion has 
widespread applications in many disciplines. 
Researchers have used CV to: measure the risk 
of a stock (Miller & Karson, 1977), to assess the 
strength of ceramics (Gong & Li, 1999), to 
assess homogeneity of bone test samples 
produced form a particular method (Hamer, et 
al., 1995), in wildlife studies (Dodd & Murphy, 
1995), in dose-response studies (Creticos, et al., 
2002) and in uncertainty analyses of fault tree 
analysis  (Ahn, 1995).    Nairy   and  Rao  (2003) 
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provided a brief survey of recent applications of 
CV in business, climatology, engineering and 
other fields. 

The coefficient of variation is presented 
in virtually all introductory statistics texts, 
primarily as a descriptive measure; inferential 
methods regarding population CVs are typically 
missing in these textbooks. To make an 
inference regarding a population CV, 
assumptions regarding the population 
distribution and knowledge of the distributional 
properties of the sample CV are needed. 
Hendricks and Robey (1936) studied the 
distribution of the sample CV and showed that it 
can be approximated by a function defined on a 
positive real line, which depends on the standard 
normal moment of order n − 1 about some well-
defined point, where n is the sample size. 
Iglewicz (1967) derived the exact distribution 
for a sample CV, when the sample is drawn 
from a normal population. This exact 
distribution assumed that the chance of 
obtaining a non-positive sample mean is 
negligible and, hence, is not useful for 
inferential purposes. 

McKay (1932) gave an approximation 
of the distribution of a statistic derived from a 
sample CV based on the Chi-squared 
distribution. This approximation was determined 
to be very accurate if CV ≤ 0.33 (Pearson, 1932; 
Iglewicz, 1967)  and  reasonably  accurate  when  
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0.33 CV 0.67≤ ≤  (Miller, 1991).The exact 
distribution of the sample CV is difficult to 
obtain when the population distribution is not 
normal. Due to the limited development related 
to the exact distribution of sample CV for non-
normal populations, inferences regarding 
population CVs did not receive much attention 
until Sharma and Krishna (1994) developed the 
asymptotic distribution of the sample inverse 
coefficient of variation (ICV) without making an 
assumption about the population distribution; 
they obtained a confidence interval for the CV 
by inverting the proposed confidence interval. 
Curto and Pinto (2009) developed an asymptotic 
distribution of a sample CV in the case of non-
iid (independent and identically distributed) 
random variables. 

Various methods for constructing 
confidence intervals on CV have recently 
appeared in the literature (Amiri & Zwanzig, 
2010; Carto & Pinto, 2009; Banik & Kibria, 
2011). Banik and Kibria (2011) conducted a 
simulation study to compare the performance of 
various confidence intervals suggested in the 
literature. However, despite its widespread use 
in a wide range of disciplines, tests of 
hypotheses on CVs do not appear to be of 
interest to statisticians in general. Although 
some test statistics have been suggested, there is 
limited information available regarding the 
performance of these tests. Moreover, many of 
these tests are based on normal theory; however, 
real life data frequently follow right-skewed 
distributions, particularly when sample sizes are 
small (Baklizi & Kibria, 2008; Shi & Kibria, 
2007; Banik & Kibria, 2009; Almonte & Kibria, 
2009).  

This article compares the size and the 
power of some existing tests and their bootstrap 
versions when data are from both normal and 
positively skewed distributions. The tests 
compared were developed based on the 
sampling distribution of a sample CV due to 
McKay (1932), Hendricks and Robey (1936), 
Miller (1991), Sharma and Krishna (1994) and 
Curto and Pinto (2009). 
 
Test Statistics for Testing Population CV 

Let 1 2, , , nX X X  represent a random 

sample of size n from a normal population with 

mean  and SD  so that /=γ σ μ  is the 
population CV. When the distribution is 
unknown, the parameters  and  are estimated 
from the observed data. The estimated CV is 

then defined as ˆ s / X=γ  where	  and s are the 
sample mean and sample standard deviation 
respectively. The test hypotheses are: 
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1
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H :  
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γ γ

γ γ
                          (1) 

 
where 1 0 c= +γ γ , c is a positive constant and 

the difference between  and the true value of 
the population CV. Because the right skewed 
distribution is of interest, the upper tailed test 
was selected. However, the lower tail test may 
be used by setting 0c .<  The size of a test can 
be estimated by setting c = 0. Several test 
statistics have been suggested for testing the 
hypotheses in (1). 
 
The t-Statistic 

Hendricks and Robey (1936) studied the 
distribution of a sample CV when the sample is 
drawn from a normal distribution. Koopmans, et 
al (1964) and Igelewicz (1967) reviewed the 
relevant literature and proposed the following t-
statistic for testing  γ for a normal distribution: 
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where γ̂  is the sample CV, nS 2/ˆˆ γγ = . The 

hull hypothesis is rejected at the α level of 
significance if ( )10t n ,t −> α  where ( )1n ,t − α  is the 

upper (α)th percentile from a t -distribution with 
(n − 1) degrees of freedom. 
 
McKay’s Statistic 

McKay (1932) proposed the following 
test statistic for testing γ:  
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Where γ̂  is the sample CV. The hull hypothesis 
is rejected at the α level of significance if 

( )
2

1   n ,Mc −> αχ  where ( )
2

1   n ,− αχ  is the upper (α)th 

percentile from a Chi-square distribution with (n 
− 1) degrees of freedom. 
 
Miller’s Statistic 

Miller (1991) provided an asymptotic 
distribution of the sample CV which can 
reasonably be assumed to be normal if the parent 
population is normal.  They proposed the 
following test statistic: 
 

2

0
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Sharma and Krishna’s Statistic 

Sharma and Krishna’s (1994) statistic, 
which is based on the sampling distribution of 
ICV, is given by 
 

0( ) (1 (0 1))SK n  ~ / Zˆ ,= −γ           (4) 

 
As noted, this has the advantage of relieving the 
normality assumption. 
 
Curto and Pinto’s Statistic 

Curto and Pinto (2009b) proposed a test 
statistics for non-iid random variables, that is, 
autocorrelated and heteroskedastic random 
variables. Their test statistic is given by: 
 

0( ) ( )CP / SEˆ ˆ= −γ γ γ               (5) 

where 
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To estimate the asymptotic variance, an 

estimator for θθ ′∂∂ )(f  may be obtained by 

substituting into θ̂  and a heteroscedasticity and 

autocorrelation consistent (HAC) estimator ̂ 
may be obtained by using Newey and West’s 
(1987) procedure: 
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where m is the truncated lag that must satisfy the 
condition m/T. 
 
Proposed Bootstrap Test Statistics for Testing 
Population CV 

Bootstrap, introduced by Efron (1979), 
is a commonly used computer-based non-
parametric tool that does not require 
assumptions regarding an underlying population 
and can be applied in a variety of situations. The 
accuracy of the bootstrap depends on the number 
of bootstrap samples. If the number of bootstrap 
samples is large enough, statistics may be more 
accurate. The number of bootstrap samples is 
typically between 1,000 and 2,000 because 
accuracy depends on the size of the samples 
(Efron & Tibshirani, 1993). This article 
proposes bootstrap test statistics for testing a 
population CV. An extensive array of different 
bootstrap methods are summarized as: Let X(*) =

(*)
1X , (*)

2X , …, (*)
nX , where the ith sample is 

denoted X(i) for i = 1, 2 , …, B, and B is the 
number of bootstrap samples. The bootstrap 

estimate of CV for the B samples is *
( i )CV .  
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Non-Parametric Bootstrap Statistic 
First, compute the CV for all bootstrap 

samples, then order the sample CVs of each 
bootstrap sample as: 
 

( )1 2
* * *

( ) ( B )..CV CV CV.≤ ≤  

 
The test statistic for testing hypotheses (1) is the 
t-statistic defined in (2) but the (1−α) sample 
quantile of the bootstrap samples, [ ](1 )

*
BCV −α , is 

used as the upper critical value for the test. 
 
Parametric Bootstrap t-Statistic 

The bootstrap version of the t-statistic 
defined in (2) is given by  
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=   is the mean of the bootstrap 

sample CVs. The (1−α)th quantile of the 
bootstrap t-statistic in (6) is used as the upper 
critical value for an α level test. 
 
Miller Bootstrap Statistics: Approach 1 

This approach suggests replacing γ̂  in 

(3) by *γ̂ , the sample CV of the bootstrap 
sample, thus, the following test statistic is 
proposed: 
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Miller Bootstrap Statistics: Approach 2 

As noted, the approximate asymptotic 
normality of the sampling distribution of γ̂  is 
based on the assumption that the parent 
population is normal (Miller, 1991); violation of 

the normality assumption may lead to 
undesirable results. The following bootstrap test 
is thus proposed: 
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Curto and Pinto Bootstrap Statistic 

The following test statistic for bootstrap 
version of CP is proposed: 
 

0
* *BCP ( ) / SE( )ˆ ˆ= −γ γ γ         (9) 

 

where *γ  is the sample CV of the bootstrap 
samples and  
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where m is the truncated lag that must satisfy the 
condition m/T. The (1 – α)th quantile of the 
bootstrap statistic in (9) is used as the upper 
critical value for an α level test. 
 

Methodology 
Monte Carlo simulation experiments were 
performed to evaluate the performance of the 
proposed test statistics in terms of size and 
power. The main objective is to recommend 
good test statistics for a population CV based on 
simulation results. Because a theoretical 
comparison was not possible, a simulation study 
was used to compare the size and power 
performances of the test statistics.  

Six different configurations of sample 
sizes: n = 10, 20, 30, 50, 100, 200 were used. 
Random samples were generated from the N (2, 
1) 	and two skewed distributions namely, 
Gamma (4, 2) and Log-Normal (2, 0.472). This 
parameter choice resulted in population CVs 
close to 0.5 for all selected distributions with 
varying degree of skewness. Note that non-iid 
data was not used in the simulation. Although 
the Curto and Pinto statistic was proposed for 
non-iid, that is, autocorrelated and 
heteroscedatic random variables, the focus was 
to compare the size and power of existing test 
statistics with the proposed bootstrap statistics 
for testing population CV when data are 
generated from symmetric and skewed 
distributions. 

For each combination of sample size 
and population distribution, 10,000 random 
samples and 1,500 bootstrap replications were 
generated. The most common 5% level (α) of 
significance was used. Empirical sizes and 
powers for each test were calculated as the 
fraction of the rejections of the null hypothesis 
out of 10,000 simulation replications by setting c 
= 0.0, 0.04, 0.06, 0.08, 0.10 and 0.12 in 

1 0 c= +γ γ . The size of the test was obtained by 

setting c = 0. Simulation results are presented in 
Tables 3.1-3.4. 
 
 

Results 
Table 3.1 shows the estimated sizes of the 
selected test statistics for all three distributions. 
The row entries represent the proportion of times 
H0 was rejected at α = 0.05 under H0. If a 
procedure is significantly above the nominal 
level or significantly above the level of some 
other procedure, there may be a question about 
the seriousness of the degree of non-robustness. 
Rejection rates significantly below the nominal 
level are not of interest. Such deviations are not 
problematic for Type I errors and power can be 
evaluated separately. To gauge the adequacy of 
robustness in controlling Type I errors, several 
standards have been used in the past. Cochran 
(1954) suggested the general guideline of an 
upper limit of 0.06 for tests run at the 0.05 level. 
Bradley (1978) considered a liberal criterion of 
robustness in which he argued that no test 
should be considered robust if the true Type I 
error rate exceeds 1.5α; meaning, that an α = 
0.05 would require an actual limit of 0.075. 
Finally Conover, et al. (1981) used a more 
liberal approach and suggested that a test is non-
robust if the Type I error rate exceeds 2α. 

From the data shown in Table 3.1 it is 
clear that none but the CP procedure is most 
conservative. Its size is smaller than the nominal 
size of 0.05 for all sample size for the normal 
and Gamma distributions, and for all n > 10 for 
the log-normal distribution. For the Gamma 
distribution, however, all of the tests suffer from 
size distortion when n < 200  

When the underlying distribution is 
normal all of the procedures, except the SK test 
satisfy Cochran’s 0.06 limit (and hence 
Bradley’s 0.075 and Conover, et al.’s 0.1 limit), 
particularly when n > 20. It is noteworthy that 
the SK procedure does not satisfy Cochran’s 
limit for the normal distribution and no clear 
superiority of one test is apparent for the log-
normal distribution. However, the t-test, SK and 
NB procedures appear to be clearly non-inferior 
in controlling Type I errors, especially when n ≥ 
100, as their estimated type I error rate is either 
very close to or exceeds Conover, et al.’s 0.1 
limit. In general, the bootstrap versions of the 
Mil and CP tests are slightly more conservative 
than their respective non-bootstrap counterparts 
for all three distributions and all tests have 
reasonable size properties when data are 
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generated from a normal distribution as opposed 
to the two skewed distributions.  

The estimated powers of the test 
statistics for the normal, Gamma and log-normal 
distributions are presented in Tables 3.2, 3.3 and 
3.4 respectively. The first column provides 
values of c, which is the difference between 0γ  

and the true value of population CV. The entries 
in the columns 3-12 represent the proportion of 
times H0 was rejected at α = 0.5 under H1. With 
few exceptions, Miller’s procedure appears to be 
the most powerful under a normal distribution, 
while the BMil2 shows some advantages over 
other tests under a Gamma distribution: no clear 
pattern of dominance of one test is visible for the 
log-normal distribution. When c = 0.04 all tests 
considered have very low power (maximum 
power = 0.48). As expected, power increases 
with c. Most of the tests have reasonable power 
when c = 0.12 and sample size is low, such as n 
= 30 for the normal and Gamma distributions. A 
comparison of results presented in Table 3.2 
reveals that the Curto and Pinto’s test and its 
bootstrap version, BCP, are both relatively more 
powerful under a Gamma distribution as well as 
a log-normal distribution compared to the 
normal case. In addition, the parametric 
bootstrap test also shows a clear pattern of 
improvement in power over the normal case. 
 

Conclusion 
This article considered five existing test 
statistics and five bootstrap versions of three of 
the tests for testing a population CV under 
various experimental conditions. Because a 
theoretical comparison is not possible, a 
simulation study was conducted to compare the 
performance of the test statistics. Results 
indicate that all of the test statistics suffer from 
size distortion, particularly when data is from 
either a Gamma or a log-normal distribution and 
n ≤ 50. None of the tests is recommended if c, 
the difference between the hypothesized and true 
value of the population CV is too small, that is, 
if c < 0.06. Although Miller’s test appears to be 
the most powerful under a normal distribution, 
its bootstrap version, BMil2, shows some 
advantages  over   the   other   tests   for  Gamma  
 

distributions. Sharma and Krishna’s test is most 
powerful for the normal distribution. For a 
definite statement regarding the performance of 
the test statistics, additional simulations under 
variety of experimental conditions are required. 
It is hoped that the results from this study will be 
useful to different applied researchers and 
practitioners who are interested to test a 
population CV for symmetric and skewed 
populations. 
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Table 3.1: Estimated Type I Error Rates for Various Statistical Tests 

Distribution Tests for CV* 

n 

10 20 30 50 100 200 

Normal 
(2, 1) 

t-test 0.0300 0.0453 0.0473 0.0580 0.0580 0.0593 

McKay 0.0613 0.0607 0.0480 0.0500 0.0380 0.0480 

MiL 0.0793 0.0747 0.0553 0.0580 0.0427 0.0547 

SK 0.0980 0.0867 0.0640 0.0813 0.0753 0.0700 

CP 0.0107 0.0180 0.0160 0.0200 0.0233 0.0287 

NB 0.0333 0.0378 0.0407 0.0520 0.0527 0.0593 

PB 0.0393 0.0480 0.0473 0.0580 0.0500 0.0427 

BMiL1 0.0667 0.0653 0.0507 0.0520 0.0407 0.0493 

BMiL2 0.0740 0.0667 0.0520 0.0547 0.0373 0.0520 

BCP 0.0080 0.0120 0.0127 0.0200 0.0213 0.0253 

Gamma 
(4, 2) 

t-test 0.0060 0.0140 0.0240 0.0427 0.0420 0.0520 

McKay 0.0173 0.0207 0.0253 0.0333 0.0287 0.0320 

MiL 0.0247 0.0280 0.0333 0.0427 0.0327 0.0387 

SK 0.0367 0.0307 0.0420 0.0633 0.0507 0.0580 

CP 0.0260 0.0240 0.0360 0.0367 0.0313 0.0293 

NB 0.0187 0.0247 0.0333 0.0427 0.0420 0.0547 

PB 0.0173 0.0207 0.0347 0.0387 0.0420 0.0520 

BMiL1 0.0080 0.0080 0.0167 0.0280 0.0247 0.0280 

BMiL2 0.0367 0.0280 0.0380 0.0367 0.0327 0.0387 

BCP 0.0400 0.0253 0.0427 0.0307 0.0307 0.0293 

Log-Normal 
(2, 0.4720) 

t-test 0.0160 0.0287 0.0480 0.0607 0.0953 0.1033 

McKay 0.0313 0.0367 0.0480 0.0487 0.0720 0.0707 

MiL 0.0413 0.0433 0.0560 0.0607 0.0793 0.0767 

SK 0.0487 0.0487 0.0613 0.0827 0.1120 0.1127 

CP 0.0527 0.0440 0.0380 0.0280 0.0293 0.0213 

NB 0.0200 0.0367 0.0593 0.0707 0.1007 0.1240 

PB 0.0467 0.0407 0.0733 0.0753 0.0973 0.0973 

BMiL1 0.0160 0.0193 0.0267 0.0347 0.0573 0.0593 

BMiL2 0.0560 0.0487 0.0733 0.0693 0.0813 0.0720 

BCP 0.0793 0.0533 0.0533 0.0347 0.0313 0.0173 

*Notes: t, t statistic; McKay, McKay; MiL, Miller; SK, Sharma and Krishna; CP, Curto and Pinto; NB, 
Non-parametric bootstrap; PB, Parametric bootstrap; BMiL1, Miller bootstrap 1; BMiL2, Miller 
bootstrap 2; BCP, Bootstrap Curto and Pinto 
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Table 3.2: Estimated Power of Various Tests for the Normal (2, 1) Distribution 

c n 
Tests for CV* 

t McKay MiL SK CP NB PB BMiL1 BMiL2 BCP 

0.04 

10 0.0427 0.1093 0.1340 0.1307 0.0233 0.0693 0.0413 0.1087 0.1067 0.0100

20 0.1047 0.1467 0.1647 0.1487 0.0513 0.0713 0.1187 0.1433 0.1587 0.0407

30 0.1327 0.1447 0.1593 0.1487 0.0680 0.1420 0.1367 0.1427 0.1540 0.0620

50 0.2087 0.2020 0.2193 0.2313 0.1187 0.2313 0.2267 0.2007 0.2267 0.1307

100 0.2807 0.2400 0.2987 0.2833 0.1727 0.3053 0.2567 0.2447 0.2373 0.1500

200 0.4773 0.4187 0.4840 0.4587 0.3380 0.4453 0.4327 0.4180 0.3787 0.2813

0.06 

10 0.0620 0.1413 0.1653 0.1467 0.0273 0.1113 0.0493 0.1393 0.1333 0.0107

20 0.1527 0.2020 0.2273 0.1827 0.0773 0.1473 0.1773 0.1953 0.2313 0.0787

30 0.2013 0.2327 0.2553 0.2107 0.1107 0.1913 0.2107 0.2240 0.2453 0.1053

50 0.2793 0.2787 0.2973 0.2913 0.1827 0.2393 0.2693 0.2713 0.2820 0.1607

100 0.5047 0.4720 0.5187 0.4833 0.3787 0.4733 0.4733 0.4660 0.4533 0.3427

200 0.7367 0.6813 0.7400 0.6873 0.6193 0.7133 0.7647 0.6800 0.7280 0.6587

0.08 

10 0.0847 0.2007 0.2287 0.1920 0.0480 0.1793 0.1173 0.1847 0.2187 0.0393

20 0.1947 0.2547 0.2800 0.2067 0.1220 0.2247 0.2240 0.2373 0.2820 0.1287

30 0.2827 0.3280 0.3493 0.2667 0.1760 0.2827 0.2720 0.3147 0.3300 0.1500

50 0.4373 0.4440 0.4667 0.4240 0.3107 0.4020 0.4040 0.4273 0.4320 0.2627

100 0.7000 0.6753 0.7207 0.6527 0.5727 0.7067 0.6900 0.6680 0.6760 0.5513

200 0.9240 0.9053 0.9327 0.8913 0.8767 0.9140 0.9240 0.9040 0.9100 0.8727

0.10 

10 0.1207 0.2647 0.2880 0.2313 0.0720 0.1593 0.2193 0.2487 0.3100 0.0960

20 0.3040 0.3807 0.4033 0.2980 0.1753 0.3173 0.3140 0.3607 0.3900 0.1613

30 0.4293 0.4827 0.5013 0.3900 0.3033 0.4367 0.4547 0.4627 0.5027 0.3053

50 0.6087 0.6293 0.6440 0.5587 0.4607 0.6167 0.5553 0.6100 0.6033 0.3940

100 0.8587 0.8507 0.8560 0.8047 0.7720 0.8540 0.8633 0.8433 0.8593 0.7793

200 0.9880 0.9867 0.9873 0.9787 0.9773 0.9900 0.9907 0.9847 0.9873 0.9793

0.12 

10 0.1580 0.3253 0.3500 0.2507 0.0973 0.1887 0.1700 0.2900 0.3180 0.0673

20 0.4000 0.4887 0.5007 0.3680 0.2707 0.4333 0.4227 0.4607 0.4960 0.2580

30 0.5467 0.5973 0.6173 0.4640 0.4133 0.5140 0.5213 0.5793 0.5880 0.3533

50 0.7453 0.7627 0.7733 0.6853 0.6260 0.7240 0.7233 0.7493 0.7520 0.5740

100 0.9507 0.9480 0.9513 0.9180 0.9173 0.9327 0.9420 0.9420 0.9420 0.9040

200 1.0000 1.0000 1.0000 0.9987 0.9993 1.0000 1.0000 1.0000 1.0000 0.9993

*Notes: t, t statistic; McKay, McKay; MiL, Miller; SK, Sharma and Krishna; CP, Curto and Pinto; NB, Non-
parametric bootstrap; PB, Parametric bootstrap; BMiL1, Miller bootstrap 1; BMiL2, Miller bootstrap 2; 
BCP, Bootstrap Curto and Pinto 
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Table 3.3: Estimated Power of Various Tests for the Gamma (4, 2) Distribution 

c n 
Tests for CV* 

t McKay MiL SK CP NB PB BMiL1 BMiL2 BCP 

0.04 

10 0.0107 0.0493 0.0673 0.0660 0.0720 0.0280 0.0247 0.0200 0.0653 0.0680

20 0.0560 0.0787 0.0993 0.0840 0.0873 0.0787 0.0780 0.0553 0.1093 0.0987

30 0.0920 0.0993 0.1220 0.1033 0.1080 0.1160 0.1167 0.0787 0.1367 0.1213

50 0.1353 0.1313 0.1447 0.1553 0.1413 0.1573 0.1327 0.1093 0.1340 0.1267

100 0.2553 0.2127 0.2333 0.2553 0.2207 0.2493 0.2627 0.1987 0.2420 0.2253

200 0.4427 0.3760 0.4000 0.4200 0.3933 0.4407 0.4187 0.3700 0.3667 0.3673

0.06 

10 0.0240 0.0907 0.1073 0.0933 0.0927 0.0393 0.1253 0.0467 0.1767 0.1607

20 0.0740 0.1047 0.1280 0.0893 0.1227 0.0853 0.1900 0.0787 0.1320 0.1287

30 0.1640 0.1887 0.2033 0.1713 0.1893 0.1600 0.2080 0.1540 0.2287 0.2193

50 0.2807 0.2780 0.2993 0.2907 0.2673 0.2667 0.3040 0.2493 0.3113 0.2840

100 0.4560 0.4167 0.4400 0.4360 0.4253 0.4753 0.4473 0.3933 0.4220 0.4060

200 0.7473 0.6920 0.7067 0.6967 0.7160 0.7387 0.7820 0.6773 0.7460 0.7573

0.08 

10 0.0300 0.1273 0.1540 0.1167 0.1267 0.0740 0.0740 0.0713 0.1673 0.1413

20 0.1513 0.2087 0.2333 0.1673 0.2053 0.2300 0.1513 0.1720 0.2093 0.1793

30 0.2347 0.2633 0.2887 0.2173 0.2693 0.2227 0.2760 0.2293 0.3240 0.3000

50 0.4213 0.4293 0.4460 0.4000 0.4107 0.4240 0.4507 0.3840 0.4620 0.4253

100 0.7180 0.7033 0.7120 0.6860 0.7053 0.7340 0.7047 0.6880 0.6987 0.6720

200 0.9327 0.9140 0.9167 0.8987 0.9193 0.9373 0.9247 0.9053 0.9073 0.9073

0.10 

10 0.0560 0.1780 0.2013 0.1433 0.1607 0.0900 0.1093 0.1187 0.2147 0.1720

20 0.2320 0.3227 0.3473 0.2267 0.3000 0.3160 0.2853 0.2693 0.3660 0.3127

30 0.3753 0.4427 0.4627 0.3300 0.4220 0.5067 0.4300 0.3860 0.4780 0.4467

50 0.6153 0.6327 0.6553 0.5633 0.6100 0.6713 0.6527 0.5900 0.6747 0.6293

100 0.8860 0.8760 0.8853 0.8393 0.8713 0.8740 0.8933 0.8573 0.8880 0.8813

200 0.9867 0.9827 0.9847 0.9800 0.9833 0.9820 0.9880 0.9827 0.9860 0.9873

0.12 

10 0.0780 0.2693 0.2993 0.1947 0.2287 0.2273 0.1807 0.1913 0.3160 0.2500

20 0.3347 0.4280 0.4527 0.3067 0.3947 0.3547 0.5113 0.3767 0.5713 0.5327

30 0.5347 0.6160 0.6400 0.4527 0.5767 0.5627 0.5627 0.5580 0.6353 0.5747

50 0.7467 0.7680 0.7873 0.6820 0.7493 0.7500 0.7620 0.7393 0.7927 0.7567

100 0.9620 0.9607 0.9627 0.9293 0.9613 0.9573 0.9513 0.9560 0.9527 0.9453

200 1.0000 0.9993 0.9993 0.9987 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993

*Notes: t, t statistic; McKay, McKay; MiL, Miller; SK, Sharma and Krishna; CP, Curto and Pinto; NB, Non-
parametric bootstrap; PB, Parametric bootstrap; BMiL1, Miller bootstrap 1; BMiL2, Miller bootstrap 2; 
BCP, Bootstrap Curto and Pinto 
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Table 3.4: Estimated Power of Various Tests for the Log-Normal (2, 0.4724) Distribution 

c n 
Tests for CV* 

t McKay MiL SK CP NB PB BMiL1 BMiL2 BCP 

0.04 

10 0.0220 0.0593 0.0740 0.0733 0.0733 0.0287 0.0333 0.0293 0.0707 0.0707

20 0.0573 0.0867 0.0973 0.0873 0.0780 0.0653 0.0993 0.0473 0.1140 0.1027

30 0.1100 0.1240 0.1400 0.1293 0.1013 0.1273 0.1540 0.0873 0.1613 0.1367

50 0.1713 0.1660 0.1787 0.1853 0.1107 0.1707 0.1813 0.1253 0.1813 0.1180

100 0.2647 0.2387 0.2480 0.2667 0.1600 0.2747 0.2720 0.2147 0.2513 0.1633

200 0.4220 0.3680 0.3833 0.3987 0.2560 0.4287 0.4333 0.3427 0.3920 0.2707

0.06 

10 0.0287 0.0747 0.0887 0.0780 0.0980 0.1067 0.1027 0.0347 0.1447 0.1607

20 0.1140 0.1487 0.1620 0.1367 0.1380 0.1653 0.1393 0.1067 0.1667 0.1447

30 0.1527 0.1687 0.1867 0.1540 0.1447 0.1447 0.1840 0.1300 0.2040 0.1567

50 0.2347 0.2340 0.2513 0.2400 0.1813 0.2927 0.2300 0.1967 0.2353 0.1660

100 0.4360 0.4060 0.4227 0.4147 0.3247 0.4860 0.4293 0.3840 0.4100 0.3120

200 0.6607 0.6120 0.6253 0.6147 0.5120 0.6720 0.6147 0.5893 0.5787 0.4313

0.08 

10 0.0513 0.1200 0.1360 0.1133 0.1347 0.0553 0.1107 0.0740 0.1640 0.1700

20 0.1440 0.2013 0.2167 0.1560 0.1893 0.2013 0.1653 0.1407 0.2173 0.1893

30 0.2273 0.2653 0.2853 0.2140 0.2393 0.2453 0.2667 0.2127 0.2960 0.2573

50 0.3753 0.3813 0.4013 0.3600 0.3147 0.3560 0.4000 0.3313 0.4080 0.3333

100 0.6253 0.6027 0.6153 0.5800 0.5047 0.6427 0.6560 0.5680 0.6347 0.5467

200 0.8640 0.8327 0.8433 0.8173 0.7893 0.8607 0.8480 0.8207 0.8300 0.7633

0.10 

10 0.0640 0.1533 0.1760 0.1273 0.1640 0.0953 0.1133 0.0967 0.1940 0.1773

20 0.2147 0.2940 0.3087 0.2113 0.2773 0.2420 0.2400 0.2213 0.3080 0.2727

30 0.3280 0.3813 0.3980 0.2920 0.3480 0.3500 0.3673 0.3193 0.4053 0.3587

50 0.5053 0.5247 0.5400 0.4560 0.4487 0.4940 0.5167 0.4660 0.5380 0.4447

100 0.7980 0.7860 0.7967 0.7420 0.7387 0.8100 0.8027 0.7627 0.7967 0.7400

200 0.9673 0.9560 0.9600 0.9387 0.9413 0.9560 0.9573 0.9540 0.9527 0.9300

0.12 

10 0.0693 0.1880 0.2093 0.1333 0.1960 0.1647 0.2560 0.1247 0.3213 0.3180

20 0.2873 0.3787 0.3987 0.2533 0.3440 0.3473 0.4353 0.3100 0.4847 0.4533

30 0.4213 0.4900 0.5053 0.3433 0.4400 0.4560 0.4307 0.4167 0.4973 0.4280

50 0.6787 0.7067 0.7233 0.6100 0.6533 0.7353 0.6500 0.6580 0.6873 0.6113

100 0.9100 0.9093 0.9133 0.8707 0.8807 0.9140 0.9253 0.8980 0.9227 0.8953

200 0.9940 0.9940 0.9940 0.9900 0.9913 0.9940 0.9947 0.9940 0.9947 0.9940

*Notes: t, t statistic; McKay, McKay; MiL, Miller; SK, Sharma and Krishna; CP, Curto and Pinto; NB, Non-
parametric bootstrap; PB, Parametric bootstrap; BMiL1, Miller bootstrap 1; BMiL2, Miller bootstrap 2; 
BCP, Bootstrap Curto and Pinto 
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