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On Some Negative Integer Moments of Quasi-Negative-Binomial Distribution 
 

Anwar Hassan Sheikh Bilal 
King Saud University 

Riyadh, Kingdom of Saudi Arabia 
A. S. College, Srinagar 

Kashmir, India 
 

 
Negative integer moments of the quasi-negative-binomial distribution (QNBD) are investigated. This 
distribution includes recurrence relations which are helpful in the solution of many applied statistical 
problems, particularly in life testing and survey sampling, where ratio estimators are useful. Results study 
show the negative-binomial distribution when the parameter 2θ  is zero and also indicate the mean of the 

QNBD model when its parameters are changed. 
 
Key words: Quasi-negative-binomial distribution, recurrence relations, Abel series expansion, negative-

binomial distribution. 
 
 

Introduction 

The quasi-negative-binomial distribution 
(QNBD) was introduced in different forms by 
Janardan (1975), Nandi and Das (1994) and Sen 
and Jain (1996) but has not been studied in 
detail. The discrete probability function of the 
QNBD is given by 
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distribution.     When    2θ      is   negative,     the 
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probabilities of the QNBD model become 
negative. In addition, there appears to be a 
natural truncation for x , for which 

0),,a(P 21x =θθ ; however, this has not been 

verified and requires a detailed error analysis, 
which is not included herein. 

The QNBD model reduces to a 
negative-binomial distribution (NBD) model at

02 =θ . It appears from the model that the β  

parameter in Greenwood and Yule’s (1920) 
NBD model was replaced by )x( 21 θθ + , where 

x  is the number of occurrences; this implies 
that, with successive occurrences, there is some 
changing tendency in the 1θ  parameter. 

Hassan and Bilal (2008) explored the 
properties of the QNBD model (1.1) with mean 
and variance obtained in a hypergeometric 
function given as 
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where ]_;,1a,1[F 202 θ+  is a hypergeometric 

function defined by 
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Hassan and Bilal (2006) found 

applications for the QNBD model in queuing 
theory, theories of microorganisms and biology. 
They investigated the distribution of numbers of 
accidents as a QNBD model using Irwin’s 
(1968) theory of proneness-liability model and 
then applied the model to hunting accidents, 
home injuries and strikes in industries; they 
obtained better model fits than Consul and Jain’s 
(1973),  using a generalized Poisson distribution 
(GPD) model. 

A difficulty with the QNBD model is 
that its moments appear in an infinite series, 
which does not seem to converge to an 
expression that will produce moment estimators. 
This article investigates negative integer 
moments of the QNBD. This distribution 
includes recurrence relations which are helpful 
in the solution of many applied statistics 
problems. Results from this study show the 
negative-binomial distribution when the 
parameter 2θ  is zero and indicate the mean of 

the QNBD model when its parameters are 
changed. 
 
Negative Integer Moments 

Suppose that s
1s ]kx[E),a,k( −+=θφ  

denotes the sth negative integer moments of the 
QNBD model (1.1), then the following results 
on the negative integer moments are true for the 
proposed model: 
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Proof 

Taking the summation of (1.1) and 
differentiating it with respect to 1θ , results in the 

simplification 
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and writing )()x()1x( 21212 θθθθθ +−+=− , 

results in 
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After rearranging the terms in the equation result 
(1.4) follows. Similarly, result (1.5) can be 
obtained by differentiating (1.14) with respect to 

1θ  and simplifying the resulting equation. The 

results represented by (1.4) and (1.5) can also be 
obtained from recurrence relation (1.6), which is 
proven by: 
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where ),,a(P 21x θθ  is defined by (1.1). Replacing 

x  with )1x( +  in the second component of the 
equation results in: 
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which gives recurrence relation (1.6). To prove 
result (1.7), take the summation of QNBD model 
(1.1) with parameters ),,1a( 21 θθ+  to yield: 
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Rewriting this equation as  
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and writing )xa(2 +θ  as a sum of two 

components )x1( 21 θθ ++  and )1a( 12 −−θθ , 

results in 
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Rearranging the terms in the equation result 
(1.7) follows. Taking the summation of the 
QNBD model with parameters ),,2a( 21 θθ+  and 

proceeding in the same way, result (1.6) is 
obtained. To prove recurrence relation (1.9): 
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and writing 22121 )xa()a()x( θθθθθ ++−=+ , 

results in the simplification: 
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After rearranging the terms in the equation result 
(1.9) follows. The results (1.10), (1.11) and 
(1.12) are straightforward and can be obtained in 
a similar way, however, for recurrence relation 
(1.13): 
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and replacing x  by )1x( +  in the equation 
above results in 
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Charalambidies (1990) examined an 

extension of the class of power series 
distributions and obtained a discrete class of 
Abel series distributions. He also explored its 
properties with an application to the fluctuations 
of sample function of stochastic process. Nandi 
and Das (1994) also obtained a class of Abel 
series distributions. Hassan and Bilal (2008) 
showed that the QNBD model belongs to a 
family of Abel series distributions by taking the 
Abel series expansion of a)rc( −−  given as 
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The expression in (1.15) gives the sum of the 
QNBD model, which is equal to unity. The 
following results, obtained on the basis of 
(1.15), are proven as: 
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Proof 

Integrating (1.15) with respect to r , 
results in 
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Expressing the equation in terms of 1θ  and 2θ
results in 
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the result (1.16) follows based on 
simplifications. Again, integrating (1.21) with 
respect to r , result (1.17) is obtained. Result 
(1.15) follows from (1.13) and (1.14) by using 
the relation 
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Expressing the equation above in terms of 1θ  
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Rearranging the terms in the equation result 
(1.19) follows. Integrating (1.22) with respect to
c  and proceeding in the same way results in 
(1.20).  

Another useful set of recurrence 
relations on the negative integer moments of the 
QNBD model from which a number of 
important results can be deduced are  
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where ),a(G 1θ and ),1a(G 1θ+ are defined as 
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(1.26) 
 
Proof 

First, result (1.23) is proven, which is 
subsequently required in the derivation of (1.24). 
Writing  
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simplifies to 
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Writing )kx()ka()xa( ++−=+  and

)kx()k()x( 22121 ++−=+ θθθθθ  in the second 

component of the equation results in 
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Rearranging the terms, results in (1.23). To 
prove (1.24), suppose 
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(1.27) 
 
Writing 
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results in 
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and differentiating the equation with respect to

1θ , results in 
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where 
 

1 2
1 2

0 1 1 2

( )

( )( )( )
( , , )

(1 )

s

x
x

U x

a x xx k x P a
x

θ θ θ θ
θ θ θ

−∞

=

′ =

 + ++ − + + 

 
Writing 
 

)kx()k()x( 22121 ++−=+ θθθθθ  

 
in the equation results in 
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Using this equation in (1.28) results in 
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Rearranging the terms, 
 

'1 2
1

1

1 2
12

1

1 2
1 12

1

'2
1 1

1

1 2
1

1

2
1 1

1

( )
( , , )

( )
( , , )

( )
( , , )

( , , )

( )
( , 1, )

( , 1, )

s

s

s

s

s

s

k k a

k k a

k a

k a

a k k a

a k a

θ θ ϕ θ
θ
θ θ ϕ θ
θ

θ θ ϕ θ
θ

θ ϕ θ
θ

θ θ ϕ θ
θ

θ ϕ θ
θ

−

−

−

− 
 
  =

+ + 
 

+ 
 
 
 − 
 
 −− + 
 
 
− + 
 

 

 

and using (1.23) results in 
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Adding similar terms results in 
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which gives the linear differential equation 
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(1.29) 
 
Where ),a(G 1θ  and ),1a(G 1θ+  are defined in 

(1.25) and (1.26) respectively. The integrating 
factor for the differential equation is 
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Simplifying this equation gives the integrating 
factor 
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Multiplying (1.29) with this integrating factor 
and integrating it with respect to 1θ  from 2kθ to

1θ , result (1.24) follows. Note that, taking 02 =θ  

in (1.24), the recurrence relation for the NBD 
model is obtained and is given by: 
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The mean of QNBD model (1.1) results in an 
infinite series which renders it useful for 
estimating parameters by a method of moments. 
Next, a couple of recurrence relations between 

two means when their parameters are changed 
are proven. Suppose ),,a( 21 θθμ  represents the 

mean of the QNBD model with parameters 
),,a( 21 θθ , then the ratio of the mean – when the 

parameter 1θ  is changed to )( 21 θθ + – to the 

mean when parameters are unchanged is 
independent of parameter a  but is equal to the 

ratio 
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θ

θθ +
, that is,  
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Proof 

The mean ),,a( 21 θθμ  of the QNBD 

model is defined as: 
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Replacing x  by )1x( +  in the equation above 
results in 
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Rewriting the equation as 
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gives (1.30) after simplifying. Expressing (1.32) 
as 
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and rearranging the terms results in (1.31).All 
results shown herein for the QNBD model are 
also true for the NBD model by taking 02 =θ . 
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