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Graphical Modeling for High Dimensional Data 
 

Munni Begum Jay Bagga C. Ann Blakey
Ball State University, 

Muncie, IN 
 

 
With advances in science and information technologies, many scientific fields are able to meet the 
challenges of managing and analyzing high-dimensional data. A so-called large p small n problem arises 
when the number of experimental units, n, is equal to or smaller than the number of features, p. A 
methodology based on probability and graph theory, termed graphical models, is applied to study the 
structure and inference of such high-dimensional data. 
 
Key words: High dimensional data, graphical Markov models, conditional independence, Markov 

properties, chain graphs. 
 
 

Introduction 
Graphical models are the result of a marriage 
between probability distribution theory and 
graph theory; these models have been used to 
study the associations among stochastic 
variables for decades in many disciplines. 
Graphical model methodologies evolved through 
a blend of statistical techniques: log-linear and 
covariance selection models with constructs of 
path analysis and the concept of conditional 
independence (Whitaker, 1990; Edwards, 2000).  
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Classical examples of graphical model 
applications include: fitting complex patterns of 
associations among the factors cross-classifying 
multidimensional contingency tables, and 
studying relationships among variables using 
their covariance structure. The current state of 
the science of this area includes general 
methodology on the structural properties of 
graphical models suggested by the conditional 
independence and Markov properties. 

Conditional independence and Markov 
properties of graphical models are keys to 
developing methodologies for high dimensional 
data analysis in a growing number of 
computational science fields. Structural learning 
and computational techniques/algorithms with 
running time and space complexity are of 
significant interest. This article outlines a 
method to address the challenge of making 
efficient statistical inferences with high 
dimensional data using the elegant features of 
graphical models. 
 
Dimension Reduction Using Regression and 
Classification 

Advances in science and information 
technology have allowed many scientific fields, 
such as bioinformatics, computational biology, 
medicine, pharmacology and toxicology to 
produce high-dimensional data at an astounding 
rate. The common scenario of a small number of 
features p from a large number of experimental 
units n has resulted in what is termed a large p 
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small n problem, as the number of experimental 
units n is equal to or even smaller than the 
number of features (or parameters) p. To address 
this problem there has been a surge in research 
activities offering data reduction methods and 
statistical inference.  

Modern methods for subset selection 
include the least absolute shrinkage and 
selection operator, or LASSO (Tibshirani, 1996) 
method, which provides a sparse solution by 
picking influential regression coefficients and 
shrinking others to zero. The LASSO method 
reduces the dimension from p to k < p, k being a 
subset of the features. A major concern with this 
method – as well as other related methods such 
as Garotte (Breiman, 1993) and ridge regression 
– is whether they successfully identify the 
correct subset of non-zero regression 
coefficients. Thus, the question remains as to 
whether it is possible to achieve a proper 
projection of the coefficient matrix onto a 
computationally feasible lower dimension. Even 
with a substantial dimension reduction, 
questions still remain as to whether sufficient 
reduction was achieved. 

The idea of sufficient dimension 
reduction in regression is addressed along the 
similar line of Fisher’s sufficient statistics. 
Inverse regression (Cook, 2007) based on the 
principle component regression model has been 
applied to achieve a sufficiently reduced 
subspace of predictor variables. If X is a 
predictor vector in ℜp and Y is the response 
variable, then a sufficient reduction R: ℜp ℜq, 
q ≤ p implies that at least one of the statements 
(1) X| (Y, R(X)) ~ X|R(X), (2) Y|X~ Y|R(X) or (3) 
Y ╨ X|R(X) holds (Cook, 2007). Whereas 
statements (i) and (ii) correspond directly to 
inverse and forward regression respectively, 
statement (iii) connotes the conditional 
independence of Y and X given the reduced 
predictor subspace, which is the basis for 
graphical models. This also implies no loss of 
relevant information under the sufficient 
reduction of predictor space. Sparse additive 
models (Ravikumar, et al., 2007) based on the 
so-called generalized additive models (Hastie & 
Tibshirani, 1990) and Bayesian additive 
regression trees (Chipman, et al., 2009) are other 
modern data reduction methods in linear and 
generalized linear regression problem settings. 

Dimension Reduction using Graphical Models 
Graphical models can be used as 

efficient tools to investigate the dependence 
structure of a large number of attributes. 
Probabilistic expert systems and Bayesian 
networks (Neapolitan, 1990, 2004, 2009; Cowell 
et al., 1999) based on directed acyclic graphs are 
commonly used graphical models in medical 
diagnosis, disease spread modeling and gene 
interaction and protein interaction networks. 
Advancements in the mathematical theory of 
general graphical models over the past decade 
through the pioneering work of Lauritzen 
(1996), Wermuth and Lauritzen (1983), 
Frydenberg (1990), Andersson (1993, 1995, 
1997), Madigan (1995, 1997) and Perlman 
(1993, 1995, 1997) among others, facilitates the 
development of a general methodology for 
practical problems in diverse scientific fields. 

Graphical models are a flexible class of 
models based on both graph and probability 
theory and can capture complex dependence 
structure among a large number of stochastic 
variables efficiently. Although the general 
methodology is well developed, only a handful 
of these methods are implemented in practice. 
There is a need for addressing the computational 
aspects of these models under a general 
framework.  

This research is based on the challenges 
of analyzing a large volume of high dimensional 
molecular interaction data. For example, the 
interaction between genes, proteins and 
metabolites are the focus of such emerging fields 
as transcriptomics, proteomics and 
metabolomics. A complete biological network 
consists of all of these interacting components. 
To understand this complex system it is 
necessary to apply the divide and conquer rule: 
break the system into small parts and map out 
the interactions. Each of these smaller 
components may be regarded as a unique 
complex network; thus gene, protein and 
metabolic interaction networks can be studied 
under a single framework. Such an endeavor 
will help address the challenges of high 
dimensional data analysis and statistical 
inference. 
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Preliminaries on Graphical Models 
The fields of graph theory and 

probability theory are well developed. Graph 
theory is generally studied as a branch of 
discrete and combinatorial mathematics, 
however, graph theory and graph algorithms 
provide an applicable framework in many fields 
including computer science, mathematical and 
statistical sciences, biological and chemical 
sciences and several branches of engineering. 
The notion of graph has been tied with 
conditional independence among stochastic 
variables and their Markov properties. In 
graphical modeling and localized computations 
for probabilistic inference, Markov properties 
play a fundamental role. General chain graphs 
and their specializations, directed and undirected 
graphs, each have different types of Markov 
properties and conditional independence is a 
common theoretical tool to investigate these 
fundamental properties of a class of graphs.  

In its simplest form, a graph G = (V, E) 
constitutes a finite set of vertices V = {1, 2, …, 
v} and a set of edges E ⊆V × V. Each edge is 
thus a pair of vertices (u, v) ∈ E that 
incorporates a relationship between two vertices. 
In a graphical model, the vertices may represent 
discrete or continuous variables and the edges, 
which may be undirected or directed, represent 
conditional dependence. A directed graph GD  = 
(V, E) contains only directed edges drawn as 
arrows, where V is a set of vertices and E is a set 
of ordered pair vertices. Directed graphs, with 
no directed cycles, are known as directed acyclic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

graphs (DAGs) and play a significant role in 
causal inference. In an undirected graph GU  = 
(V, E), the edges are undirected and are used 
mainly to study the association among attributes. 
Chain graphs (Lauritzen, 1996) have both 
directed and undirected edges. For a chain graph 
Gch = (V, E), the vertex set V can be partitioned 
into numbered subsets that form a dependence 
chain V = V1 ∩ V2 ∩ … ∩VT, such that all the 
edges between vertices in the same subset are 
undirected and all edges between different 
subsets are directed, pointing from a set with 
lower number to the one with higher number. 
Figure 1 illustrates directed, undirected and 
chain graphs (Lauritzen, 1996). 

The structural properties of general 
chain graph models and specialized undirected 
and directed acyclic graph models are of great 
interest. Theoretical tools to study the structural 
properties of a class of graphs are their 
corresponding Markov properties and 
characterization of their Markov equivalent 
classes. An important fact of conditional 
independence properties in localized 
computations is that these enable factorization of 
the joint probability distribution of the random 
variables associated with the nodes of a graph. 
Following the notations of Cowell, et al. (1999), 
let Xv, v∈ V be a collection of random variables, 
taking values in probability spaces Xv, v∈ V, and 
let ۰ be a collection of subsets of V. For B∈	۰, if 
aB(x) denotes a non-negative function that 
depends    only    on    xB = (xv)v∈B, then   a   joint  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1: Graphical Model Illustrations 
 

 

  

(a) Directed Graph (b) Undirected Graph (c) Chain Graph 
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distribution P for X is ۰- hierarchical if its 
probability density p factorizes as 
 

( )
  

( ) .B
B

 p x   a x
∈

= ∏
B

                   (1) 

 
(Cowell, et al., 1999). 

This factorization holds only when ۰ is 
a complete subset of the underlying graph. For 
an undirected graph GU = (V, E), and a 
collection of random variables Xv, v∈V taking 
values in probability spaces Xv, v∈V, the joint 
probability density p(x) is ࡯ - hierarchical where ࡯ is the set of cliques of GU. In this case p(x) 
factorizes as, 
 

 

( ) ( ) ,C
C C

p x   x  
∈

=∏
C

                   (2)  

 
where the function ψC is referred to as factor 
potential of the probability measure P on vC . 

A probability distribution P is said to admit a 
recursive factorization according to a directed 
acyclic graph GD = (V, E) if the joint density 
p(x) factorizes as,  

 

( )( ) ( | ),v pa v
v V

p x   p x x
∈

=∏             (3)	
 
where pa(v) is the set of parents of the vertex v. 
If (u, v) ∈ E, but (v, u) ∉ E, then u is a parent of 
v and the set of all parents of v is denoted by 
pa(v). Recursive factorization according to GD 
implies C  hierarchical factorization according 
to the corresponding undirected moral graph of 
GD, denoted as GD

m. The moralization process of 
a directed acyclic graph involves adding 
undirected edges between all pairs of parents of 
each vertex which are not already joined and 
then making all edges undirected (Lauritzen, 
1996). For a chain graph Gch = (V, E), with 
dependence chain V = V1 ∩ V2 ∩ … ∩ VT, the 
joint density p(x) factorizes as 
 

1
1

( ) ( | ),
t t

T

V C'
t 

p x   p x x
−

=

=∏                (4) 

where C't are the concurrent variables defined as 
C't = V1 ∩ V2 ∩ … ∩ Vt. If B't = pa(Vt) = bd(Vt), 
then the above factorization reduces to  

 

1

( ) ( | ).
t t

T

V B'
t 

p x   p x x
=

=∏                 (5)	
 
For an undirected graph the parent set of a 
vertex v becomes the neighbor set nb(v). For a 
chain graph, bd(v) is the set of parents and 
neighbors of the vertex v. This factorization 
takes an identical form to that of a directed 
acyclic graph due to the fact that a chain graph 
forms a directed acyclic graph of its chain 
components. One drawback of this 
representation is that the factorization does not 
reveal all conditional relationships. To 
investigate the relationships that are not 
revealed, if an undirected graph G*

ch with vertex 
set Vt ∩ B'

t is considered, then, for a chain graph, 
the joint density of a collection of discrete 
random variables Xv factorizes as, 
 

1

( )
( ) ,

( )
t t

t

T
V B'

t B'

p  x
p x   

p x=

∪=∏                 (6) 

 
and each of the numerators factorizes on the 
graph G*

ch (Lauritzen, 1996). In addition, if a 
density p(x) factorizes as in (6), it also factorizes 
according to the moral graph Gm

ch (Lauritzen, 
1996).  

Associated with a graph G, there are 
primarily three Markov properties: pairwise, 
local and global. A probability measure P on X 
is said to follow the pairwise Markov property 
relative to G if, for any pair (u, v) of non-
adjacent vertices, u ╨ v|V/{u, v}. It follows the 
local Markov property relative to G, if for any 
vertex v∈V, v ╨ V/cl(v)|bd(v). Here the closure 
cl(E) of a subset E ⊂ V is the set of vertices such 
that cl(E) = E ∩ bd(E). Finally, a probability 
measure follows the global Markov property, 
relative to G, if for any triple (P, Q, S) of 
disjoint subsets of V such that S separates P from 
Q in G so that P ╨ Q|S. Because the global 
Markov property implies the local, which in turn 
implies the pairwise Markov property, it is the 
strongest of the three. A probability distribution 
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P on a discrete sample space with strictly 
positive density satisfies the pairwise Markov 
property if only if it factorizes (Lauritzen, 1996). 
Thus an undirected graph automatically satisfies 
the pairwise Markov property.  

The joint densities associated to a 
directed acyclic graph and a chain graph 
factorize according to their moral graph 
respectively. In this case, the probability 
distributions follow the strongest global Markov 
property, which in turn implies local and 
pairwise Markov properties. Thus, for a directed 
acyclic graph and a chain graph, it is important 
to obtain their corresponding moral graphs as 
factorization of the joint densities according to 
these moral graphs to directly imply Markov 
properties.  

There has been extensive research 
activity in developing and extending the links 
between graphical structures and conditional 
independence properties (Andersson, et al., 
1995, 1997, 2001, 1993, 2006). A logical 
research question to explore is whether a 
probability distribution exists displaying the 
underlying properties and only the conditional 
properties displayed by a given graphical 
representation (Geiger & Pearl, 1990, 1993; 
Studeny & Bouckaert, 1998). It is important to 
note that Markov properties and conditional 
independence lay out one of several possible 
structures of an underlying graph because there 
may be more than one graph representing the 
same conditional independence relations. Over 
the last few decades, there has been a focus on 
characterizing the Markov equivalence class of 
graphs and nominating a natural representative 
of an equivalence class. After a Markov 
equivalence class is established and Markov 
properties are fulfilled, factorization of a joint 
probability of the attributes under study takes 
place uniquely, facilitating simplified 
computation for statistical inference. 
 
Computational Issues in Graphical Models: 
Graph Structure and Statistical Learning 

Graphical models have been studied 
extensively in order to investigate associations 
among discrete, continuous and mixed variables. 
Lauritzen and Wermuth (1989) examined 
properties of conditional Gaussian (CG) 
distributions and their applications to conditional 

Gaussian regression, with emphasis on 
Markovian properties to attain tractable form in 
the subsequent analysis of these models. Due to 
their flexible structures and abilities to represent 
both structural and associative dependences, 
chain graph models have been studied 
extensively in the literature of graphical 
modeling (Andersson, 1997, 2006; Frydenberg, 
1990). The characterization of Markov 
properties for chain graphs, undirected and 
directed acyclic graphs, has important 
implications to the context of factorization of 
underlying probability models. The Markov 
properties of a graph directly impact 
computational issues based on joint likelihood 
function, however, Markov properties and 
conditional independence may only provide one 
of several possible underlying graph structures. 
Thus, it is important to characterize Markov 
equivalence class of graphs and nominate a 
natural representative of an equivalence class. 

The characterization of Markov 
equivalence classes has significant implications 
to the context of the structure of graphical 
models. Two graphs are Markov equivalent if 
they have the same Markov properties. Using 
results from Verma and Pearl (1991) for directed 
acyclic graphs, Frydenberg (1990) showed that 
two chain graphs are Markov equivalent if and 
only if they have the same skeletons, or the 
undirected versions, and the same complexes. A 
complex is a subgraph induced by a set of nodes 
{v1, v2, …, vk} with k ≥ 3, whose edge set 
consists of v1 → v2, vk−1 ← vk, and vi ∼ vi+1 for 2 
≤ i ≤ k−2.  

For a class of Markov equivalent chain 
graphs, a unique largest chain graph having the 
maximum number of undirected edges exists. 
The arrows of this largest graph are present in 
every other member of the class and thus may be 
considered as the representative graph of the 
class. There is no natural representative of an 
equivalence class within the class of directed 
acyclic graphs although it can be characterized 
by what is referred to as its essential graph 
(Andersson, et al., 1997). The natural 
representative of an equivalent class of chain 
graphs is the one with same skeleton in which an 
edge has an arrow, if and only if at least one 
member of the equivalence class has that arrow 
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and none has the reverse arrow (Andersson, et 
al., 1997). 

Alternative graphical representations of 
conditional independence and Markov properties 
have been considered in the graph theory 
literature. Markov equivalence classes for chain 
graphs, undirected and directed acyclic graphs 
examined by Lauritzen and Wermuth (1989) and 
Frydenberg (1990) are referred to as LWF by 
Andersson, Madigan and Perlman (2001) who 
considered an alternative Markov property with 
a new semantics AMP to facilitate a direct mode 
of data generation (Cox, 1993; Cox & Wermuth, 
1993). Andersson and Perlman (1993) showed 
that for AMP chain graphs, each Markov 
equivalence class can be uniquely represented 
by a single distinguished chain graph, the AMP 
essential graph, which plays a fundamental role 
in inference and model search. However, the 
AMP approach does not correspond to 
factorization of joint density in a straightforward 
manner; a crucial aspect for computational 
efficiency (Cowell, et al., 1999). Koster (1996) 
considered a generalization of chain graphs to 
reciprocal graphs and Drton (2009) showed that 
the block recursive Markov property of discrete 
chain graph models is equivalent to the global 
Markov property. The practical use of these 
models lies in developing algorithms for 
efficient computation characterizing running 
time and space complexities. 

Exact and approximate inference 
algorithms for graphical Markov models based 
on independence graphs are proposed to address 
computational issues. Computational 
advancement for graphical models, particularly 
for the probabilistic expert systems evolved 
through construction of fundamental graph 
algorithms namely, moralization, triangulation 
and junction tree. The joint distribution of a 
graphical model can be represented and 
manipulated efficiently using a junction tree 
derived from the original graph. The junction 
tree algorithm starts with a moralized graph. A 
directed graphical model can be converted to an 
equivalent undirected model by the moralization 
process. The algorithm first selects an 
elimination order for all nodes and applies a 
triangulation operator to the moralized graph 
yielding a triangulated graph, then the 
triangulated graph creates a data structure 

known as a junction tree on which a generalized 
message-passing algorithm can be defined 
(Xing, 2004). Figures 2 and 3 show an example 
of this process (Xing, 2004). 

A junction tree possesses a key property 
of a running intersection, which implies that, 
when a node appears in any two cliques in the 
tree it appears in all cliques lying on the path 
between the two cliques. The running 
intersection property of the junction tree enables 
the joint probability distribution to be factorized 
as, 

( )
( )
( )

TC ,
ii 

jj T

i CC

j SS  

ψ x
p x  

x
∈

∈

=
φ

∏
∏ S

               (7) 

 
where CT  is the set of all cliques in the 
triangulated graph and ST is the set of separators 
spanned by the junction tree (Xing, 2004). A 
message passing scheme on the junction tree 
updates the clique potentials ψ(.) and the 
separator potentials φ(.) according to the rule, 
 

( ) ( ) ( )

( )
( )

\

,

( ),

j i k

C Si j

j

k

j

* *
j S i C k C

x

*
j S

k C
j S

x  Ψ x   Ψ x

x
  Ψ x

x

=φ

φ

φ
=


 

(8) 
 
where xSj denotes the set of variables separating 
cliques xCi and xCk, and the message being 
passed from clique i to k via separator j. 
Running time and space complexity of the 
junction tree algorithm is determined by the size 
of the maximal clique in the triangulated graph, 
which is affected by the choice of elimination 
order that induces the triangulated graph. Tree 
width of a graph is the minimum of the maximal 
clique size among all possible triangulations. 
Selecting an elimination order that minimizes 
the maximal clique size is an NP-hard problem 
for arbitrary graphs. The implementation of this 
exact inference algorithm based on the junction 
tree is not efficient – or possible – for graphical 
models under high dimensional data. Although 
exact inference algorithms are simple to 
interpret, their implementation in high 
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dimensional problems becomes prohibitive due 
to running time and space complexities. 
 
Computational Issues in Graphical Models: 
Efficient Learning/Inference Engines, 
Algorithms and Complexities 

Approximate efficient inference 
algorithms, such as variational approach under a 
complex scenario, are considered. The approach 
involves converting the original optimization 
problem into an approximated optimization 
problem   that   is   solved   for  an  approximate  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

solution to the exact inference problem. Given a 
probability distribution p(x|θ) that factors 
according to a graph, the variational methods 
yields approximations to marginal probabilities 
by solving an optimization problem exploiting 
the underlying graphical structure (Xing, 2004). 
Many graphical models can be naturally viewed 
as an exponential family of distributions, a broad 
class of distributions for both discrete and 
continuous random variables, through the 
principle of maximum entropy (Wainwright & 
Jordan, 2008).     This   principle   depends  on  a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2: Moralization of a Directed Graph (Xing, 2004) 
 

 
 
 
 

Figure3: Triangulated Graph of Figure 2 Directed Graph and Junction Tree 

 

(a) Triangulated Graph of Figure 2 Directed Graph (b) The Junction Tree 
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functional of the probability density p, 
absolutely continuous with respect to some 
measure ν. H(p) is known as Shannon entropy 
and is defined as, 
 

( ) : (log ( )) ( ) ( )
x

H p   p x p x  dx= −         (9) 

 
Consider variational inference approaches for 
the exponential family representations of the 
graphical models. Approximate inference 
methods, such as sum-product algorithms, 
generalized belief propagating methods and 
generalized mean field inference algorithms are 
some of the most recent computational 
methodologies for graphical models in a high 
dimensional scenario. For variational inference, 
the exponential family of joint distributions 
determined by a collection of potential functions 
or sufficient statistics φ = {φα ∈ C} is expressed 
as, 
 

{ }( | ) ( ) ( ) ,C Cp θ   exp θ A θ  α αα∈ α=  φ −x  x
 

(10) 
 
where C is the set of cliques, Cα is the clique 
corresponding to the node α, A(θ) is the log 
partition function or cumulant function defined 
as ܣ(	) = log ׬ ௑೘݌ݔ݁ ൛∑ ஼ ൫࢞஼൯ൟ(݀ݔ) ,  
 
where Xm is a product space for m random 
variables. The conjugate dual function to A(θ), 
central to the variational principle, is defined as 
A*(μ) := supθ ∈Θ {< μ, θ > − A(θ)}. Here θ and μ 
represent canonical and mean parameters 
respectively of the exponential family of 
distributions. The conjugate dual function A* 
takes the form A*(μ) = −H(pθ(μ)), where the 
functional H(.) is defined as the Shannon 
entropy of the density pθ(μ) given that μ is in the 
interior of the set of realizable mean parameters 
M which is defined as,  
ܯ  ≔ ൛ߤ ∈ ܴௗห∃݌	ݏ. .ݐ (ܺ)ሿ	௣ሾܧ =  ൟߤ
 
(Wainwright & Jordan, 2008). Here ܴௗ indicates 
number of elements to be specified in the vector 

of sufficient statistics and the variational 
representation of the log partition function in 
terms its dual A* is A(θ) = supμ∈M {<θ, μ > − 
A*(μ)}. Thus, under the variational 
representation it is necessary to maximize or 
minimize over the set of M as opposed to the 
entire parameter space Θ. The optimization 
problem for the variational representation of 
specialized graphs such as trees is 
computationally feasible, however, for a general 
structure graphical model with a large number of 
nodes, exact optimization becomes infeasible 
due to the complexity in characterizing the 
constraint set M and dual function A*(μ). 
Approximate methods seek approximations to M 
and A*(μ). 
 
Mean-Field Methods as an Approximation to the 
Exact Variational Principle 

In order to implement a variational 
inferential approach, the nature of the constraint 
set M and an explicit form for the dual function 
A* must be known (Wainwright & Jordan, 
2008); this, however, may not be easy to obtain 
for most practical problems. Mean field 
approaches permit limiting of the optimization 
to a subset of distributions, referred to as 
tractable distributions, for which both M and A* 
are relatively simple to characterize (Wainwright 
& Jordan, 2008). For a graphical model based on 
a graph G(V, E), the tractability can be obtained 
in terms of a tractable sub-graph. A sub-graph F 
is tractable if it is possible to carry out exact 
calculations on F.  

A straightforward example of a tractable 
sub-graph is the fully disconnected sub-graph 
F(V, ∅) containing all the vertices of G(V, E) 
but none of the edges. This tractable sub-graph F 
leads to a product distribution for which 
computations are easy to carry out. However, 
completely disconnected sub-graphs do not 
capture dependencies among vertices, if any. 
Thus, as opposed to a fully disconnected sub-
graph, an arbitrarily structured sub-graph from 
the given graph G(V, E) is considered in 
generalized mean field methods. The question 
then becomes how to select a tractable sub-graph 
leading to an efficient factorization of the joint 
probability distribution so that feasible solution 
set M and the optimizing function A* can be 
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characterized with less intensive computational 
and mathematical background. In addition, a 
generalized version of the mean field methods to 
the context of chain graph models is of great 
importance for practical problems in numerous 
scientific fields.  
 

Discussion and Future Direction 
Statistical Learning on the Underlying Graph 
Structure from Empirical Data 

In order to implement chain graph 
models to study relationships among stochastic 
variables in empirical data, consider the 
exponential family of probability distributions as 
the distribution of the random variables 
associated to the nodes of a graphical model. It 
is relatively straightforward to write the joint 
probability distribution of a set of discrete 
random variables utilizing the factorization 
under a given graphical structure. The 
factorization of joint distribution of continuous 
random variables representing the nodes of an 
underlying graph requires attention and a 
general framework for the factorization scheme 
of joint probability distributions of both discrete 
and continuous random variables using 
established graph theory properties is of interest 
for simplified computation.  

Gaussian graphical models for 
continuous variables and the graphical 
counterpart of log-linear models for discrete 
attributes are proposed and implemented for 
empirical model building. For a large volume of 
attributes, as in biological network data, such as 
gene-gene interaction networks, gene-protein 
interaction networks and transcription regulatory 
networks, as well as network data in other 
scientific and social science fields, these 
methods can be computationally prohibitive. 

The variational inference approach 
based on the mean parameterization of the 
exponential family of distributions and their 
mathematical properties, such as, convexity and 
conjugate duality is an efficient inference 
approach to graphical models. Implementation 
of these algorithms and complexity are of 
interest in the contexts of high dimensional 
gene-gene interaction networks, gene-protein 
interaction networks and transcription regulatory 
network data. Structural properties such as 
connectivity and existence of specific 

substructures in the graphical models are of 
specific interest. It is necessary to identify 
Markov equivalence classes in order to narrow 
down possible representations of same 
conditional independence by many graphical 
structures.  

In particular, this investigation considers 
when a chain graph Gch is Markov equivalent to 
some unique undirected graph GU, 
decomposable undirected graph and to some 
directed acyclic graph GD. The directed acyclic 
graph models provide a convenient recursive 
factorization of the joint probability. The 
likelihood function factorizes and it is possible 
to implement maximum likelihood methods for 
estimation of model parameters. These tractable 
features are also available for decomposable 
undirected graphs, which are Markov equivalent 
to some directed acyclic graphs (Andersson, et 
al., 1997). For a directed acyclic Markov model 
GD, the joint density factorizes as  
 

( )
( ) , 

 

 ( | )  ( | , )pa vv x
v pa v

v V

p x p x x
∈

θ = θ∏  

(11) 
 
where 	௩,௫೛ೌ(ೡ) is the minimal function of the 
overall parameter θ for the distribution 
determining the conditional distribution of Xv | 
Xpa(v) = xpa(v). For a complete case, each factor in 
the likelihood is maximized separately to attain a 
maximum likelihood estimate of 	௩,௫೛ೌ(ೡ). For 
an incomplete case consider the expectation 
maximization (EM) algorithm. Let f(x|θ) denote 
the density function of a random variable X that 
is incomplete except one known function,          
Y = g(X). Given an initial estimate θ, the E-step 
requires the current expected value of the log-
likelihood function Q(θ'|θ) = Eθ {log f(X|θ')| 
g(X) = y}. The M-step maximizes Q over θ′ 
yielding the next estimate. The algorithm 
alternates between these two steps until 
convergence is attained. The evidence 
propagation or message-passing on the junction 
tree can be exploited to perform the E-step of an 
EM algorithm for a discrete directed acyclic 
graph model with missing observations 
(Lauritzen, 1995). Gradient-descent search near 
the maximum can be considered to speed up the 
convergence of an expectation-maximum (EM) 



GRAPHICAL MODELING FOR HIGH DIMENSIONAL DATA 

466 
 

algorithm in a graphical model with incomplete 
data. 

A general factorization scheme for the 
joint probability distribution in the exponential 
family enabling tractability in subsequent 
statistical computation sets the foundation for 
efficient computation in graphical models. 
Searching within a collection of candidate 
models for one or more graphical structures 
consistent with the conditional independence 
relationships suggested by data follows; the 
point is to assess the adequacy of a single 
candidate graphical model as the so-called true 
objective process of generation of empirical 
data. In order to narrow down the possible high 
dimension of the space of the graphical 
structures, the Markov equivalence classes of 
graphical structures, identification of a unique 
graphical model as the probability model and 
checking identifiability of the model parameters 
are essential. Either the likelihood-based or the 
Bayesian methods can be implemented to 
address the estimation and model search 
problem. Complete case data are addressed 
through maximum likelihood estimation or a 
Bayesian updating scheme; incomplete case data 
are addressed through the EM algorithm coupled 
with gradient search methods for estimation 
using likelihood- and sampling- based methods 
using a Bayesian approach respectively. 
 
Model Selection, Diagnostics and Checking 
Models against Data 

A Markov equivalence class insures 
only proper graphical structure. The properties 
of the joint probability distribution of the 
variables must be inferred from the graphical 
structure and the conditional independence 
relationships suggested by the empirical data. 
According to the semantics of machine learning 
and data mining, unsupervised learning methods 
for model selection, diagnostics and model 
checking against data can be employed. In low 
dimensional problems with a number of 
variables p q 3, effective nonparametric methods 
are used for density estimation solely from the 
data (Silverman, 1986). However, these methods 
are not applicable in high-dimension problems 
due to the curse of dimensionality.  

Testable hypotheses, based on prior 
knowledge and expert opinion in the scientific 

field along with corresponding testing principles 
should be developed to address the graphical 
model selection problem. Efficient 
computational algorithms along with running 
time and space complexities must be formulated. 
Diagnostics in statistical modeling address 
outlier detection problems and development of 
robust methods against outliers. Outlier 
identification in high dimensional problems is an 
active research area where robust principal 
component analysis, k- nearest neighbor, local 
outlier factor and other distance and density 
based methods are commonly used. Future 
research interests should center on addressing 
these important statistical problems for high-
dimensional data. 
 

Conclusion 
Graphical models originated as the marriage 
between graph and probability theories and are 
appealing methods for studying conditional 
(in)dependences among a large number of 
attributes in many scientific fields. Markov 
properties of various graphical models, directed, 
undirected and more general chain graph 
models, lead to efficient factorization of joint 
probability distributions of multivariate random 
variables. An explicit form of a joint distribution 
may not be known for many random variables, 
except some arbitrary dependence structure.  

Graphical modeling is an efficient tool 
for studying dependence structure among an 
arbitrary number of random variables without 
specifying their joint distribution. This article 
described essential properties of graphical 
models that lead to factorization of a joint 
distribution. An exponential family 
representation of graphical models was 
demonstrated for a broad class of distributions of 
discrete and continuous random variables. 
Exponential family representation is essential for 
formulating approximate inference algorithms 
such as mean field algorithms. It was also 
indicated that studies regarding unique graph 
structure through a Markov equivalence class of 
graphs for specialized undirected, directed and 
general chain graphs is an area for future 
research. Finally, a graphical model derived 
from a unique graph structure illuminated the 
relationship among the attributes under study. 
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