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Exact Logistic Regression for a Matched Pairs Case-Control Design 
with Polytomous Exposure Variables 

 
Shyam S. Ganguly 

Sultan Qaboos University 
Muscat 123, Oman 

 
 
Logistic regression methods are useful in estimating odds ratios under matched pairs case-control designs 
when the exposure variable of interest is binary or polytomous in nature. Analysis is typically performed 
using large sample approximation techniques. When conducting the analysis with polytomous exposure 
variable, situations where the numbers of discordant pairs in the resulting cells are small or the data 
structure is sparse can be encountered. In such situations, the asymptotic method of analysis is 
questionable, thus an exact method of analysis may be more suitable. A method is presented that performs 
exact inference in the case of pair-wise matched case-control data with more than two unordered exposure 
categories using a distribution of conditional sufficient statistics of logistic model parameters. 
 
Key words: Conditional logistic regression, sufficient statistic, exact analysis, Diophontine systems. 
 
 

Introduction 
In epidemiological studies, the matched case-
control design is often conducted to establish the 
relationship between disease incidence and an 
exposure variable of interest in terms of odds 
ratio (Mantel & Haenszel, 1959; Miettinen, 
1970; Ejigou & McHugh, 1977, 1981). The 
binary logistic model (Cox, 1970) is useful in 
the estimation of odds ratios under matched pair 
case-control designs. Prentice (1976), Holford 
(1978), Holford, et al. (1978), Klinbaum, et al. 
(1982) and Breslow and Day (1980) provide 
detailed discussions regarding the estimation of 
odds ratios using binary logistic models that are 
conditional on disease status. The polytomous 
logistic model (Prentice & Pyke, 1979; Dubin & 
Pasternack, 1988; Liang & Stewart, 1987) has 
also been found to be useful in estimating odds 
ratios in the case of matching design when 
multiple case-control groups are considered; 
however, when conducting a pair-wise matched 
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case-control study, a situation where the risk 
factor under investigation has more than two 
levels, which may be ordinal or nominal in 
nature, can be encountered. Ganguly and Naik-
Nimbalkar (1995) discuss analysis in the case of 
a risk factor with a natural ordering, and 
Ganguly (2006) further estimated the covariate 
adjusted odds ratios in the case of the ordinal 
multiple level exposure variables.  

Nominal response situations were 
studied in detail by Pike, et al. (1975), who 
estimated odds ratios between blood types and 
development of disease, considering a 
hypothetical data set. Holford, et al. (1978) 
analyzed the same data set using a binary 
logistic model with a conditional likelihood 
procedure, and Ganguly and Naik-Nimbalkr 
(1992a, 1992b) further analyzed the data, 
modeling retrospective probabilities using a 
polytomous logistic model. All estimation 
procedures described are based on maximizing 
the conditional likelihood that relies on 
asymptotic approximations. The validity of the 
analysis based on the asymptotic method may be 
in question when the sample size is small or the 
data are sparse. In such situations the exact 
method of analysis is more appropriate (Breslow 
& Day, 1980; Agresti, 1990; Mehta, 1994). 
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Cox (1970) put forth a method for exact 
logistic regression analysis involving a single 
parameter in unmatched logistic models, which 
can also be applied to matched designs when the 
response is binary. Tritchler (1984) estimated 
model parameters based on an algorithm 
developed for a permutation test by Pagano and 
Tritchler (1983). Hirji, Mehta and Patel (1988) 
developed a recursive algorithm to compute the 
exact conditional distribution of sufficient 
statistics of the parameters involved in a logistic 
model for analyzing data from a matched case-
control design. Hirji (1992) provided an efficient 
method for computing exact conditional 
distributions of sufficient statistics for the 
parameters involved in polytomous response 
models. However, none of these studies discuss 
matched case-control designs involving more 
than two exposure categories. This article 
proposes a method that uses the conditional 
distribution of sufficient statistics of logistic 
model parameters to perform exact inference in 
the case of a 1-1 matched case-control data with 
a polytomous exposure variable. 
 
The Logistic Regression Model 

Assume k possible levels of an exposure 
variable of interest. Let þji be the probability 
that, in a given pair, the case is exposed to level j 
and the control is exposed to level i, conditional 
on one of them being exposed to level j and the 
other exposed to level i (1 ≤ i < j ≤ k). In 
addition, let F1, be the exposure level associated 
with the case and F0 for the control. Consider nij 
as the number of case-control pairs in which the 
case is exposed to level i and the control is 
exposed to level j and assume that the exposure 
levels associated with the case and the control 
are independent. The results of the case-control 
investigation, in general, may be represented as 
shown in Table 1. 

Let sij = nij + nji (1 ≤ i < j ≤ k) represent 
the number of discordant pairs referencing the (i, 
j)th and (j, i)th cells in Table 1. Further, consider 

ijY  as the case-control indicator for the th  pair 

(   = 1, …, sij) such that  
 

th th

ij

1 when case is at i and control is at j level

0 otherwise
y


= 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following Ganguly and Naik-Nimbalkar (l992a) 
the probability that, in a given pair, the case is 
exposed to level j and the control is exposed to 
level i conditional on the fact that one is exposed 
to level j and the other is exposed to level i, is 
given by 
 

j i
ji ji

j i

exp( )
p p

1 exp( )

α − α
= =

+ α − α ,           (1) 

 
with 
 

Pji+ pij = 1, 1 ≤ i < j ≤ k,     = 1, …, sij. 
 
The parameter jα  (j = 1, …, k) describes the 

additional exposure for an individual in the jth 
category for becoming a case. The odds ratios, 
for comparing categories j and i, under model 
(1) is given by 
 

rji = )exp( ij αα − , (1 ≤ i < j ≤ k). 

 
Exact Conditional Distribution of Sufficient 
Statistics 

If the observed discordant case-control 
pairs in the (i, j)th and (j, i)th are considered as 

Table 1: Representation of Data from a Matched 
Pair Study with k Exposure Levels 

Exposure 
Level for 
Case (F1) 

Exposure Level for Control (F0) 

1 2 i j k 

1 n11 n12 n1i n1j n1k 

2 n21 n22 n2i n2j n2k 

i ni1 ni2 nii nij nik 

j nj1 nj2 nji njj njk 

k nkl nk2 nki nkj nkk 
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yij1, yij2, ...., ijy  ....
ijijsy  and assumed to be 

independent, then the likelihood Lij for the sij 
pairs is conditional on the study design and is 
given by 
 

ij ij

ij
ij ij

ij ij1 ij1 ij ij ijs ijs ij ij

s
y 1 y

ij ij
1

L pr Y y ,..., Y y ,..., Y y S s

  (p ) (1 p ) −

=

 = = = = = 

= ∏ − 

 

 


(2) 
 
Using relation (1) and (2), Lij is given by 
 

ij

ij i j

ij s

i j
1

exp n ( )
L ,

1 exp(
=

 α − α =
 ∏ + α − α 

            (3) 

 
therefore, the overall conditional likelihood L is 
given by  
 

ij

k 1 k

ij
i 1 j i 1

k 1

i i
i 1

k 1 k
s

i j
i 1 j i 1

L L

exp[ t ]
,

[1 exp( )]

−

= = +

−

=
−

= = +

= Π Π

α
=

Π Π + α − α

   (4) 

 
where  

k

i
i 1

0
=

α =  

or 
k 1

k i
i 1

−

=

α = − α  

and  
k i 1 k 1

i ij ji jk
j i 1 j 1 j 1

t n n n ,

i 1, ,  k 1.

− −

= + = =

= − +

= … −

  
 

 
 
 

The likelihood (4) can also be represented as 
 

k 1

1 k 1 i i
i 1

L H( ,..., ) exp t ,
−

−
=

= α α α  
  

  
  

(5) 
where 
 

ij

1 k 1

i j
i j

s

H( ,..., )

1
       

1 exp( )

−

<

α α =

∏ ∏ + α − α  
 

 
Relation (5) shows an exponential family of 
dimension k−l and the Ti's are jointly sufficient 
for αi (i = l, ..., k−l), whose joint distribution is 
obtained by summing over all nij values, such 
that Ti = ti (i = 1, ..., k−l) and Sij = sij. The joint 
distribution is thus given by  
 

( )

ij

1 1 k l k l ij ij

k 1

1 k 1 i i
i 1

k 1 k
s

i ji 1 j i 1

pr T t ,...,T t | S s ,  i  j 1,..., k

C(t ,..., t ) exp[ t ]
,

[1 exp( )]

− −

−

−
=

−

= = +

= = = < =

α
=

Π Π + α − α



(6) 
 
where C(t1,…., tk−l) is the number of distinct set 
of values assumed by nij which yield the values 
t1, …, tk−1 for the joint sufficient statistic.  
Following Cox (1970), the natural statistic for 
making an inference about αk−1, for example, in 
the presence of α1, …, αk−2 , is Tk−1, conditioned 
on Tk−2, …, T1 and Sij = nij + nji. This conditional 
distribution is given by  
 

r k 1 k 1  1 1 k 2 k 2 ij ij

r 1 1 k 2 k 2 k 1 k 1 ij ij

r 1 1 k 2 k 2 ij ij

p (T t | T t , ,T t ,  S s ,  i j 1, , k)

p (T t ,...,T t ,T t S s , i j 1,..., k)

p (T t ,...,T t , S s , i j 1,..., k)

− − − −

− − − −

− −

= = … = = < = …

= = = = < =
=

= = = < =
     (7) 

 
The distribution in the denominator of (7) is 
obtained by summing (6) over all possible tk−1 
and is given by 
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ij

ij

r 1 1 k 2 k 2 ij ij

k 1

1 k 2 i i
i 1

k 1 k
su

i j
i 1 j i 1

k 1

1 k 2 i i
u i 1

k 1 k
s

i j
i 1 j i 1

p (T t ,...,T t S s , i j 1,..., k)

C(t ,..., t , u)exp[ t ]
,

[1 exp( )]

C(t ,..., t , u)exp[ t ]
.

[1 exp( )]

− −

−

−
=

−

= = +

−

−
=

−

= = +

= = ⏐ = < =

α
=

Π Π + α − α

α
=

Π Π + α − α


Σ

Σ

  

(8) 
 
From (6) and (8) the conditional distribution (7) 
is obtained and is given by  
 

k 1 k 1 1 1 k 2 k 2 ij ij

k 1

1 k 1 i i
i 1

k 2

1 k 2 i i k 1
u i 1

1 k 1 k 1 k 1

1 k 2 k 1
u

Pr(T t | T t , , T t ,S s , i j 1, , k)

C(t ,..., t ) exp t
     ,

C(t ,..., t , u) exp[ t u]

C(t ,..., t ) exp ( t )
     

C(t ,..., t , u) exp ( u)]

− − − −

−

−
=

−

− −
=

− − −

− −

= = … = = < = …

α
=

α + α

α=
α



Σ

Σ
     (9) 

 
where u is an index ranging over the values 
taken by Tk−1 and C(t1 ,tk−2, u) is the number of 
distinct set of values of nij (i < j = 1, …, k) 
which when substituted in (9) yield T1 = t1, ..., 
Tk−2 = tk−2, Tk−1 = u and Sij = sij. Note that (9) 
does not involve α1, …, αk−2. In order to 
simplify the notation, denote (t1,, …, tk−2) by 

2−kt , thus the distribution (9) can be written as  

 

k 2 k 1 k 1 k 1
r k 1 k 1

k 2 k 1
u

C(t , t )exp( t )
p (t ; ) .

C(t ,u)exp( u)
− − − −

− −
− −

αα =
α

(10) 
 

An important case of (10) corresponds 
to αk−1 = 0, 
 

k 2 k 1

r k 1

k 2

u

C(t , t )
p (t ; 0)

C(t , u)

− −
−

−

=
         (11) 

 
so that the distribution is determined by the 
combinatorial coefficients. The computation of 
the combinatorial coefficient ),( 12 −− kk ttC  

involves calculations which are computationally 
prohibitive for larger value of k, the number of 
levels of exposure, and with small numbers of 
discordant pairs in the resulting cells. 
 
The Computational Method 

A computational method that can be 
used for obtaining the combinatorial coefficients 
involved in the distribution (10) is available. 
Here, interest lies in computing the coefficients 

.),( 2−ktC , where the dot indicates that the 

corresponding argument varies over its 
permissible range of values for tk-1. The 
coefficient ),( 12 −− kk ttC  may be counted 

following the procedure involved in 
investigating the solutions of the Diophontine 
systems in non-negative integers as described in 
Constantine (1987). The Diophontine system is 
represented by 
 


=

−==
n

r
irir kitxa

1

,1.,..,1,      (12) 

 
where air and ti are non-negative integers. 
Writing  
 

1 n

1 k 1

1 k 1

x (x ,..., x ),

t (t ,..., t ),

( ,..., )
−

−

=
=

ξ = ξ ξ
 

and  

it
i

k

i

t ξξ
1

1

−

=
= ∏ . 

If C( t ) is the number of solutions to (12), then 
using the generating function results in 
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( ) 1

1110

)1(1

,....,1)( −

−=≥

−−∏= ξξξ rkr a

k

an

rt

ttC  

 
which is 
 

,1.,..,1)(
)1(

11
10

1 =










 −







 −

−
=≥

Π ξξξ
rka

k

ra
n

rt

ttC

    (13) 
 

Equating the coefficients of 
tξ  on both sides 

results in C( t ), which is the value of the 

combinatorial coefficient C( )., 12 −− kk tt  Note 

that one of the considerations for computing the 
coefficients using Diophontine systems is that 
the air's and ti are non-negative integers valued 
with non-zero entry in each column of (air). If 
necessary, this may be achieved by linear 
transformation with no effect on inference. The 
non-negativity of the entities involved insures an 
almost a finite number of solutions to system 
(12).  
 
The Case of Three Level Exposure 

In the simplest situation the polytomous 
outcome may be considered with three exposure 
levels. In this case k = 3 with two sufficient 
statistics from (5) which are:  
 

1 12 13 23t  n  2n  n= + +                (14)  

 
and  

2 12 13 23t  n  n  2n .= − + +             (15) 

 
If it is of interest to obtain the distribution of the 
sufficient statistic T2 given the observed value of 
T1 = t1, then the relation (10) reduces to 
 

,
)exp(),(

)exp(),(
);Pr(

21

2221
22 

=

u
uutC

tttC
t

α
αα  

(16) 
 
where u is an index ranging over all possible 
values taken by T2 for given T1= t1 and C(t1, u) 
is the number of distinct set of values for n12, n13 
and n23 which, when substituted in (14) and (15), 

yield T1 = t1 and T2 = u. The range of u is 
determined by considering the maximum and 
minimum va1ues of T2, namely the maximum 
value of t2 = S13 + 2s23; the minimum value of t2 
may be considered to be zero.  

The combinatorial coefficients involved 
in (16) are computed using the method for 
solutions of the Diophontine system of equations 
(12). In (15), to insure that t2 is a positive 
integer, a linear transformation namely, t2* = 2t1 
+ t2, is considered and provides the Diophontine 
system of equations:  
 

1 1 2 3t x 2x x= + +                 (17)  

and  

2 1 2 3t * x +5x +4x=                 (18)  

 
where x1 = n12, x2 = n13 and x3 = n23 respectively. 
The (air) matrix  
 









=

451

121
)( ira  

 
results from relations (17) and (18). 

Writing x = (x1, x2, x3), t * = (t1, t2*), ξ  

= (ξ1, ξ2) and inserting the values of (air) in (13), 
the generating function reduces to 
 

*
1 2

3 6
1 2 1 2

t 4 3 9
1 2 1 2 1 21 2

t* 0 4 10
1 2

1
tC(t , t *) 1.

≥

 − ξ ξ + ξ ξ
  
−ξ ξ + ξ ξ =  

   −ξ ξ 

ξ ξ

(19) 
 
The combinatorial coefficient C(t1, t2*) is 
obtained by equating the coefficients of 

ξξ tt *

21

21
 on both sides of (19). This provided 

the recurrence relation  
 

( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

C t ,  t *  C t 1,  t * 1  

C t 3,  t * 6 C t 1,  t *  4

C t 3,  t * 9 C t 4,  t * 10 0

− − −

+ − − − − −

+ − − − − − =

 

(20) 
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The method is repeated for obtaining the values 
of c(t1, u), where 0 ≤ u ≤ max (t2*). 
 
Testing and Estimation 

Consider the problem of testing the null 

hypothesis Ho: αk-1=α 0

1−k
 against the one-sided 

alternative H+: αk−1 > αo
k−1. If t = (t1, …, tk−1)

T is 
the observed vector of sufficient statistics, then 
following Lehmann (1959) the p-value for the 
uniformly most powerful unbiased test of Ho 
against H+ is obtained using relation (10) and is 
given by  
 

k 1

k 1

o

k 1 k 1

r k 1 k 1 1 1 k 2 k 2 ij ij

r k 1 k 1 k 2 k 2 ij ij

0

k 2 k 1

0
v t

k 2 k 1
u

0

k 2v t k 1

p (t ; )

 p (T t T t , ..., T t ,S s ,  i j 1, ..., k)

 p (T t T t ,  S s , i j 1, ..., k)

C(t , v) exp( v)
 

C(t , u) exp( u)

C(t , v) exp( v)
 

C(

−

−

+ − −

− − − −

− − − −

− −

≥
− −

−≥ −

α

= ≥ ⏐ = = = < =

= ≥ ⏐ = = < =

=

=

α
 α

 α
0

k 2 k 1
u

t , u) exp( u)− − α
(21) 

 
Similarly, the p-value for the test of HO versus 
H-: αk−1< αo

k-1 is given by  
 

k 1

o

k 1 k 1

k 1 k 1 k 2 k 2 ij ij

0

v t k 2 k 1

0

k 2 k 1
u

p (t ; )

   pr(T t T t ,  S s , i j 1,..., k)

C(t , v) exp( v)
   

C(t , u) exp( u)

−

− − −

− − − −

≤ − −

− −

α

= ≤ ⏐ = = < =

Σ
= α
 α

       (22) 
 
According to Cox (1970), the upper (1−α) level 
confidence limit for αk−1 corresponding to the 

observed value tk−1 is the solution α U

k 1−
to P-

(tk−1;α U

k 1−
) = α in (22). Similarly, the solution 

αL
k-1 to P+(tk-1;α L

k 1−
) = α in (21) gives the lower 

(1−α) level confidence limit for αk-1. These 
values are evaluated by solving the equations 

numerically. The two sided alternatives may be 
obtained by  
 

o
r k 1 k 1

0o
k 1 k 1 k 1 k 1

p (t ; )

    2 Min P (t ; ), (t ; ) .

− −

+ − − − − −

α =

 α Ρ α
. 

 
Tritchler (1984) suggested that the point 
estimation of the parameter αk−1 denoted by     

∧
α k−1 is the value which nearly satisfies P-(tk−1;     
∧
α k−1) = P+(tk−1; 

∧
α k−1) = 0.5. Following similar 

techniques, the point and interval estimation of 
the other model parameters can be obtained. 
 
Numerical Example 

The methodology of exact analysis 
described herein is most suitably performed on a 
computer, however, for illustration purposes, 
consider a hypothetical matched pairs data set 
involving a response variable taking three levels 
as shown in Table 2. The estimates and 95 
percent confidence limits of the parameters for 
the data set shown in Table 2 were obtained 
using the exact method of analysis; results are 
presented in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Frequency Distribution of Case-Control 
Pairs with Three Exposure Levels 

Exposure Level 
for Case (F1) 

Exposure Level for Control 
(FO) 

1 2 3 

1 20 3 2 

2 2 15 2 

3 3 2 10 

 
Table 3: Results of Logistic Analysis of the Data 

in Table 2 Based on Exact Method 

Parameters 
Exact 

Estimate 
95 Percent 

Confidence Limits 

α1 -0.120 (-0.630, 0.270) 

α2 -0.150 (-1.050, 0.350) 

α3 0.270 (-0.620, 1.680) 
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The data set used in the example was 
considerably large with 59 matched case-control 
pairs; however, the number of discordant pairs 
of observations involved in the analysis was 
very small. Hence, in this situation, the exact 
method of analysis may be more appropriate. 
This article considered an exact method of 
analysis in case of 1-1 matched case-control data 
when the risk factor of interest is polytomous in 
nature. 
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