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An important assumption of ordinary regression models is independence among errors. This research 
considers the case of periodically correlated errors following the periodic AR model of order 1 (PAR(1)). 
The remedial measure for correlated errors in regression known as the Cochran-Orcutt procedure is 
generalized to the case of periodically correlated errors. The motivation for making such generalizations 
is that the response data may inhibit some seasonality, which may not be captured by the traditional 
AR(1) autoregressive model. The proposed procedure is described and the bias and MSE of the resulting 
intercept and slope parameter estimates of the simple LR model with errors following PAR(1) are 
compared with those of ordinary least squares (OLS) estimates via simulation. An application of real data 
is provided. 
 
Key words: Simple linear regression model, autoregression, periodic autoregression, Cochran-Orcutt 

procedure, autocorrelated errors. 
 
 

Introduction 
Assuming that {Y1, Y2, ..., Yn} is an observed 
time series, then, using standard regression 
analysis suitable models of {Yt} may be 
developed. For example, if {Yt} consists of a 
deterministic trend along some random error, 
then {Yt} can be modeled as 
 

Yt = TRt + εt 
 
which contains, as a special case, the linear trend 
model 
 

Yt = βo + β1t + εt , t = 1, …, n             (1) 
 
where the εt’s are usually assumed independent 

and identically distributed (iid) N(0, 2
εσ ). This 

model   can   be   generalized   to  other  types of 
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trends, for example the polynomial trend. If, 
along with the trend, {Yt} also contains some 
deterministic seasonality, then extra terms are 
added to the trend model to capture seasonality. 

The linear trend model in (1) is a special 
case of the simple linear regression (SLR) model 
 

Yt = βo + β1Xt + εt.                     (2) 
 
The inference of this model is straightforward. 
The ordinary least squares (OLS) estimators of 
βo and β1 are given by 
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where SXX =  − 2
i )X(X  and SXY = 

 −− )Y)(YX(X ii . Under the assumptions of 

independence and constant variance, oβ̂ and 1β̂  
are the best linear unbiased estimators. In 
addition, they are maximum likelihood 
estimators under the normality assumption 
(Kutner, et al., 2005). 

An important assumption of the model, 
which is frequently violated with time series 
data, is independence of errors {εt}. Therefore, 
before adopting the OLS estimates data should 
be tested for independence among errors. If the 
assumption is not satisfied, then a remedial 
measure should be taken (Kutner, et al., 2005). 
In this article a remedial measure for regression 
models with correlated errors, namely the 
Cochran-Orcutt (COR) procedure is defined and 
generalized to the case of periodically correlated 
errors. 
 
Testing for Correlated Errors 

If the assumption of independence 
among errors in the regression model is violated, 
then the standard results about OLS estimators 
and their properties are questionable. An 
important diagnostic-checking method for this 
assumption is the Durbin-Watson (DW) test, 
which is commonly used, particularly when data 
are related to time as in (1). The DW test 
assumes a first-order autoregressive (AR(1)) 
model for errors, that is 
 

εt = φεt−1 + at                          (5) 
 

where ut are assumed iid N(0, 2
aσ ) and |φ| < 1. 

The DW test examines the presence of first 
order autocorrelation among errors (φ ≠ 0) 
against the null of white noise (WN) errors (φ = 
0). The most common version of this test is for 
positive autocorrelation (φ > 0) (Bowerman, et 
al., 2005) and the test statistic is given by 
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where ttt ŶYe −= , t = 1, …, n are the residuals 
of the OLS model (Kutner, et al., 2005, p. 487). 

Although the DW test originally 
assumes an AR(1) model of errors, a significant 
result does not necessarily imply that the correct 
model of errors is AR(1) (Blattberg, 1973; 
Zinde-Walsh & Galbraith, 1991). In addition, 
many alternatives to the DW test are available, 
including the runs and the Breusch-Godfrey test 
(Breusch, 1979; Godfrey, 1978). Thus, if the 
DW test is found to be significant, the best 
model for the errors should be identified. In 
general, the errors model may be extended to the 
wider class of auto-regressive moving average 
(ARMA) models (Box, et al., 1994). Assuming 
that the errors are correlated and follow the 
AR(1) model, then suitable estimation methods 
are required; these include, but are not limited to 
the generalized least squares (GLS) method (see 
Lee & Lund, 2004) and the Cochran-Orcutt 
(COR) procedure. 

Assuming that {Yt} (and possibly {Xt}) 
is a seasonal time series (TS) with period ω, the 
SLR model (2) can be rewritten as 
 

Ykω+ν  = βo + β1Xkω+ν + εkω+ν           (6) 
 
where ν = 1, …, ω denotes the season and k 
denotes the year. In this case, if the errors in (1) 
are correlated, then they may inhibit some 
seasonality. In this case there several approaches 
exist to address the issue, which include adding 
terms to the regression model that capture 
seasonality as dummy variables, adding 
trigonometric functions or using seasonal 
ARMA models (Box, et al., 1994). 

An alternative model is the periodic 
ARMA (PARMA) model (Tiao & Grupe, 1980; 
Franses & Paap, 2004). Writing the time t in 
terms of the period ω as kω+ν, the special case 
of the zero-mean PARω(1) model is 
 

εkω+ν = φ1(ν)εkω+ν−1 + akω+ν , ν = 1, …, ω 
(7) 

 
where {akω+ν} is a zero-mean WN process with 

periodic variances )(σ2
a ν  and φ1(ν) is the AR 

parameter of season ν. If the period ω = 1, then 
this model reduces to the AR(1) model (5). It is 
assumed that this model is periodic stationary, 
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that is, 1)(
1

1 <∏ νφ
ω

=ν
 (Obeysekera & Salas, 

1986). The properties of the OLS estimates of 
the SLR model when the errors are PAR(1) were 
investigated by Smadi and Abu-Afouna (2012). 
They also developed a GLS estimation for LR 
models under this setting of errors. PARMA 
models, which were first used in hydrology, are 
suitable for modeling periodic correlations; they 
have since become common in economic and 
other areas (Obeysekera & Salas, 1986; Franses 
& Paap, 2004). 

The power of the DW test when errors 
are PAR(1) was investigated by Albertson, et al. 
(2002) who showed that the test is usually 
significant in this case. The DW test is, 
therefore, a good method to detect 
autocorrelations among errors, but it does not 
necessarily correctly identify its model (Lee & 
Lund, 2004). 

An alternative test to the DW test was 
proposed by McLeod (1995). This test is 
designed for testing periodically autocorrelated 
errors. Assuming n = mω, then the residual {et} 
is rewritten as }{e νkω+  for k = 0, ..., m–1 and ν = 

1, …, ω; thus, the season-wise residuals can be 
obtained. For example, ν = 1, {e1, eω+1, ..., e(m-

1)ω+1} are the residuals for season 1, therefore, 
the first lag sample autocorrelation for season ν 
is 

,
)1(C)(C

)(C
)(r

oo

1
1 −νν

ν
=ν  

 
where Co(ν) and C1(ν) are the sample variance 
for season ν and the first lag sample seasonal 
autocovariance of season ν, respectively, are 
given by 
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McLeod demonstrated that 

( ) ν=
ω

=ν 1

2
1 )(rnL is asymptotically distributed as a 

Chi-square with ω degrees of freedom under the 
assumption that there is no autocorrelation in the 

first lag for all seasons; thus, if 2
,L αωχ>  then it 

may be concluded that the errors are periodically 
autocorrelated. This test is implemented in R via 
the pear library (McLeod & Balcilar, 2008). 
 
Generalization of Cochran-Orcutt Procedure for 
Errors Following PAR(1) 

If error terms are autocorrelated, then 
the parameter estimation of the regression model 
is not straightforward. Assuming that the errors 
follow the AR(1) model (5), the SLR model in 
(2) is renamed as the generalized simple linear 
regression (GLR) model (Kutner, et al., 2005, p. 
484). In this case, this model can be rewritten as 
(Kutner, et al., 2005, p. 491): 
 

t
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t aXββY ++= , t = 1, ..., n         (8) 
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and 

1ttt ρεεa −−= , t = 1, ..., n              (11) 
 
where {at} is uncorrelated. Thus, (8) is a 
standard SLR model and the estimation of βo 
and β1 begins by estimating ρ, then estimating 

'
oβ  and '

1β  in (8) and finally obtaining estimates 
for βo and β1 using (10). Several methods exist 
for estimating ρ in this situation, including the 
COR and Hildreth-Lu procedures (Kutner, et al., 
2005). This study only considers the Cochrane-
Orcutt procedure, which involves an iteration of 
three steps (Kutner, et al., 2005, p. 492): 
 
1. Estimation of ρ. This is accomplished by 

noting that the autoregressive error process 
assumed in model (2) can be viewed as a 
regression through the origin: 
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t1tt aρεε += − , t = 1, ..., n. 
 

Because εt and εt-1 are unknown, residuals et 
and et-1 obtained by OLS are used as the 
response and predictor variables, 
respectively, and ρ is estimated by fitting a 
straight line through the origin so that the 
moment estimator of the slope ρ is: 
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2. Fitting of transformed model (8). Using the 

estimate ρ̂  in (12), the transformed 

variables tY′  and tX′  in (9) are obtained and 
OLS is used with these transformed 
variables to yield the fitted regression 
function as: 

t1ot Xβ̂β̂Ŷ ′′+′=′ . 
 
3. The DW test is employed to test whether the 

error terms for the transformed model are 
uncorrelated. If the test indicates that they 
are uncorrelated, the procedure terminates 

and oβ̂  and 1β̂  are obtained based on '
oβ̂  and 

'
1β̂  in the Step 2 and by using (10). 

 
4. If the DW test in Step 3 is significant, then 

steps (1)-(3) are repeated for Y’ and X’ in 
place of Y and X, and this continues until 
the DW test indicates that error terms are 
uncorrelated. 

 

5. An estimate of 2
εσ  is given by (Kutner, et 

al., 2005, p. 487) as: 
 

2

2
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ε
ρ̂1

σ̂
σ̂

−
=  

 

where 2
aσ̂  is the sample variance of 

residuals obtained from the fitted regression 
 model in Step 2. 

 

Consider the GLR model (2) with error 
terms following the zero-mean PARω(1) model 
(7). The COR procedure described is now 
generalized to the GLR model with PAR(1) 
errors. Assuming that Yt and Xt are seasonal 
time series with period ω, (2) and (7) can be 
restated as: 
 

 
a)(
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where the time k denotes the year and ν = 1, 2, 
…, ω denotes the season. 
 
Theorem 1 

The generalized regression model (13) is 
equivalent to: 
 

' ' ' '
k, 1 k, k,Y ( ) ( )X ,o aν ν ν= β ν + β ν +     (14) 

with 
'
k, k, 1 k, 1
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k, k, 1 k, 1
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Proof 1 

Substituting for Yk,ν and Yk,ν-1 form (13)  
in 1k,1k,

'
k, Y)(YY −ννν νφ−=  gives 

 
'
, 1 , ,

1 1 , 1 ,

1 1 , 1 , 1

, 1 , 1

( )

   ( )( )

(1 ( )) ( ( ) )

   ( ( ) )

k o k k

o k k
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ν− ν
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= β + β + ε
− ϕ ν β + β + ε

= β − ϕ ν + β − ϕ ν
+ ε − ϕ ν ε

 
The transformed model in (14) is a GLR 

model with errors following a seasonal white 
noise process with periodic coefficients. To 
estimate the parameters of this model note that 
(14) defines a standard regression model for 
each season separately. That is, to estimate 

),(1'
oβ  (1)'

1β  and )(a 12σ  only the data for '
k,1Y  

and '
k,1X  is used.To summarize the generalized 
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COR procedure for errors following the 
PARω(1) model: 
 
1. Using the OLS method, regress Yt on Xt to 

obtain the residuals {et}. 
 
2. Apply the DW test for autocorrelation 

among residuals; if residuals are not auto-
correlated then the procedure terminates. 

 
3. Estimate φ1(ν) by regressing Yk,ν on Xk,ν for 

each season ν= 1, 2, …, ω separately, then 

obtain the residual for each model *
,ke ν . 

Estimate φ1(ν) using: 
 

m
* *
k,ν 1 k,ν

k 1
1 m

* 2
k,ν 1

k 1

e e
ˆ ( ) .

(e )

−
=

−
=

ϕ ν =

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              (16) 

 

4. Compute '
νk,Y  and '

νk,X  using (15) and the 

estimates in (16), then regress '
νk,Y  on '

νk,X  

for data in each season ν, separately. This 
results in ),('

o νβ  )('
1 νβ  and 

 

.
2m

)(e
)(σ̂

m

1k

2'
νk,

2
a −


=ν =  

 

5. Apply the DW test on }{e'
νk,  for each 

season ν = 1, 2, …, ω. If none of the cases is 
significant then the procedure terminates. If, 
however, in some seasons the DW test is 
significant then the ordinary COR procedure 
is applied to those seasons until the DW test 
is found to be insignificant for all seasons 

 

6. Using ),('
o νβ  )('

1 νβ  and (15) find oβ̂  and 

1β̂ , which are unbiased estimators of βo and 

β1 denoted as νβoˆ  and νβ1
ˆ , ν = 1, 2, …, ω. 

 
7. Step 6 results in ω estimates of βo and β1, 

thus βo and β1 may be estimated by the 
average of these estimates: 

ω

o oν
ν 1

ω

1 1ν
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1 ˆβ  β
ω

and

1 ˆβ  β
ω

=

=

=
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                    (17) 

 
To estimate the variances of {εt}, (7) results in 
 

2 2 2 2
ε 1 ε aσ (ν) φ (ν)  σ (ν 1) σ (ν) ; ν 1, 2, ..., ω.= − + =

(18) 
 

Replacing φ1(ν) and )(a νσ 2  with the estimates 
obtained results in a system of ω equations that 
can be solved for ).(2 νσε  

It should be emphasized that the PAR 
models were chosen because they allow for 
periodic correlations between successive seasons 
that need not be homogeneous. Franses and Paap 
(2004) showed that many business time series 
data sets inhibit periodic autocorrelations. 
McLeod (1995) showed that the errors resulting 
from fitting seasonal ARMA models for several 
real-time series have periodic autocorrelations. 
Albertson and Aylen (1999) identified a PAR 
error process in modeling scrap steel market. 
Lastly, according to Osborn, et al. (1988), failure 
to allow for periodicity in time series data may 
bias specification tests and further complicate 
the modeling process. 
 
OLS and COR Estimator Comparison 

Estimates of βo and β1 for the OLS 
method and the generalized COR method are 
next discussed and compared via bias and MSE 
using Monte-Carlo simulation; the focus is on 
the estimates of βo and β1 only. For the 
simulation, an R-code was developed by the 
authors to run 2,000 repetitions each of 
realization length 4n (n = 30, 50, 100) for pairs 
of data (X, Y). The simulation ran as follows: 
 
1. Generate the predictor values Xt = t + 

2Cos(2πt/4), t = 1, …, 4n. 
 
2. Generate the errors }ε,...,ε,{ε nω11  from the 

zero mean PAR4(1) model: 
,a)( ,k1,k1,k ν−νν +ενφ=ε  with φ1(1) = –0.9, 
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φ1(2) = 0.6, φ1(3) =  0.3, φ1(4) = –0.8 and 

}{a νk, is a seasonal WN∼N(0, )(σ2
a ν ) with 

100,(1)σ2
a =  1,(2)σ2

a =  1(3)σ2
a =  and 

2
aσ (4) 10.=  

 

3. Compute Yt = 2 + 50Xt + εt; t = 1, …, 4n. 
 
4. Regress Yt on Xt to obtain the OLS 

estimates oβ̂  and 1β̂ . Apply Steps 1-7 of 
the generalized COR procedure and obtain 

oβ
~

 and 1β
~

 using (17). 

 
Based on the realizations, the bias and 

MSE of estimates βo and β1 for both the OLS 
and COR methods were computed and are 
presented in Table 1. The resulting OLS 
estimates are not reliable regardless of bias and 
MSE because the assumptions of the SLR model 
are not satisfied. Notice that the bias and MSE 
of estimates of βo and β1 for both methods 
decrease as n increases. The proposed method 
estimates dominate the OLS estimates both in 
view of bias and MSE. Finally, the differences 
in bias and MSE for both methods were more 
apparent for the estimates of βo compared to 
those for β1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Application to Real Data 

Consider quarterly U.S. airline 
passenger-miles (in millions). The data (which 
was originally monthly but was aggregated to 

quarterly) shows 9 years from 1996 to 2004 
(Cryer & Chan, 2008). Figure 1 shows the data, 
denoted by Yt; t = 1, …, 36. The time series 
shows both a nearly increasing trend and an 
apparent seasonality. This data set is used to 
illustrate the proposed method as discussed 
previously. The generalized COR procedure was 
applied as follows: 
 
1. The linear trend model was fitted for Yt and 

0.866t.104.608Ŷt +=  Assuming the errors 
are WN, the estimated error variance is the 

MSE of the OLS regression, that is, 2
εσ̂  = 

2771.9. 
 
2. Based on the residuals {et} in Step 1 the DW 

test was applied and resulted in a significant 
p-value of 0.003. To check that the errors 
are periodically autocorrelated the McLeod 
test was also applied on {et} with period ω 
=4. The p-value equals 0.00009, which is 
also highly significant; this indicates that 
there is sufficient evidence to suggest that 
the errors are periodically autocorrelated. 
Figure 2 shows the variability among 
residuals for various quarters; the ACF 
shows significant correlations at lag one, 
which agrees with the DW test, and is also 
significant at lag four, which is the seasonal 
lag. 

 
3. Yt and t are subdivided by quarters. For each 

ν = 1, ..., 4, Yk,ν is regressed on tk,ν, k = 1, 
…, 9. The four fitted regression models 
were: 

 

k,1 k,1

k,2 k,2

k,3 k,3

k,4 k,4

Ŷ 99.544 0.733t

Ŷ 108.495 0.925t

Ŷ 110.877 0.914t

and

Ŷ 100.211 0.847t

= +

= +

= +

= +

 

 
thus, 1

ˆ (1) 0.733,ϕ =  2
ˆ (2) 0.925,ϕ =  

3
ˆ (3) 0.914ϕ =  and 4

ˆ (4) 0.847.ϕ =  

 

Table 1: Bias and MSE (in brackets) 
of βo and β1 Estimates 

 

n 

OLS COR 

oβ̂  
1β̂  oβ

~
 

1β
~

 

30 
0.0003 

(0.0006) 
0.0206 

(3.0510) 
-0.0055 
(0.6821) 

-0.000005 
(0.0001) 

50 
-0.0003 
(0.0360) 

0.0360 
(1.8351) 

-0.0163 
(0.3137) 

0.00008 
(0.00002) 

100 
-0.0001 

(0.00001) 
0.0076 

(0.9399) 
-0.0049 
(0.1389) 

0.000003 
(0.000002) 
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Figure 1: Time Series Plot of Quarterly U.S. Airline Passenger Miles, 1996-2004 
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Figure 2: The Parallel Box Plot of Residuals (top) and ACF of Residuals (bottom) for the fitted OLS Model 
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4. νk,Y′  and νk,t′  were obtained using (15). 

Results obtained when regressing νk,Y′  on 

νk,t′  for each quarter separately (see Table 

2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. The residuals }e{ ,k ν′  for each season ν = 1, 

…, 4 were computed from the fitted models 
in Step 4 and the DW test is applied for each 
season. It was found that p-values for all 
tests were: 0.481, 0.317, 0.273 and 0.419, 
thus, not all are significant so that the 
iterations terminate. 

 

6. νβoˆ  and νβ1
ˆ  were obtained as shown in 

Step 6 of the proposed method described 
previously and are based on (15). Each 
season ν separately gave: 

 

o1 11

o2 12

o3 13

o4 14

ˆ ˆβ 86.468,     β 1.081

ˆ ˆβ 190.195,   β 3.190

ˆ ˆβ 122.848,   β 1.210

ˆ ˆβ 39.937,     β 0.584

= =

= =

= =

= =

 

 
Using these estimates and (17) results in 

109.862β
~

o =  and 1.516.β
~

1 =  
 
7. Estimates of the variances of {εt} were 

obtained using (18) and equal 
 

2
ε

2
ε

2
ε

2
ε

σ̂ (1) 53.128,

σ̂ (2) 49.555,

σ̂ (3) 59.607,

σ̂ (4) 65.284 .

=

=

=

=

 

 
Note that the resulting estimate of 

intercept in Step 6 is very close to that of the 
OLS estimate in Step 1, however, a larger 
difference is detected in the estimate of the slope 
parameter. This is due to the fact that the slope is 
directly affected by the periodic correlations. 
The largest effect was observed on the estimate 
of the error terms, which was very large 
assuming WN errors (see Step 1) compared to 
estimates that account for periodic correlations 
in Step 7. 

Finally, it should be noted that the 
objective of this application is for illustration of 
the proposed method. The magnitudes of 
differences between OLS and the proposed 
method estimates do not necessarily count for 
our method, meaning that, after the errors are 
correlated the OLS estimates and their standard 
errors are not reliable. Because this article 
focuses on the fact that in standard regression 
analysis, particularly when dealing with time 
series data, routine residual analysis should test 
for autocorrelation among errors and detemine 
whether it is a traditional AR(1) autocorrelation 
or periodic. 
 

Conclusion 
This study examined the SLR model with 
correlated errors. The ordinary Cochran-Orcutt 
procedure for SLR models with correlated errors 
with AR(1) model was generalized to the case of 
periodically correlated errors as a PAR(1) 
model, which produced estimates of regression 
parameters βo and β1. Monte Carlo simulations 
were used to compare the ability of both 
methods to estimate βo and β1 via bias and MSE. 
Results indicate that the estimates based on the 
proposed COR procedure dominate the OLS 
estimates. 

This study was designed to consider the 
fact that errors in ordinary regression analysis 
may exhibit periodic autocorrelation which can 
be  modeled    by   a   PAR(1)   model   and   not 

Table 2: Estimates of Transformed 
Regressions for Various Quarters 

 

ν )(ˆ 'o νβ  )(ˆ ' νβ1  )(ˆ a νσ2
 

1 23.081 1.081 18.045 

2 14.339 3.190 4.135 

3 10.527 1.210 18.181 

4 6.0950 0.584 22.482 
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necessarily an AR(1) model. The proposed 
method is by no means the best remedial 
measure for periodic correlations. Future 
research may add seasonal dummies to the 
regression model or to use generalized least 
squares regression. 
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