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A Proposed Ridge Parameter to Improve the Least Squares Estimator 
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King Khalid University, 
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Ridge regression, a form of biased linear estimation, is a more appropriate technique than ordinary least 
squares (OLS) estimation in the case of highly intercorrelated explanatory variables in the linear 

regression model uXY 
+= β . Two proposed ridge regression parameters from the mean square error 

(MSE) perspective are evaluated. A simulation study was conducted to demonstrate the performance of 
the proposed estimators compared to the OLS, HK and HKB estimators. Results show that the suggested 
estimators outperform the OLS and the other estimators regarding the ridge parameters in all situations 
examined. 
 
Key words: Multicollinearity, ridge regression, Monte Carlo simulation. 
 
 

Introduction 
Consider the standard model for multiple linear 
regression 
 

01 ,Y X uβ β= + +
 

                  (1) 

 

where Y


 is a (n × 1) column vector of 
observations on the dependent variable, 0β  is a 

scalar intercept, 1 is a (n × 1) vector with all 
components equal to unity, X is a (n × p) fixed 
matrix of observations on the explanatory 

variables and is of full rank p, β


 is a (p × 1) 
unknown column vector of regression 
coefficients and u  is a (n × 1) vector of random 

errors, 0)( =uE 
, nIuuE 2)( σ=′ , where nI  

denotes the (n × n) identity matrix and the prime 
denotes the transpose of a matrix. 

The OLS estimator, β

ˆ , of the 

parameters is given by 
 

1ˆ ( X X ) X Yβ −′ ′=
 

                   (2) 
 
 
Ghadban Khalaf is an Associate Professor of 
Statistics in the Department of Mathematics. He 
is a member of the Faculty of Science. Email 
him at: albadran50@yahoo.com. 

 

where β

ˆ  is an unbiased estimator of β


. 

Multiple linear regression is very sensitive to 
predictors that are in a configuration of near 
collinearity. When this is the case, the model 
parameters become unstable (large variances) 
and cannot be interpreted. From a mathematical 
standpoint, near-collinearity makes the XX ′  
matrix ill-conditioned (with X the data matrix), 
that is, the value of its determinant is nearly 
zero, thus, attempts to calculate the inverse of 
the matrix result in numerical snags with 
uncertain final values. 

Exact collinearity occurs when at least 
one of the predictors is a linear combination of 
other predictors. Therefore, X is not a full rank 
matrix, the determinant of X is exactly zero, and 
inverting XX ′  is not simply difficult, it does not 
exist. 

When multicollinearity occurs, the least 
squares estimates remain unbiased and efficient. 
The problem is that the estimated standard error 

of the coefficient iβ  (for example, biS ) tends to 

be inflated. This standard error has a tendency to 
be larger than it would be in the absence of 
multicollinearity because the estimates are very 
sensitive to any changes in the sample 
observations or in the model specification. In 
other words, including or excluding a particular 
variable or certain observations may greatly 
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change the estimated partial coefficient. If biS  is 

larger than it should be, then the t-value for 

testing the significance of iβ  is smaller than it 

should be. Thus, it becomes more likely to 

conclude that a variable iX  is not important in a 

relationship when, in fact, it is important.  
Several criteria have been put forth to 

detect multicollinearity problems. Draper and 
Smith (1998) suggested the following: 
 
(1) Check if any regression coefficients have the 

wrong sign, based on prior knowledge. 
 
(2) Check if predictors anticipated to be 

important based on prior knowledge have 
regression coefficients with small t-
statistics. 

 
(3) Check if deletion of a row or a column of 

the X matrix produces a large change in the 
fitted model. 

 
(4) Check the correlations between all pairs of 

predictor variables to determine if any are 
unexpectedly high. 

 
(5) Examine the variance inflation factor (VIF). 

The VIF of iX  is given by: 
 

2

1
,

1i
i

VIF
R

=
−                       (3) 

 

where 2
iR  is the squared multiple 

correlation coefficient resulting from the 

regression of iX  against all other 
explanatory variables. 

 

If iX  has a strong linear relation with 

other explanatory variables, then 
2
iR  will be 

close to one and VIF values will tend to be very 
high. However, in the absence of any linear 

relation among explanatory variables, 
2
iR  will 

be zero and the VIF will equal one. It is known 
that a VIF value greater than one indicates 
deviation from orthogonality and has tendencies 

to col linearity. Leclerc and Pireaux (1995) 
suggested that a VIF value exceeding 300 may 
indicate the presence of multicollinearity. 
Conversely, examining a pairwise correlation 
matrix of explanatory variables might be 
insufficient to identify collinearity problems 
because near linear dependencies may exist 
among more complex combinations of 
regressors, that is, pairwise independence does 
not imply independence. Because VIF is a 
function of the multiple correlation coefficient 
among the explanatory variables, it is a much 
more informative tool for detecting 
multicollinearity than the simple pairwise 
correlations. 

Many procedures have been suggested 
in an attempt to overcome the effects of 
multicollinearity in regression analysis. Horel 
and Kennard (1970) proposed a class of biased 
estimator called ridge regression estimators as 
an alternative to the OLS estimator in the 
presence of collinearity. Freund and Wilson 
(1998) summarize these into three classes: 
variable selection, variable redefinition and 
biased estimation, such as ridge regression. 
Ridge regression is a variant of ordinary 
multiple linear regression whose goal is to 
circumvent the problem of predictors 
collinearity. Ridge regression gives up the OLS 
estimator as a method for estimating the 
parameters of the model and focuses instead on 
the XX ′  matrix; this matrix will be artificially 
modified in order to make its determinant 
appreciably different from zero. The idea is to 
add a small positive quantity, for example k , to 
each of the diagonal elements of the matrix 

XX ′  to reduce linear dependencies observed 
among its columns. A solution vector is thus 
obtained by the expression 
 

1 ,p
ˆ ( X X k I ) X Yβ ∗ −′ ′= +
 

          (4) 

 
where the ridge parameter k > 0 represents the 
degree of shrinkage. By adding the term pkI , 

pI is an identity matrix of the same order as X′X, 

the ridge-regression model reduces 
multicollinearity and prevents the matrix X′X 
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from being singular even if X itself is not of full 
rank.  

Note that if k = 0, the ridge-regression 
coefficients, defined by (4), are equal to those 
from the traditional multiple-regression model 
given by (2). This makes the new model 
parameters somewhat biased, that is, 

,)ˆ( ββ


≠∗E  (whereas the parameters as 
calculated by the OLS method are unbiased 
estimators of the true parameters). However, the 
variances of the new parameters are smaller than 
that of the OLS parameters and, in fact, so much 
smaller than their MSE may also be smaller than 
that of the parameters of the least squares model. 
This is an illustration of the fact that a biased 
estimator may outperform an unbiased estimator 
provided its variance is small enough. 

Perhaps the best way for choosing the 
ridge regression parameter (k) would be to 
minimize the expected squared difference 
between the estimate and the parameter being 
estimated, that is, the MSE. This would reveal 
the ideal balance between increase in bias and 
reduction in variance of the estimator, where 
 

2MSE Variance ( Bias ) .= +          (5) 
 
Therefore, it is helpful to allow a small bias in 
order to achieve the main criterion of keeping 
the MSE small: this is precisely what ridge 
regression seeks to accomplish. 

Several methods for estimating k have 
been proposed, for example see: Hoerl and 
Kennard (1970), Hoerl, et al. (1975), McDonald 
and Galarneau (1975),  Lawless and Wang 
(1976), Hocking, et al. (1976), Wichern and 
Churchill (1978), Nordberg (1982),  Saleh and 
Kibria (1993), Singh and Tracy (1999), 
Wencheko (2000), Kibria (2003), Khalaf and 
Shukur (2005), Alkhamisi, et al. (2006), 
Alkhamisi & Shukur (2007), Khalaf (2011) and 
Khalaf, et al., (2012). 
 
The Main Result 

Identifying the optimal method for 
choosing k is beyond the goal of this study; 
Hoerl  and  Kennard  (1970)  showed  that  the  
 
 

optimal values for ik  will be 

 
2

2
,

1, 2, , 

i
i

ˆ
k̂ ˆ

i ... p.

σ
β

=

=
                        (6) 

 
The acronym HK is used for this estimator. 
Hoerl and Kennard (1970) stated that “based on 
experience the best method for achieving a 

better estimator ∗β

ˆ  is to use kki =ˆ  for all i.” 

Thus, the −ik̂ values of (6) can be combined to 

obtain a single value of k. Thereby it is not 
advisable to use an ordinary average because a 
large k and too much bias would result. Hoerl, et 
al. (1975) proposed a more reasonable 
averaging, namely the harmonic mean given by 
 

2

,HKB
ˆpk̂ ˆ ˆ
σ

β β
=

′
                       (7) 

 
where p denotes the number of parameters and 

2σ̂  is given by 
 

2 ,
RSSˆ
n p

σ =
−

                        (8) 

 
where RSS denotes the residual sum of squares 
and the acronym HKB is used for estimator (7). 
The original definition of k provided by Horel 
and Kennard (1970) and Hoerl, et al. (1975) is 
used throughout this article to suggest the 
proposed estimators as modifications of their 
estimators. It is known that the denominator 

)2( +− pn  yields an estimator of 2σ  with a 
lower MSE than the unbiased estimator given by 

(8) (Rao, 1973). Thus, the use of 2σ̂  is 
suggested and is defined by 
 

2 ,
2

RSSˆ
n p

σ ∗ =
− +                      (9) 

 

to estimate 
2σ̂  in both (6) and (7). This leads to 

the following new estimators 
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2

1 2
,

1 2
i

ˆ
k̂ ˆ

i , ,..., p

σ
β

∗
∗ =

=
                      (10) 

and
 

 
2

2

ˆpk̂ .ˆ ˆ
σ

β β

∗
∗ =

′
                       (11) 

 

This investigation shows that both ∗
1̂k  and ∗

2k̂  in 
(10) and (11) perform very well relative to the 
OLS estimator from the MSE point of view. 
 

Methodology 
The Simulation 

A simulation study was conducted to 
evaluate the performance of the proposed 
estimators and to illustrate their superiority. The 
simulation study concerns a regression model, 
without the intercept term, with p = 6. The 
simulation procedure suggested by McDonald 
and Galarneau (1975), Gibbons (1981) and 
Kibria (2003) was used to generate the 
explanatory variables: 
 

1
2 21 ,

1 2 ,

1 2 ,

ij ij ipX ( ) z z
i , ,...,n
j , ,..., p

ρ ρ= − +

=
=

         (12) 

 
where szij '  are independent standard normal 

distribution, 
2ρ  is the correlation between any 

two explanatory variables and p is the number of 

explanatory variables. The value of 
2ρ  is taken 

as 0.9, 0.99, 0.999 and 0.9999, respectively. The 
resulting condition numbers (CN) of the 
generated X equal: 87.36, 368.62, 867.05 and 
4250.64, respectively. The n observations for the 

dependent variable Y


are determined by: 
 

0 1 2 2 ,

1 2
ii i i p ip iY X X X u

i , ,...,n

β β β β= + + + + +

=


 

(13) 
 

where iu  are independent normal 2(0, )σ  

pseudo-numbers and 0β  is assumed to be 

identically zero. In this study n is 10, 100 and 
1,000 in order to cover both small and large 
sample sizes. The parameter values were chosen 
so that 1=′ββ , which is a common restriction 
in simulation studies (Muniz & Kibria, 2009). 

For given values of p, n and 2ρ , the experiment 
was repeated 10,000 times by generating 10,000 
samples. For each replicate, the values of k for 
different proposed estimators and the 
corresponding ridge estimators were calculated 
using equation (4) where k is given by (6), (7), 
(10) and (11). 

To investigate whether the ridge 
estimator is better than the OLS estimator, the 
MSE was calculated using the equation 
 

10000

1

1

10000 r
MSE( ) ( ) ( ).β β β β β∗ ∗ ∗

=

′= − −


 

(14) 
 

Results 
Ridge estimators are constructed with the aim of 
having smaller MSE than the MSE for the least 
squares. Improvement, if any, can therefore be 
studied by looking at the amounts of these 
MSE's. The detailed results of the simulations 
are shown in Tables 1 – 3. The results 
concerning the MSE’s and the comparisons of 
ridge estimators with least squares is then dealt 
with. To summarize these findings: 
 
(1) Regardless of the condition of XX ′ , the 

values of MSE of the estimators relative to 
the OLS estimator are small and therefore 
the improvement of the ridge estimators 
over the OLS estimator is remarkable. This 
may indicate that the influence of 
multicollinearity upon the MSE criterion is 
relatively weak. Consequently, the two 

proposed estimators, given by ∗
1̂k  and ∗

2k̂  , 
are far more effective than HK and HKB in 
improving the OLS estimator. 

 
(2) Regardless of sample size, the differences of 

the values of each type of the suggested 
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estimators are trivial. The ∗
2k̂  estimator, 

defined by (11), performed very well; it 

appears to outperform ∗
1̂k , and it is also 

considerably better than HK and HKB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In summary, the proposed estimators 
can greatly improve the OLS estimator, as well 
the HK and HKB estimators, under the MSE 
criterion. The proposed estimators appear to 
offer an opportunity for a large reduction in 
MSE when the degree of multicollinearity as 
measured by the CN is high. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The MSE of the Suggested Estimators, HK, HKB and the OLS Estimator (n = 20) 
 

2ρ  0.9 0.99 0.999 0.9999 

CN 87.36 368.62 867.05 4250.64 
OLS 0.190 0.284 0.817 4.213 

∗
1̂k  0.125 0.156 0.360 1.578 
∗
2k̂  0.141 0.153 0.240 0.259 

HK 0.197 0.207 0.280 0.626 

HKB 0.180 0.264 0.688 2.363 
 
 

Table 2: The MSE of the Suggested Estimators, HK, HKB and the OLS Estimator (n = 100) 
 

2ρ  0.9 0.99 0.999 0.9999 

CN 87.36 368.62 867.05 4250.64 
OLS 0.40 0.058 0.169 0.940 

∗
1̂k  0.034 0.046 0.086 0.360 
∗
2k̂  0.032 0.036 0.070 0.224 

HK 0.045 0.045 0.083 0.250 

HKB 0.039 0.056 0.154 0.631 
 
 

Table 3: The MSE of the Suggested Estimators, HK, HKB and the OLS Estimator (n = 1,000) 
 

2ρ  0.9 0.99 0.999 0.9999 

CN 87.36 368.62 867.05 4250.64 
OLS 0.030 0.045 0.130 0.658 

∗
1̂k  0.026 0.036 0.073 0.229 
∗
2k̂  0.023 0.028 0.058 0.156 

HK 0.027 0.031 0.065 0.183 

HKB 0.029 0.044 0.108 0.449 
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Conclusion 
Ridge regression is more than a last resort 
attempt to salvage least square linear regression 
in the case of near or full collinearity of 
predictors. It is to be considered a major linear 
regression technique that proves its usefulness 
when collinearity is problematic. From the MSE 
point of view, it is not surprising that the use of 
traditional multiple linear regression suffers 
from multicollinearity problems and clearly 
shows that ridge regression performs best when 
the input data are multicollineared. 

Two methods for specifying k were 
proposed herein and were evaluated in terms of 
MSE via simulation techniques. Comparisons 
were made with other ridge-type estimators 
evaluated elsewhere. The simulation study 
showed that the OLS estimator is dominated by 
these estimators in all cases investigated and that 
the improvement of the suggested estimators is 
substantial from the MSE point of view. Finally, 
although there are many strategies for choosing 
an optimal value for k, there is no consensus 
regarding the best or most general way to choose 
k. In other words, the best method for estimating 
k is an unsolved problem and there is no rule for 
choosing k evaluated to date that assures the 
corresponding ridge estimator is uniformly 
better (in terms of MSE) than the OLS estimator.  
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