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Examining Multiple Comparison Procedures According to 
Error Rate, Power Type and False Discovery Rate 

 
Guven Ozkaya Ilker Ercan 

Uludag University, 
Gorukle/Bursa, Turkey 

 
 
Examining pairwise differences between means is a common practice of applied researchers, and the 
selection of an appropriate multiple comparison procedure (MCP) is important for analyzing pairwise 
comparisons. This study examines the performance of MCPs under the assumption of homogeneity of 
variances for various numbers of groups with equal and unequal sample sizes via a simulation study. 
MCPs are compared according to type I error rate, power type and false discovery rate (FDR). Results 
show that the LSD and Duncan procedures have high error rates and Scheffe’s procedure has low power; 
no remarkable differences between the other procedures considered were identified. 
 
Key words: Multiple comparison procedures, pairwise comparison, error rates, power, false discovery 

rate. 
 
 

Introduction 
Multiple comparison procedures (MCPs) are 
used to test differences between the means of 
three or more groups after performing variance 
analysis. Although MCPs are used often, many 
are not used correctly (Lowry,1992; Hsu, 1996). 
Homogeneity of variances, normality and 
independence of data are assumptions made for 
variance analysis; these assumptions should also 
hold when performing MCPs. In addition, 
sample size also affects MCP performance and 
should be considered. Some MCPs are purported 
to apply when the assumptions hold, and some 
are proposed for the cases in which some 
assumptions are violated (Demirhan, 2010). 
Selecting  an appropriate  MCP is important, it is 
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necessary to choose a method that is best given 
the research situation and data. This study 
examines the performance of MCPs under the 
assumption of homogeneity of variances for 
various numbers of groups with equal and 
unequal sample sizes via a simulation study. 
MCPs are compared according to type I error 
rate, power type and false discovery rate (FDR). 
 
General Information 

Many MCPs rely on contrasts; a 
comparison of k groups comprises a comparison 
of two groups and a comparison of a single 
group with the remaining groups. This definition 
is symbolized as 
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where the contrast constants c1, c2, …, ck sum to 
zero. MCPs can be categorized according to 
contrast type as: pairwise comparison, complex 
comparison, comparison with control and 
comparison with the best. Generally, the method 
of contrasts is useful for preplanned, or a priori, 
comparisons, that is, the contrasts are specified 
prior to conducting the experiment and 
examining the data. The rationale behind a 
priori contrasts is that, if comparisons are 



GUVEN OZKAYA & ILKER ERCAN 
 

349 
 

selected after examining data, many 
experimenters would construct tests that 
correspond to large observed differences in 
means (Montgomery, 2001).  

This study focuses on MCPs for 
examining all possible pairwise comparisons. 
The LSD, Bonferroni, Dunn-Sidak, Scheffe, 
REGW-F and Q, Student Neuman Keuls (SNK), 
Tukey’s a and b, Duncan, Hochberg’s GT2 and 
Gabriel procedures are examined for various 
numbers of groups, variances and sample sizes 
according to error rate, power type and false 
discovery rate (FDR). 
 
Measures Used to Evaluate Procedures 

The statistical problem that arises from 
the use of MCPs is that subsequent hypothesis 
tests will be performed on the outcome with the 
same data on which the global test was 
performed: this can result in an uncontrolled 
type I error rate (Cabral, 2008). However, 
determining how to control type I errors is much 
more difficult when multiple significance tests 
are computed (Jaccard, 2002a, 2002b). This 
difficulty arises because the decision regarding 
control of type I errors when MCPs of 
significance are computed can affect whether the 
effects are statistically significant (Keselman, 
2004).  

Choosing from among the various 
strategies available to control Type I errors 
could be based on the multiplicity of testing 
issue. The multiplicity problem in statistical 
inference refers to the selection of statistically 
significant findings from a large set of findings 
(tests) to either support or refute a research 
hypothesis. Selecting statistically significant 
findings from a larger pool of results, which also 
contains non-significant findings, is problematic 
because when multiple tests of significance are 
computed the probability that at least one will be 
significant by chance alone increases with the 
number of tests examined (Keselman, 2004). 

Testing many variables with univariate 
analysis is typically the first choice for various 
hypotheses (Tatlidil, 2002), however, due to  
error rate inflation, this solution is not 
convenient. There has been much debate 
concerning the necessity of statistical adjustment  
 

for multiplicity (Kemp, 1975; Bender, 2001). 
One argument suggests controlling the 
probability that at least one type I error will 
occur in the set of pairwise comparison tests by 
setting that probability equal to alpha (Kemp, 
1975; Ludbrook, 1998; Cabral, 2008). This type 
of control is referred to in the literature as 
experimentwise or familywise control (Kemp, 
1975; Klockars, 1986; Toothaker, 1993; 
Ludbrook, 1998; Keselman, 2004; Cabral, 
2008). In the opposing argument, this type of 
adjustment is not necessary: instead, each 
comparison is dealt with separately (O’Neill, 
1971; O’Brien, 1983; Perry, 1986; Rothman, 
1990). This type of control has been referred to 
as the comparisonwise error rate (Kemp, 1975; 
Klockars, 1986; Toothaker, 1993; Keselman, 
2004; Cabral, 2008).  

The controversy concerning MCPs is 
whether to control for comparisonwise or 
experimentwise type I error rates. Related to this 
controversy is the power of the procedure 
(Kemp, 1975). It is widely accepted among 
statisticians that the goal of MCP analysis 
should be to control the familywise error rate 
(Keselman, 2004; Toothaker, 1993; Ryan, 1959; 
Shaffer, 1995; Roback, 2005). Another 
argument (Benjamini & Hochberg, 1995) is to 
control the false discovery rate (FDR) (Cabral, 
2008; Keselman, 2004; Ludbrook, 1998). 
Benjamini and Hochberg (1995) developed an 
alternative approach to multiple hypothesis 
testing that controls the expected proportion of 
false positive findings among all rejected 
hypotheses. 
 
Familywise Error Rate 

Familywise error rate is the probability 
that at least one type I error occurs. Perfect 
MCPs control the familywise error rate, thus the 
error rate cannot exceed the α-level (Klockars, 
1986; Toothaker, 1993; Ludbrook, 1998; Cabral, 
2008) and the type II error rate is minimized. 
The simultaneous occurrence of two events is 
impossible (Ludbrook, 1998). MCPs that 
maintain the overall α-level for a set of tests are 
said to control the familywise error rate and 
effectively reduce the α-level for each post hoc 
test. 
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Comparisonwise Error Rate 
MCPs that apply a separate α-level for 

each test are called comparisonwise error control 
procedures (Klockars, 1986; Toothaker, 1993; 
Cabral, 2008). In a study with groups A, B and 
C, the use of comparisonwise error control after 
the global null hypothesis has been rejected 
entails the performance of 6 individual tests (A-
B, A-C, B-C, AB-C, AC-B, BC-A) and the 
application of an α-level of 0.05 for each test. 
 
False Discovery Rate (FDR) 

Much of the debate concerning error 
rates relates to familywise and comparisonwise 
error rates. One of the newer interesting 
contributions to the field of multiple hypothesis 
testing is an alternative conceptualization for 
defining errors in the multiple testing problems: 
the false discovery rate, or FDR, as presented by 
Benjamini and Hochberg (1995). The FDR is 
defined by these authors as the expected 
proportion of the number of erroneous rejections 
to the total number of rejections. Benjamini and 
Hochberg (1995) provided several scenarios in 
which the FDR control seems more reasonable 
than the familywise or comparisonwise control. 

Consider J means, µ1, µ2, …, µJ, where 
interest is in testing a family of m = J(J−1)/2 
pairwise hypotheses, Hi: µj -µj’ = 0 (j = 1, …, J; 
j' = 1 ,…, J; j ≠ j'), of which m0 are true. Let S 
equal the number of correctly rejected 
hypothesis pairs from the set of R rejections and 
let the number of falsely rejected pairs be V. 
Benjamini and Hochberg (1995) summarized the 
relationship between these random variables (see 
Table 1). In terms of random variable V, the 
comparisonwise error rate is E(V/m), whereas 
the familywise rate is given by P(V ≥ 1). Thus, 
testing each comparison at α guarantees that 
E(V/m) ≤ α, whereas testing each comparison at 
α/m guarantees P(V ≥ 1) ≤ α (Keselman, 1999). 
According to Benjamini and Hochberg (1995), 
the proportion of errors committed by falsely 
rejecting null hypotheses can be expressed 
through the random variable Q = V/(V+S), that 
is, the proportion of rejected hypotheses that are 
erroneously rejected. It is important to note that 
Q is defined to be zero when R = 0; that is, the 
error rate is zero when there are no rejections. 
The FDR was defined by Benjamini and 
Hochberg  as   the   mean   value  of  Q,  that   is, 

E(Q)

number of false rejections
.

number of total rejections
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FDR is thus the mean value of the proportion of 
falsely rejected pairwise tests to the total number 
of pairwise tests declared significant. As 
Benjamini and Hochberg indicate, this error rate 
has a number of important properties:  
 
a) If µ1 = µ2 = … = µJ, then all m pairwise 

comparisons truly equal zero and, therefore, 
the FDR is equivalent to the familywise 
error rate; that is, in the case that s = 0 and v 
= r, if v = 0, then Q = 0, and if V > 0, then Q 
= 1, and thus P(V ≥ 1)= E(Q). Therefore, 
control of the FDR implies control of the 
familywise error (Benjamini, 1995).  

 
b) When m0 < m, the FDR is smaller than or 

equal to the familywise error rate; in this 
case, if v > 1, then v/r ≤ 1, and if V = 0, then 
v/r = 0 and, thus, P(V ≥ 1) ≥ E(Q). This 
result indicates that if the familywise error 
rate is controlled for a given procedure, then 
the FDR is also controlled (Keselman, 
1999). 

 
c) v/r tends to be smaller when there are fewer 

pairs of equal means and when the unequal 
pairs are more divergent, resulting in a 
greater difference between the FDR and the 
familywise value and thus a greater 
likelihood of increased power by adopting 
FDR control. 

 
 
 
 
 
 
 
 
 
 
 

Table 1: Number of Errors Committed when 
Testing m Null Hypotheses  
(Benjamini & Hochberg, 1995) 
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Statistical Power Types 
The power of MCPs can be categorized 

for different situations. Over the years, many 
different conceptualizations of power for 
(pairwise) comparisons have appeared in the 
literature. For example, Einot and Gabriel 
(1975) considered each single subset hypothesis 
and summarized their findings for all subsets of 
a particular number of means. Einot and Gabriel 
(1975) provided results on pair power, triplet 
power, quadruplet power and quintuplet power. 
One of the methods to measure power is any-
pair power, which is defined as the probability 
of at least one rejection of a false null hypothesis 
on a pair of means.  

A second measure of power is all-pair 
power, which is defined as the probability of 
rejecting all false null hypotheses on pairs of 
means. If a single false hypothesis is considered, 
then the probability of rejecting it is called per-
pair power. Another power definition considered 
by Ramsey (Ramsey, 1978; Horn, 2000; 
Ramsey, 2002; Ramsey & Ramsey, 2008) states 
that power types are per-pair power, any-pair 
power, and all-pair power. Ramsey’s power 
types are used frequently in the literature. It 
should be noted that different names for these 
terms exist in the literature (Keselman, 2004; 
Ekenstierna, 2004). 
 

Methodology 
The LSD, Bonferroni, Dunn-Sidak, Scheffe, 
REGW-F and Q, SNK, Tukey’s a and b, 
Duncan, Hochberg’s GT2 and Gabriel 
procedures were examined via simulation 
scenarios according to error rates, power type 
and FDR for different numbers of groups, 
variances and sample sizes. The simulations 
used 4 cases and 27 scenarios for each case, and 
250 replications were made for the 108 
scenarios. Data were generated from a normal 
distribution using R software V.2.11.1 and 
analyses were performed using SPSS 17.0 for 
Windows. The four cases examined are: 
 
Case I 

Error rates were calculated for equal 
sample sizes, different numbers of groups and 
different variances: The data were generated 
from normal distributions with a mean of 40 and 
variances 2, 4 and 8. The numbers of compared 

groups (k) were 3, 5 and 7. Sample sizes were 
10, 30 and 100.   
 
Case II 

Error rates were calculated for unequal 
sample sizes, different numbers of groups and 
different variances: The data were generated 
from normal distributions with a mean of 40 and 
variances 2, 4 and 8. The numbers of compared 
groups (k) were 3, 5 and 7. Sample sizes were 
chosen from 10/12/14/16/18/20/22, 30/35/40/ 
45/50/55/60 and 100/110/120/130/140/150/160 
for group numbers 3, 5 and 7, respectively. 
 
Case III 

Power-type and FDR calculation for 
equal sample sizes, different numbers of groups 
and different variances: The data were generated 
from normal distributions with means of 
40/40/42/44/46/48/50 (the first two means are 
the same due to the FDR calculation) for groups 
and variances 2, 4 and 8. The numbers of 
compared groups (k) were 3, 5 and 7. Sample 
sizes were 10, 30 and 100 
 
Case IV 

Power-type and FDR calculation for 
non-equal sample sizes, different numbers of 
groups and different variances: The data were 
generated from normal distributions with means 
of 40/40/42/44/46/48/50 (the first two means are 
the same because of the FDR calculation) for 
groups and variances 2, 4 and 8. The numbers of 
compared groups (k) were 3, 5 and 7. Sample 
sizes were chosen from 10/12/14/16/18/20/22, 
30/35/40/45/50/55/60 and 100/110/120/130/140/ 
150/160 for group sizes 3, 5, and 7, respectively. 
 

Results 
Simulation results for error rates are shown in 
Tables 2-5, and the power-type and FDR results 
are summarized in Table 6. When the number of 
groups is small, for both equal and unequal 
sample sizes, the LSD and Duncan error rates 
are higher than the other MCPs; the other MCP 
error rates are very similar. Although the 
number of groups is increasing, the familywise 
error rates are highest with the LSD and Duncan 
procedures and are lowest with the Scheffe. In 
addition, the comparisonwise error rates of the 
LSD and Duncan procedures are the highest and 
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the Bonferroni, Dunn-Sidak and Scheffe error 
rates are the lowest for both equal and unequal 
sample sizes.  

For a small number of groups and equal 
and unequal sample sizes, the LSD, Duncan and 
REGW-F procedures have the highest per-pair 
power and all-pair power. As the number of 
groups increases, the LSD, Duncan and SNK 
procedures have the highest per-pair power. The 
Scheffe per-pair power is the lowest among all 
the MCPs. For a large sample size, the per-pair 
power and all-pair power of all the MCPs are 
very close.  

The three highest MCP any-pair powers 
are those for the LSD, Duncan and REGW-F 
procedures for small groups. As the number of 
groups increases, all the MCP powers reach their 
highest values for equal and unequal sample 
sizes. 

For small groups and equal and unequal 
sample sizes, the LSD, REGW-F, REGW-Q, 
SNK, Tukey’s b and Duncan procedures have 
FDR values higher than those of the other 
procedures. As the number of groups increases, 
the FDR values of all MCPs become similar. 
Also, as the number of comparisons increases, 
the FDR decreases. 
 
Discussion 

MCPs were studied in terms of the 
familywise error rate for equal and unequal 
sample sizes; the Duncan’s and the LSD’s 
familywise error rates were very high. For both 
procedures, when the number of groups 
increased, the familywise error rate also 
increased. For a large number of groups, the 
Scheffe procedure has the lowest familywise 
error rate of all the MCPs and was not affected 
by the change in the sample sizes. 

The familywise error rates of the 
Bonferroni, Dunn-Sidak, Gabriel and 
Hochberg’s GT2 procedures were low and 
similar to each other for small numbers of 
groups. When the number of groups was 
increased, the familywise error rates of the LSD 
and Duncan procedures were the highest.The 
Scheffe procedure was the lowest of all the 
MCPs. 

The FWE values of REGW-F, REGW-
Q, SNK, Tukey’s a and b, Gabriel and 
Hochberg’s GT2 procedures were similar. 

There was no significant change in the 
MCP familywise error rates due to an increase 
or decrease in number of groups, with the 
exceptions of the LSD and Duncan procedures. 
There also was no significant change in the 
familywise   error   rate   for   any   MCP   due to 
changes in sample size. Based on the 
homogeneity of variance assumption, changes in 
variance were not considered to have a serious 
an effect on familywise error rate. 

According to comparisonwise error rate 
results for equal and unequal sample sizes, the 
familywise error rates of the LSD and the 
Duncan procedures were higher than those of 
other procedures. The comparisonwise error rate 
of the LSD procedure was not greatly affected 
by changes in group number. Conversely, the 
Duncan comparisonwise error rate significantly 
increased with increases in group number. For 
equal and unequal sample sizes, the Bonferroni, 
Dunn-Sidak and Scheffe procedures generally 
had the lowest comparisonwise error rates. 

There were no significant changes in the 
comparisonwise error rates of these procedures 
due to increases in group number. The 
comparisonwise error rates of the REGW-F, 
REGW-Q, SNK, Tukey’s a and b, Gabriel and 
Hochberg’s GT2 procedures were not as low as 
those of the Bonferroni, Dunn-Sidak and Scheffe 
procedures, however, they were lower than those 
of the LSD and Duncan procedures. The 
comparisonwise REGW-Q error rate was lower 
than the LSD error rate. There were no 
significant changes in comparisonwise error rate 
because of the increases in group number; in 
addition, there was no significant change in the 
comparisonwise error rate of any MCP because 
of the changes in sample size and variance. 

The per-pair power of all MCPs 
increased as variance decreased and as sample 
size increased for equal and unequal sample 
sizes. Furthermore, the per-pair powers of all 
MCPs increased with the increase of group 
number. The LSD, Duncan and REGW-F 
procedures had the highest per-pair power for a 
small number of groups and a small sample size.  

With larger group numbers and sample 
sizes, the LSD, Duncan and SNK procedures 
had the highest per-pair powers  and the  Scheffe 
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Table 2: Familywise Error Rates Results for Equal Sample Size 

 

Number of Groups 3 

ni:10/10/10 ni:30/30/30 ni:100/100/100 

σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 
LSD 0.116 0.108 0.120 0.136 0.096 0.088 0.080 0.132 0.128 

Bonferroni 0.020 0.028 0.032 0.036 0.036 0.036 0.028 0.040 0.036 
Dunn-Sidak 0.020 0.028 0.032 0.036 0.036 0.036 0.028 0.040 0.036 

Scheffe 0.020 0.028 0.028 0.036 0.032 0.032 0.020 0.036 0.028 
REGW - F 0.032 0.032 0.040 0.036 0.040 0.040 0.032 0.044 0.032 
REGW - Q 0.024 0.032 0.048 0.036 0.036 0.040 0.040 0.044 0.048 

SNK 0.028 0.032 0.048 0.036 0.036 0.040 0.040 0.044 0.048 
Tukey a 0.024 0.036 0.052 0.040 0.040 0.044 0.044 0.048 0.056 
Tukey b 0.028 0.032 0.048 0.036 0.036 0.040 0.040 0.044 0.048 
Duncan 0.076 0.072 0.096 0.092 0.068 0.076 0.056 0.104 0.092 

Hochberg’s GT2 0.020 0.028 0.040 0.036 0.036 0.036 0.028 0.044 0.036 
Gabriel 0.020 0.028 0.040 0.036 0.036 0.036 0.028 0.044 0.036 

 Number of Groups 5 

 ni:10/10/10/10/10 ni:30/30/30/30/30 ni:100/100/100/100/100 
LSD 0.240 0.196 0.196 0.212 0.216 0.188 0.244 0.184 0.236 

Bonferroni 0.032 0.028 0.028 0.028 0.044 0.032 0.032 0.024 0.044 
Dunn-Sidak 0.032 0.028 0.028 0.028 0.044 0.032 0.032 0.032 0.048 

Scheffe 0.024 0.016 0.012 0.004 0.020 0.008 0.008 0.012 0.016 
REGW - F 0.040 0.040 0.032 0.060 0.064 0.048 0.048 0.032 0.052 
REGW - Q 0.040 0.044 0.032 0.032 0.052 0.052 0.044 0.032 0.048 

SNK 0.040 0.044 0.032 0.032 0.052 0.056 0.044 0.032 0.048 
Tukey a 0.040 0.044 0.032 0.032 0.052 0.052 0.044 0.032 0.048 
Tukey b 0.040 0.044 0.032 0.032 0.052 0.056 0.044 0.032 0.048 
Duncan 0.168 0.132 0.136 0.160 0.148 0.140 0.168 0.132 0.160 

Hochberg’s GT2 0.044 0.040 0.036 0.032 0.044 0.032 0.040 0.036 0.048 
Gabriel 0.032 0.032 0.028 0.028 0.044 0.032 0.032 0.032 0.048 

 Number of Groups 7 

 ni:10/10/10/10/10/10/10 ni:30/30/30/30/30/30/30 ni:100/100/100/100/100/100/100 
LSD 0.436 0.436 0.464 0.424 0.420 0.408 0.436 0.432 0.400 

Bonferroni 0.036 0.024 0.040 0.044 0.032 0.064 0.044 0.024 0.052 
Dunn-Sidak 0.036 0.028 0.040 0.044 0.032 0.068 0.044 0.028 0.052 

Scheffe 0.008 0.004 0.016 0.016 0.012 0.016 0.004 0.004 0.008 
REGW - F 0.048 0.028 0.044 0.048 0.032 0.048 0.052 0.036 0.044 
REGW - Q 0.048 0.020 0.036 0.048 0.040 0.068 0.044 0.028 0.048 

SNK 0.048 0.020 0.036 0.048 0.040 0.068 0.044 0.028 0.048 
Tukey a 0.052 0.040 0.056 0.052 0.052 0.076 0.052 0.040 0.060 
Tukey b 0.048 0.020 0.036 0.048 0.044 0.068 0.044 0.028 0.048 
Duncan 0.220 0.184 0.248 0.232 0.216 0.208 0.248 0.200 0.196 

Hochberg’s GT2 0.036 0.028 0.040 0.044 0.032 0.072 0.044 0.028 0.052 
Gabriel 0.036 0.028 0.040 0.044 0.036 0.072 0.044 0.028 0.052 
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Table 3: Familywise Error Rates Results for Unequal Sample Size 

 

Number of Groups 3 

ni:10/12/14 ni:30/35/40 ni:100/110/120 

σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 
LSD 0.132 0.124 0.084 0.124 0.172 0.140 0.116 0.080 0.128 

Bonferroni 0.024 0.036 0.020 0.044 0.056 0.048 0.052 0.024 0.024 
Dunn-Sidak 0.028 0.036 0.020 0.044 0.056 0.048 0.052 0.024 0.024 

Scheffe 0.020 0.032 0.008 0.036 0.056 0.040 0.044 0.020 0.024 
REGW - F 0.028 0.048 0.024 0.056 0.068 0.044 0.044 0.036 0.028 
REGW - Q 0.024 0.032 0.016 0.036 0.052 0.044 0.044 0.020 0.024 

SNK 0.036 0.032 0.020 0.056 0.068 0.052 0.052 0.032 0.024 
Tukey a 0.044 0.040 0.028 0.060 0.076 0.048 0.060 0.036 0.028 
Tukey b 0.040 0.032 0.020 0.056 0.068 0.052 0.052 0.032 0.024 
Duncan 0.092 0.088 0.056 0.092 0.128 0.108 0.080 0.060 0.084 

Hochberg’s GT2 0.032 0.032 0.020 0.044 0.064 0.044 0.048 0.024 0.024 
Gabriel 0.032 0.032 0.020 0.044 0.064 0.044 0.048 0.024 0.024 

 Number of Groups 5 

 ni:10/12/14/16/18 ni:30/35/40/45/50 ni:100/110/120/130/140 
LSD 0.240 0.188 0.200 0.188 0.240 0.280 0.224 0.224 0.240 

Bonferroni 0.032 0.040 0.024 0.028 0.032 0.036 0.024 0.044 0.032 
Dunn-Sidak 0.032 0.040 0.024 0.028 0.032 0.040 0.024 0.044 0.032 

Scheffe 0.012 0.024 0.012 0.016 0.000 0.016 0.012 0.024 0.012 
REGW - F 0.032 0.036 0.028 0.032 0.036 0.040 0.028 0.044 0.040 
REGW - Q 0.020 0.032 0.016 0.024 0.020 0.020 0.020 0.044 0.024 

SNK 0.028 0.032 0.020 0.032 0.036 0.056 0.032 0.056 0.032 
Tukey a 0.036 0.036 0.024 0.036 0.028 0.052 0.032 0.056 0.032 
Tukey b 0.028 0.032 0.020 0.032 0.036 0.056 0.032 0.056 0.032 
Duncan 0.136 0.128 0.128 0.128 0.152 0.204 0.140 0.164 0.152 

Hochberg’s GT2 0.036 0.028 0.024 0.028 0.032 0.044 0.028 0.044 0.036 
Gabriel 0.032 0.028 0.024 0.028 0.028 0.040 0.028 0.044 0.032 

 Number of Groups 7 

 ni:10/12/14/16/18/20/22 ni:30/35/40/45/50/55/60 ni:100/110/120/130/140/150/160 
LSD 0.396 0.444 0.488 0.436 0.408 0.432 0.444 0.408 0.468 

Bonferroni 0.024 0.044 0.040 0.040 0.012 0.032 0.024 0.028 0.036 
Dunn-Sidak 0.024 0.044 0.044 0.040 0.016 0.032 0.024 0.028 0.036 

Scheffe 0.012 0.020 0.012 0.012 0.004 0.000 0.000 0.012 0.004 
REGW - F 0.048 0.048 0.044 0.032 0.028 0.044 0.032 0.032 0.036 
REGW - Q 0.020 0.032 0.012 0.028 0.020 0.024 0.012 0.020 0.024 

SNK 0.040 0.052 0.068 0.052 0.020 0.036 0.028 0.028 0.044 
Tukey a 0.036 0.056 0.100 0.068 0.024 0.036 0.044 0.036 0.052 
Tukey b 0.040 0.052 0.068 0.052 0.020 0.036 0.028 0.028 0.044 
Duncan 0.204 0.244 0.232 0.228 0.216 0.224 0.196 0.204 0.212 

Hochberg’s GT2 0.032 0.044 0.084 0.044 0.016 0.032 0.024 0.028 0.040 
Gabriel 0.032 0.044 0.080 0.044 0.016 0.032 0.024 0.028 0.040 
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Table 4: Comparisonwise Error Rates Results for Equal Sample Size 

 

Number of Groups 3 

ni:10/10/10 ni:30/30/30 ni:100/100/100 

σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 
LSD 0.048 0.048 0.055 0.057 0.048 0.039 0.040 0.063 0.061 

Bonferroni 0.011 0.011 0.011 0.016 0.021 0.016 0.015 0.015 0.017 
Dunn-Sidak 0.011 0.011 0.011 0.016 0.021 0.016 0.015 0.015 0.017 

Scheffe 0.011 0.011 0.009 0.015 0.019 0.015 0.009 0.012 0.013 
REGW - F 0.013 0.016 0.020 0.020 0.024 0.019 0.016 0.024 0.019 
REGW - Q 0.009 0.016 0.023 0.019 0.020 0.017 0.019 0.023 0.024 

SNK 0.012 0.016 0.023 0.019 0.020 0.017 0.019 0.023 0.024 
Tukey a 0.012 0.015 0.019 0.020 0.023 0.019 0.020 0.017 0.025 
Tukey b 0.011 0.016 0.020 0.017 0.019 0.017 0.017 0.019 0.021 
Duncan 0.029 0.029 0.039 0.040 0.033 0.031 0.024 0.045 0.039 

Hochberg’s GT2 0.011 0.011 0.013 0.016 0.021 0.016 0.015 0.015 0.017 
Gabriel 0.011 0.011 0.013 0.016 0.021 0.016 0.015 0.015 0.017 

 Number of Groups 5 

 ni:10/10/10/10/10 ni:30/30/30/30/30 ni:100/100/100/100/100 
LSD 0.058 0.050 0.048 0.053 0.048 0.044 0.048 0.042 0.055 

Bonferroni 0.004 0.006 0.007 0.005 0.007 0.006 0.004 0.004 0.008 
Dunn-Sidak 0.004 0.006 0.007 0.005 0.007 0.006 0.004 0.004 0.008 

Scheffe 0.005 0.004 0.006 0.002 0.008 0.002 0.002 0.002 0.003 
REGW - F 0.013 0.010 0.008 0.022 0.031 0.018 0.016 0.007 0.014 
REGW - Q 0.009 0.012 0.008 0.016 0.027 0.020 0.013 0.007 0.012 

SNK 0.012 0.012 0.008 0.016 0.027 0.022 0.014 0.007 0.013 
Tukey a 0.010 0.013 0.012 0.017 0.021 0.020 0.012 0.008 0.013 
Tukey b 0.009 0.011 0.008 0.015 0.027 0.020 0.013 0.007 0.012 
Duncan 0.060 0.054 0.042 0.070 0.069 0.057 0.065 0.044 0.059 

Hochberg’s GT2 0.008 0.011 0.012 0.016 0.018 0.012 0.011 0.009 0.013 
Gabriel 0.006 0.010 0.010 0.014 0.018 0.012 0.009 0.007 0.012 

 Number of Groups 7 

 ni:10/10/10/10/10/10/10 ni:30/30/30/30/30/30/30 ni:100/100/100/100/100/100/100 
LSD 0.052 0.047 0.057 0.054 0.045 0.050 0.053 0.049 0.050 

Bonferroni 0.002 0.001 0.003 0.003 0.002 0.004 0.003 0.001 0.004 
Dunn-Sidak 0.002 0.001 0.003 0.003 0.002 0.004 0.003 0.002 0.005 

Scheffe 0.003 0.003 0.002 0.003 0.004 0.004 0.000 0.000 0.005 
REGW - F 0.014 0.010 0.014 0.018 0.012 0.020 0.022 0.012 0.023 
REGW - Q 0.013 0.007 0.010 0.013 0.014 0.022 0.018 0.005 0.024 

SNK 0.016 0.010 0.010 0.013 0.016 0.026 0.018 0.005 0.028 
Tukey a 0.013 0.008 0.011 0.013 0.030 0.018 0.012 0.006 0.022 
Tukey b 0.013 0.007 0.009 0.013 0.018 0.022 0.017 0.005 0.024 
Duncan 0.106 0.074 0.100 0.114 0.095 0.083 0.097 0.083 0.099 

Hochberg’s GT2 0.012 0.007 0.007 0.011 0.011 0.018 0.012 0.004 0.016 
Gabriel 0.012 0.007 0.007 0.011 0.016 0.018 0.012 0.004 0.016 



EXAMINING MULTIPLE COMPARISON PROCEDURES 

356 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Comparisonwise Error Rates Results for Unequal Sample Size 

 

Number of Groups 3 

ni: 10/12/14 ni: 30/35/40 ni: 100/110/120 

σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 2 σ2 = 4 σ2 = 8 
LSD 0.051 0.053 0.033 0.049 0.075 0.075 0.052 0.045 0.052 

Bonferroni 0.011 0.017 0.007 0.015 0.024 0.024 0.019 0.011 0.008 
Dunn-Sidak 0.012 0.017 0.007 0.016 0.024 0.025 0.019 0.011 0.008 

Scheffe 0.009 0.016 0.003 0.012 ᘁ� Ĥ 0.021 0.016 0.009 0.008 
REGW - F 0.013 0.023 0.012 0.025 0.033 0.024 0.024 0.019 0.012 
REGW - Q 0.011 0.015 0.008 0.013 0.020 0.024 0.024 0.009 0.009 

SNK 0.015 0.015 0.009 0.025 0.028 0.028 0.027 0.016 0.011 
Tukey a 0.017 0.019 0.011 0.021 0.031 0.027 0.021 0.015 0.009 
Tukey b 0.016 0.013 0.008 0.021 0.024 0.024 0.023 0.011 0.009 
Duncan 0.035 0.037 0.023 0.039 0.052 0.051 0.037 0.027 0.032 

Hochberg’s GT2 0.013 0.016 0.007 0.016 0.027 0.024 0.017 0.011 0.008 
Gabriel 0.013 0.016 0.007 0.016 0.027 0.024 0.017 0.011 0.008 

 Number of Groups 5 

 ni: 10/12/14/16/18 ni: 30/35/40/45/50 ni: 100/110/120/130/140 
LSD 0.053 0.047 0.043 0.047 0.054 0.057 0.050 0.050 0.054 

Bonferroni 0.006 0.006 0.004 0.005 0.006 0.006 0.003 0.007 0.006 
Dunn-Sidak 0.006 0.006 0.004 0.005 0.006 0.006 0.003 0.007 0.006 

Scheffe 0.004 0.005 0.005 0.007 0.001 0.006 0.004 0.006 0.003 
REGW - F 0.013 0.016 0.010 0.011 0.009 0.016 0.010 0.013 0.012 
REGW - Q 0.006 0.010 0.006 0.010 0.005 0.008 0.008 0.009 0.010 

SNK 0.012 0.016 0.012 0.014 0.010 0.017 0.012 0.012 0.011 
Tukey a 0.014 0.010 0.010 0.014 0.008 0.015 0.010 0.013 0.009 
Tukey b 0.011 0.012 0.010 0.012 0.010 0.017 0.012 0.012 0.011 
Duncan 0.054 0.057 0.043 0.059 0.053 0.065 0.062 0.055 0.048 

Hochberg’s GT2 0.014 0.008 0.010 0.013 0.009 0.014 0.010 0.012 0.011 
Gabriel 0.013 0.007 0.009 0.012 0.007 0.012 0.009 0.010 0.009 

 Number of Groups 7 

 ni: 10/12/14/16/18/20/22 ni: 30/35/40/45/50/55/60 ni: 100/110/120/130/140/150/160 
LSD 0.050 0.052 0.063 0.049 0.040 0.046 0.049 0.046 0.055 

Bonferroni 0.002 0.002 0.003 0.003 0.001 0.002 0.002 0.002 0.002 
Dunn-Sidak 0.002 0.002 0.003 0.004 0.001 0.002 0.002 0.002 0.002 

Scheffe 0.005 0.003 0.002 0.002 0.000 0.000 0.000 0.005 0.000 
REGW - F 0.017 0.013 0.007 0.006 0.006 0.013 0.013 0.012 0.012 
REGW - Q 0.008 0.008 0.002 0.005 0.005 0.011 0.002 0.010 0.005 

SNK 0.024 0.021 0.018 0.011 0.005 0.013 0.005 0.018 0.008 
Tukey a 0.016 0.014 0.016 0.011 0.004 0.012 0.006 0.014 0.007 
Tukey b 0.021 0.017 0.016 0.010 0.004 0.013 0.005 0.014 0.008 
Duncan 0.115 0.097 0.084 0.083 0.071 0.083 0.093 0.078 0.086 

Hochberg’s GT2 0.012 0.012 0.014 0.008 0.003 0.010 0.002 0.010 0.005 
Gabriel 0.012 0.012 0.014 0.008 0.003 0.010 0.002 0.010 0.005 
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procedure has the lowest per-pair power. The 
per-pair power of the REGW-Q procedure was 
not as powerful as the LSD or Duncan 
procedures; also, the SNK per-pair power was 
similar to the LSD and Duncan procedures. The 
power of the Bonferroni, Dunn-Sidak, Gabriel 
and Hochberg GT2 procedures were very close 
and the REGW-F, REGW-Q, and Tukey’s a and 
b procedures are close for equal and unequal 
sample sizes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Like per-pair, any-pair and all-pair 

powers increased as variance decreased and as 
sample size increased. If the group number and 
sample sizes were small, the LSD, Duncan and 
REGW-F procedures had high any-pair powers 
and the Scheffe procedure had the lowest any-
pair power. As the number of groups increased, 
any-pair power reached its highest level. 

All-pair-power decreased as the number 
of groups and the variance both increased. When 
sample  size  and  number  of groups were small,  

Table 6: Power and FDR Results of MCPs According to Variance, Number of Groups and Sample Size* 

n σ2 
Per-Pair Power Any-Pair Power 

k=3 k=5 k=7 k=3 k=5 k=7 

ni = … = nj = 10 

2 .712-.854 .769-.942 .795-.961 .864-.932 1.00-1.00 1.00-1.00 

4 .366-.566 .598-.817 .674-.879 .492-.696 1.00-1.00 1.00-1.00 

8 .180-.330 .397-.666 .504-.771 .284-.476 1.00-1.00 1.00-1.00 

ni = … = nj = 30 

2 .996-.996 .996-1.00 .991-1.00 .996-.996 1.00-1.00 1.00-1.00 

4 .898-.960 .889-.987 .881-.993 .968-.996 1.00-1.00 1.00-1.00 

8 .614-.774 .702-.894 .753-.932 .752-.876 1.00-1.00 1.00-1.00 

ni = … = nj = 100 

2 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

4 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

8 .992-1.00 .987-.999 .978-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

ni ≠ … ≠ nj 
10/12/14/16/ 

18/20/22 

2 .858-.932 .873-.977 .892-.993 .948-.980 1.00-1.00 1.00-1.00 

4 .444-.664 .669-.886 .762-.939 .620-.820 1.00-1.00 1.00-1.00 

8 .246-.432 .519-.746 .624-.841 .380-.588 .996-1.00 1.00-1.00 

ni ≠ … ≠ nj 
30/35/40/45/ 

50/55/60 

2 1.00-1.00 .999-1.00 .999-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

4 .968-.990 .946-.996 .953-.999 1.00-1.00 1.00-1.00 1.00-1.00 

8 .732-.866 .789-.949 .821-.970 .864-.948 1.00-1.00 1.00-1.00 

ni ≠ … ≠ nj 
100/110/120/ 

130/140/150/160 

2 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

4 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

8 .996-1.00 .996-1.00 .993-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

*Results are summarized with minimum and maximum values (min-max) 
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the LSD, Duncan and REGW-F procedures had 
the highest power and the Scheffe procedure had 
the lowest power. As the number of groups 
increased, the LSD, Duncan and SNK 
procedures had the highest all-pair powers and 
the Scheffe procedure has the lowest all-pair 
power for both equal and unequal sample sizes.  

For small groups and equal and unequal 
sample sizes, the LSD, REGW-F, REGW-Q, 
SNK, Tukey’s b and Duncan FDR values were 
higher  than  the other values.  As the  number of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
groups increased all MCPs become closer and, 
as the number of comparisons increased, the 
FDR gets smaller.  

The familywise error rates of the SNK 
and REGW-Q procedures were not as high as 
those of the LSD and Duncan procedures. 
Similarly, for the comparisonwise error rate, the 
LSD and Duncan procedures had the highest 
rates, whereas the Scheffe, Bonferroni and 
Dunn-Sidak procedures had the smallest rates. 
The LSD, Duncan and SNK procedures had the 

Table 6 (continued): Power and FDR Results of MCPs According to Variance, Number of Groups and Sample 
Size* 

n σ2 
All-Pair-Power False Discovery Rate 

k=3 k=5 k=3 k=5 k=3 k=5 

ni = … = nj = 10 

2 .560-.776 .044-.564 .560-.776 .044-.564 .560-.776 .044-.564 

4 .240-.436 .000-.092 .240-.436 .000-.092 .240-.436 .000-.092 

8 .076-.196 .000-.004 .076-.196 .000-.004 .076-.196 .000-.004 

ni = … = nj = 30 

2 .996-.996 .968-1.00 .996-.996 .968-1.00 .996-.996 .968-1.00 

4 .828-.924 .276-.884 .828-.924 .276-.884 .828-.924 .276-.884 

8 .476-.672 .000-.292 .476-.672 .000-.292 .476-.672 .000-.292 

ni = … = nj = 100 

2 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

4 1.00-1.00 .996-1.00 1.00-1.00 .996-1.00 1.00-1.00 .996-1.00 

8 .984-1.00 .888-.992 .984-1.00 .888-.992 .984-1.00 .888-.992 

ni ≠ … ≠ nj 
10/12/14/16/ 

18/20/22 

2 .768-.884 .232-.812 .768-.884 .232-.812 .768-.884 .232-.812 

4 .264-.508 .000-.284 .264-.508 .000-.284 .264-.508 .000-.284 

8 .112-.296 .000-.012 .112-.296 .000-.012 .112-.296 .000-.012 

ni ≠ … ≠ nj 
30/35/40/45/ 

50/55/60 

2 1.00-1.00 .992-1.00 1.00-1.00 .992-1.00 1.00-1.00 .992-1.00 

4 .936-.980 .616-.964 .936-.980 .616-.964 .936-.980 .616-.964 

8 .592-.784 .044-.592 .592-.784 .044-.592 .592-.784 .044-.592 

ni ≠ … ≠ nj 
100/110/120/ 

130/140/150/160 

2 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

4 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00 

8 .992-1.00 .968-.100 .992-1.00 .968-.100 .992-1.00 .968-.100 

*Results are summarized with minimum and maximum values (min-max) 
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highest powers, whereas the Scheffe procedure 
had the lowest power.  

The any-pair powers of the LSD and 
Duncan procedures were high, but the Scheffe 
power was low due to small sample size and 
number of groups; power reached its maximum 
value as the number of groups increased. The 
all-pair powers of the LSD, Duncan, REGW-F, 
REGW-Q, SNK and Tukey’s a and b procedures 
were the highest, but the Scheffe power was the 
lowest due to small sample size and number of 
groups. As the number of groups increased, the 
LSD, Duncan and SNK procedures had the 
highest power and the Scheffe procedure had the 
lowest power. FDR values of the LSD, REGW-
F, REGW-Q, SNK and Duncan procedures were 
higher than those of the other procedures for low 
number of groups. 

 
Conclusion 

Findings from this study that differed from the 
literature were: (1) the SNK procedure is as 
robust as the LSD and Duncan procedures for 
controlling the error rate (Bernhardson, 1975; 
Curran-Everett, 2000; Maxwell, 2004), and (2) 
the REGW-Q procedure is as robust as the LSD 
for CWE (Menéndez De La Fuente, 1999). 

Based on study results, the LSD and 
Duncan procedures are not recommended due to 
high error rates. The Scheffe procedure is not 
recommended due to its low power. There were 
no remarkable differences between the other 
procedures, thus, it is not possible to recommend 
one specific pairwise MCP for all situations that 
applied researchers may encounter. 
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