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To counter past assertions that permutation testing is not distribution-free, this article clarifies that the 
critical p value (alpha) in permutation testing is not a Type I error rate and that a test’s validity is 
independent of the concept of Type I error. 
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Introduction 
Traditional parametric tests, such as t and F 
tests, are said to be robust against violation of 
the normality assumption (e.g., Keppel & 
Wickens, 2004), but researchers often hesitate to 
apply such tests when the extent of the violation 
is obvious or severe. For example, it is known  
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that most parametric tests are not robust against 
violations of equal variance and that the 
situation is exacerbated when sample sizes are 
unequal (Howell, 2012). Thus, non-parametric 
tests, including permutation tests (e.g., 
Edgington & Onghena, 2007; Fisher, 1935; 
Good, 2011; Ludbrook & Dudley, 1998), have 
become increasingly popular. Some critiques of 
permutation tests have questioned whether such 
tests are genuinely distribution-free in the sense 
of being valid irrespective of the shapes of the 
population distributions (Hayes, 1997, 2000; 
Mewhort, Kelley & Johns, 2009). This article 
clarifies and demonstrates that the critical p 
values for permutation tests are not estimates of 
Type I error probability and that the divergence 
of the two values does not impugn the validity of 
the permutation test’s p value. 
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The Logic of the Permutation Test 
As described by Edgington & Onghena 

(2007), Fisher (1935), Good (2011) and others, 
permutation testing entails the following steps. 
First, the investigator must formulate the null 
hypothesis as one that meets the exchangeability 
requirement. That is, when the null hypothesis is 
true, the coupling of particular values of the 
dependent variable with particular values of the 
independent variable is random. This idea can be 
further explicated by imagining a failed 
experiment in which a researcher randomly 
assigns each of several participants to complete 
a state-anxiety questionnaire while experiencing 
either silence (the no noise group) or loud 
automobile traffic noise (the loud noise group). 
When the experiment ends, it is discovered that 
someone forgot to plug-in the machine that plays 
the recorded noise. Each score in the data set has 
a label, no noise or loud noise, but the labels are 
meaningless because of the failed manipulation. 
Thus, each score’s attachment to the no noise 
versus the loud noise label might as well be 
random; in other words, when the null 
hypothesis is true, the scores are exchangeable 
across the labels. This concept shall be referred 
to as exchangeability under the null, to 
emphasize that the exchangeability defines the 
null hypothesis only. (The scores would not, and 
could not, be exchangeable when the null 
hypothesis is false.) 

In permutation testing, the null 
hypothesis is not more specific than the 
proposition that the coupling of particular values 
of the dependent variable with particular values 
of the independent variable is random. For 
example, whereas a parametric test may assess 
the null hypothesis that the means are equal 
across groups, a permutation test is restricted to 
testing the null hypothesis of random coupling 
of values to condition labels. (Note: Howell 
(2013) states that this is also true for the 
Wilcoxon Rank-Sum test, which is a form of 
permutation test wherein the data are 
transformed to ranks prior to permutation.) 
Having conceptualized the null hypothesis as 
entailing the exchangeability of scores, the next 
step is to characterize the sample at hand in 
terms of one or more test statistics, such as the 
difference between the means, between the 
medians or between the variances. 

Finally, the principle of exchangeability-
under-the-null permits computation of a form of 
p value that is the probability that an effect as 
large as (or larger than) one computed prior to 
permutation would occur by chance. This chance 
process is simulated by repeatedly reassigning 
the scores to the labels that represent the levels 
of the independent variable. Following each 
permutation – that is, each set of reassignments 
– the test statistic is recomputed. The 
recomputed statistic is counted as having met the 
threshold of the original statistic if the former is 
equal to or more extreme than the latter. (In the 
case of a two-tailed test, the recomputed and the 
original statistic are transformed to their 
absolute values prior to comparison to one 
another.) An exact p value is obtained by 
calculating the proportion of all possible unique 
permutations that produce an outcome at least as 
extreme as the statistic computed for the 
original, unpermuted data (Fisher’s Exact test is 
an example). Unless the data set is small, it is 
often more practical to obtain an approximate, 
Monte Carlo p value by calculating the 
aforementioned proportion for a large number of 
random permutations (which may occasionally, 
and by chance, include repetitions of particular 
permutation patterns) rather than for all possible 
permutations. In the remainder of this article, 
permutation test will refer to the Monte Carlo 
variety unless otherwise specified. 

Note that permutation tests can be 
conceptualized as drawing samples 
(permutations) from a population, where the so-
called population is what a parametric test would 
regard as a sample (Rodgers, 1999). However, 
the relationship between the sample and the 
population in parametric testing is not parallel to 
the relationship between the samples and the 
population in permutation testing. In parametric 
testing the goal is to use a sample statistic to 
infer a population parameter; in permutation 
testing the parameters of the so-called 
population are known and need not be inferred. 
Permutation-test logic does not use samples to 
make inferences about population parameters. 
Rather, a permutation test makes inferences 
about process. Specifically, it assesses the 
probability that a random process in which data 
values  are   coupled  to   condition  labels would 



THE CRITICAL P VALUE AND TYPE I ERROR RATE IN PERMUTATION TESTING 

4 
 

produce a data set characterized by a given test 
statistic.  

The permutation test is widely used in 
the form of Fisher’s Exact test (and the Monte 
Carlo variant of Fisher’s test) for analyzing 
relative frequencies in dichotomous data. Other 
forms of the permutation test have been used 
infrequently to date but can be implemented 
with the help of statistical software (e.g., 
Anderson, 2012; R, version 2.15.1; Stata, 
version 12.0).  
 
A Permutation Test’s Critical p Value (α) is not 
an Estimate of the Type I Error Rate 

Some have argued that permutation tests 
entail highly restrictive assumptions. Hayes 
(1996), for example, wrote that the “permutation 
test is not distribution free” (p.1). As an 
example, he found that in simulated correlational 
data, under conditions in which the x, y 
correlation was zero and in which the variance 
among y observations differed as a function of x, 
both permutation tests and parametric tests 
rejected the null hypothesis more often than the 
rate suggested by the tests’ p values.  

Mewhort, et al. (2009) explored a 
phenomenon in which, when the null hypothesis 
is true, unequal variance interacts with unequal 
sample size. In a set of simulations, the 
researchers created pairs of populations that 
could have equal or unequal means and that 
could have equal or unequal variances. They 
then sampled from the populations to produce a 
large number of two-group data sets; the two 
groups could be equal or unequal in size. Thus, 
some of the data sets consisted of groups that 
differed both in size and in variance. The 
researchers conducted a permutation test on each 
set to assess the rate at which the tests produced 
Type I errors. With the critical p value (α) set at 
0.05, the researchers found that when the 
population variances and the sample sizes were 
unequal and when the smaller sample had been 
drawn from the population with the higher 
variance, the actual Type I error rate was 
somewhat higher than 0.05. Conversely, when 
the smaller sample had been drawn from the 
population with the lower variance, the actual 
Type I error rate was somewhat lower than 0.05. 
The authors went on to propose an algorithm to 
correct  the  permutation  test’s apparent bias 

(for situations which the smaller group is 
characterized by higher variance). 

I argue that there is a conceptual 
difficulty in using a permutation test’s p value as 
a standard to evaluate a test’s liberalness or 
conservativeness. In a traditional, parametric 
test, p refers to a portion of a hypothetical 
distribution of the values of a test statistic (e.g., 
a distribution of t scores) that would be obtained 
if one were to generate multiple data sets, via 
random sampling from a population or set of 
populations, and then compute the test statistic 
for each data set. This meaning of p allows a 
researcher to evaluate empirically whether p is 
liberal, conservative or unbiased. This is done by 
drawing multiple data sets from a population (or 
set of populations) in which the null hypothesis 
is known to be true. The researcher then 
establishes a critical p value (α) and computes 
the obtained Type I error rate as the proportion 
of simulated data sets in which the p value is 
less than or equal to α. The statistical test is 
liberal or conservative to the degree that the 
obtained Type I error rate tends to be higher or 
lower (respectively) than α. 

The p value of a permutation test has a 
meaning very different from the one previously 
described, thus the term pt will be used to refer 
to the p value produced by a traditional, 
parametric test, and pperm will be used to refer to 
the kind of p value produced by a permutation 
test. 

The value pperm, in contrast to pt, is about 
only the data at hand. Therefore, pperm does not 
pertain to populations, or to multiple samples 
that could have been draw from a population or 
to multiple values of a statistic that could have 
been computed from multiple episodes of 
random sampling. Instead, pperm is the rate at 
which the various possible re-assignments of 
scores to condition labels lead to an effect that 
matches or exceeds the magnitude of the effect 
in the un-permuted data. Likewise, pperm’s 
critical value is conceptually distinct from pt,’s 
critical value. This can be observed clearly when 
considering that a permutation test is valid and 
useful even when conducted on the entirety of a 
finite population. Consider the following 
example: For the uppercase letters in the Modern 
English alphabet is the central tendency of their 
ordinal positions significantly different for 
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symmetrical letters (e.g., “A”) than for 
asymmetrical letters (e.g., “B”)?  

The question is nonsensical within the 
framework of parametric testing because the 
letters in this data set are not sampled (randomly 
or otherwise) from populations. But the question 
is eminently sensible from the standpoint of 
permutation testing. The null hypothesis is that 
the coupling of ordinal positions with the 
condition labels symmetrical and asymmetrical 
has occurred by chance. An alternative 
hypothesis, that the two conditions differ in the 
medians of their ordinal positions, is assessed by 
repeatedly permuting the values of the serial 
positions across the condition labels and 
recalculating the medians. For this example, the 
median ranks for the symmetrical and 
asymmetrical letters (uppercase) are 20 and 11, 
respectively (Test Statistic [50,000 
permutations] = MedianA − MedianB, pperm ≈ 
.047). Thus, there is a significant tendency for 
symmetrical uppercase letters to occur later 
rather than earlier in the alphabet. Such a finding 
sets the stage for further scientific inquiry into 
the genesis of the alphabet, and more 
importantly, could not have arisen from 
classical, parametric statistical analysis.  

There are two reasons why it would not 
make sense to ask whether the pperm value, 
above, is liberal or conservative. First, there is 
no imaginable population – simulated or 
otherwise – from which additional Modern 
English alphabets could be sampled. 
Consequently, there is no basis for computing a 
Type I error rate across samples from such a 
population. Second, and just as importantly, 
even if one could imagine that the Modern 
English alphabet is just one random sample 
among many possible random samples, pperm 
would still pertain only to permutations of the 
data at hand and not to a sampling distribution. 
Therefore, simulated (or otherwise obtained) 
Type I error rates such as those generated by 
Hayes (1996, 1997) and Mewhort, et al. (2009) 
cannot serve as standard to assess bias in pperm 
because pperm is unrelated to Type I error and 
pperm’s critical value does not estimate a Type I 
error rate. 
 
 
 

Is Possible to Estimate a Legitimate Type I Error 
Rate for a Permutation Test? 

When a permutation test is conducted on 
an entire population of values, the concept of a 
Type I error rate is meaningless because there is 
no family of alternate samples over which a 
Type I error rate can be computed, thus in some 
circumstances, it is impossible to estimate a 
Type I error rate. But what about situations in 
which one computes pperm for data that happen to 
have been sampled randomly from a population? 
In such a situation, can a Type I error rate be 
defined? The difficulty in answering yes in this 
case is that any such error rate must be defined 
with respect to the permutation test’s null 
hypothesis and not with respect to a parametric 
null hypothesis. For example, imagine a 
simulation in which two populations have 
identical means and in which random samples 
are repeatedly drawn from the two populations. 
Computing the Type I error for a parametric test 
involves simply counting the proportion of 
samples that lead to the rejection of the null 
hypothesis of equal population means are equal. 
However, for a permutation test, such a 
parametric null hypothesis is not the relevant 
null hypothesis. Instead, the relevant null is that 
the arrangement of the data within a fixed set 
(not multiple, randomly sampled sets) reflects 
the random coupling of data values to condition 
labels. Thus, the random sampling procedure 
described above does not provide a basis on 
which to assess the rate of incorrect rejection of 
the particular null hypothesis tested by a 
permutation test. 
 
Tests on Simulated Data 

I now present what I believe to be a 
conceptually coherent assessment of Type I 
errors in permutation testing. Within a given 
simulation, the following procedure is 
employed: 
 
(1) Decide on a set of numbers (i.e., a seed set) 

that will be constant throughout the 
simulation. 

 
(2) Prior to conducting any permutation tests, 

perform many permutations of the data set. 
Each result of this initial set of permutations  
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is not part of a permutation test, but instead 
constitutes a data set to be analyzed via a 
permutation test. Such permutation-prior-to-
testing is necessary because it produces data 
sets in which the null hypothesis (which is 
the true hypothesis in the present 
simulations) is of the permutation-test 
variety rather than the parametric-test 
variety.  

It should be noted that while it would be 
possible to arrange things so that the two 
groups would differ systematically on some 
dimension (in their variances, for example), 
this would make the null hypothesis false 
rather than true. Such a situation would 
allow a permutation-test assessment of Type 
II errors (i.e., erroneous acceptance of the 
null hypothesis of random coupling of data 
values to condition labels), but it would miss 
the point of the present simulations, which is 
to assess Type I rather than Type II errors. 

 
(3) Conduct the permutation tests in the usual 

manner. However, unlike typical simulations 
(e.g., Hayes, 1996, 1997; Mewhort, et al., 
2009), each test is conducted on a data set 
generated by permuting a set that has not 
been sampled from a population and whose 
membership is the same for all tests. 

 
(4) Compute the Type I error rate as the 

proportion of tests that reject the null 
hypothesis. But do not subsequently 
compare the Type I error rate to the 
conceptually distinct, critical pperm. 

 
Three simulations were conducted. In 

Simulation 1, the seed data set was the set of 
consecutive, non-repeating integers 1 through 
30. Thus, the seed data were uniformly 
distributed. In Simulation 2, the seed data 
consisted of 30 values that were the squares of 
the 30 values in Simulation 1. Thus in 
Simulation 2, the seed data were exponentially 
distributed. In Simulation 3 the seed data 
consisted of the cubes of values in Simulation 1. 

In all simulations, the procedure was as 
follows. The 30 seed values were randomly 
permuted 1,000 times across two equal-sized 
groups, yielding 1,000 data sets, with each set 
composed of 30 unique values divided among 

two groups (n = 15 per group). Each of the 1,000 
two-group data sets was then submitted to a 
permutation test of the difference between 
means (Test Statistic = mean1 − mean2; 1,000 
random permutations) and a permutation test of 
the difference between variances (Test Statistic 
= variance1 − variance2; 1,000 random 
permutations). Overall, each simulation included 
1,000 times 1,000 permutations of data. For each 
permutation test, the critical pperm was set at .05. 
The results are shown on Table 1. 

Perhaps the most important aspect of 
Table 1 is that is does not permit assessment of 
the validity of pperm. Because neither pperm nor its 
critical value pertain to the Type 1 error rate, the 
table does not permit comparison of the Type I 
error rates to a standard (Note: The critical pperm 
is not such a standard.) Another result is that the 
computed Type I error rates happen to 
correspond (roughly) to the value of pperm, 
irrespective of whether the test assesses 
differences in means or differences in variances 
and irrespective of which seed data set served as 
the basis for generating the tested data. Finally, 
the simulations show that Type I error rates in 
permutation testing can meaningful (though such 
error rates are not essential), despite the absence 
of random sampling from populations. 
 
Implications 

The present arguments show that the 
critical pperm for a permutation test is not a Type 
I error rate, and that consequently, a permutation 
test’s validity does not depend on whether the 
numerical value of pperm matches the Type I error 
rate that would be relevant to a parametric test. 
It is also clear that the true Type I error rate for a 
family of permutation tests will likely depend on 
how one chooses to define the family tests. In 
my view, the absence of a well-defined Type I 
error rate in no way impugns the validity or 
usefulness of permutation testing. The test 
computes the probability that a random process 
could have produced the observed assignment of 
data to condition labels, and this is a sufficient 
basis for deciding whether to reject the 
hypothesis of a random process. Thus, unlike 
other statistical approaches, permutation testing 
entails no parametric assumptions, and does not 
require the to-be-analyzed data to be randomly 
sampled from a population. 



RICHARD B. ANDERSON 
 

7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
Although this article demonstrates that 
permutation testing’s validity is independent of 
the idea of Type I error, it does not resolve all of 
the outstanding questions concerning 
permutation tests. For example, there is some 
uncertainty as to the formal relationship between 
the null hypothesis and the test statistic used to 
reject that null hypothesis. Consider the 
following data set: Group A (10, 8, 77, 2, 40, 92, 
88), Group B (7, 4, 2, 5, 5, 3, 3). With a critical 
pperm of 0.05 and with 50,000 permutations, the 
null hypothesis of random coupling of values to 
group labels is rejected, whether the test statistic 
is the difference between means (pperm ≈ 0.01), 
between medians (pperm ≈ 0.03), or between 
variances (pperm ≈ 0.02). Yet, in all three cases, 
the rejected null hypothesis – that is, that the 
coupling of values to condition labels is random 
– is precisely the same hypothesis. Thus, there is 
unresolved ambiguity concerning the degree to 
which each of the three tests, above, provides 
unique information about the null hypothesis. 
 
Limitations 

There is also a question about the 
possible definitions of a type one error rate, 
within permutation testing. The simulations in 
this study utilized just a few of an infinite 
number  of  possible  seed  data sets. In principle  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
each seed set could yield a different Type I error 
rate, therefore, it is not known whether this type 
of simulation typically yields Type I error rates 
that approximate the critical pperm. Moreover, 
there are likely other methods (besides the 
permutation of seed data) for generating a family 
of data sets to serve as the basis for computing 
Type I error. This article does not resolve these 
questions. Nevertheless, if future research on 
permutation testing is to provide such answers, 
the Type I error rates must be established either 
empirically or by some means that does not 
interpret pperm to refer to a Type I error rate. It 
should be reiterated, however, that the logic of 
permutation testing does not require establishing 
a Type I error rate. 
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