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Introduction 
Anderson (2013) referred to various aspects of 
permutation p-values. We agree with most of the 
notions and ideas heuristically discussed there; 
however, we present a more formal discussion to 
confirm and be more precise. The approach 
adopted in Pesarin (2001), Pesarin (2013) and 
Pesarin & Salmaso (2010a, 2010b) considered 
permutation tests in light of the conditionality 
and sufficiency principles of inference, and we 
borrow freely from those citations. 
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Without loss of generality, consider a 

two-sample one-dimensional design for one-
sided alternatives where: X1 = (X1i; i = 1,…, n1) 
are data of first sample, X2 = (X2i, i = 1,…, n2) 
are those of the second, and X = (X1,X2) =(Xi, i 
= 1,…, n; n1, n2) is the pooled set from which it 
is intended that the first n1 are from the first 
sample and the remainder from the second. 
Denoting by Π(࢛) the set of permutations of 
unit labels u=(1,…,n) and by ࢛∗ ,∗ଵݑ)= … , ∗௡ݑ ) ∈ Π(࢛) one of these, the related 
permutation of X is ࢄ∗ = { ௜ܺ∗ = ,(∗௜ݑ)ܺ ݅ =1,… , ݊; ݊ଵ, ݊ଶ}. Thus, ࢄ૚∗ = { ଵܺ௜∗ = ,(∗௜ݑ)ܺ ݅ =1,… , ݊ଵ} and ࢄ૛∗ = {ܺଶ௜∗ = ,(∗௜ݑ)ܺ ݅ = ݊ଵ +1,… , ݊} denote the two permuted samples; in 
multidimensional problems vectors associated 
with units are permuted (Basso, et al., 2009; 
Pesarin, 2001; Pesarin & Salmaso, 2010a; 
Pesarin & Salmaso, 2011). The hypotheses are 

d

0 1 2H : X X=  and ,
d

1 1 2H : X X≥  respectively 

stating the equality and the dominance in 
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distribution of two population variables. Note 
that H0 implies data are exchangeable without 
being necessarily independent; in practice the 
exchangeability condition is usually attained 
when subjects are randomized to treatments or 
when related to observations on independent 
units. 

Permutation tests are ordinary tests 
conditional on the observed data set ࢄ, which in 
H0 is always a sufficient n-dimensional statistic 
for the underlying (known or unknown) 
distribution f in the sense that it contains all the 
information on f that are contained in ࢄ. Outside 
the regular exponential family of distributions ࢄ 
is generally minimal sufficient. In particular this 
implies that no suitable univariate statistic exists 
for summarizing the whole information on the 
aspect of interest for the analysis; therefore, no 
parametric or nonparametric method can aspire 
to be uniformly better than others. 

One way to attenuate this drawback 
within the multi-aspect methodology (Pesarin, 
2001; Pesarin & Salmaso, 2010a; Pesarin & 
Salmaso, 2011; Salmaso & Solari, 2005) is to 
use several partial test statistics, each specialized 
to put into evidence one aspect of interest and to 
nonparametrically combine their dependent 
results by means of a suitable function. 

The act of conditioning on ࢄ implies 
referring to the related conditional reference 
space, denoted by /χ X . Essentially /χ X  

contains points of sample space ߯௡ that are 
equivalent to ࢄ in terms of information carried 
by the underlying – and usually unknown – 
likelihood function ݂(௡)(ࢄ), which in turn is 
assumed to be positive on all observed data ࢄ. 
Thus, it contains all points ࢄ∗ such that the 
likelihood ratio ݂(௡)(ࢄ)/	݂(௡)(ࢄ∗) is (ࢄ, -(∗ࢄ
invariant and f-independent; so it corresponds to 
the orbit of equivalent points associated with ࢄ. 
Data exchangeability in H0 implies that the 
density ݂(௡)(ࢄ) is invariant on permutations of 
its arguments, thus ݂(௡)(ࢄ) = 	݂(௡)(ࢄ∗) for 
every permutation ࢄ∗ of ࢄ; /χ X  then contains 

all distinct permutations of ࢄ. That is ߯/ࢄ ={⋃ ,(∗௜ݑ)ܺ] ݅ = 1,… , (࢛)ஈ∋∗࢛[݊ }. Therefore, 
because every ࢄ∗ ∈  can be considered as playing the role of a ࢄ/߯ ,is sufficient for f in H0 ࢄ/߯
sufficient space. 

In H1 the set of sufficient statistics is the 
pair (ࢄ૚;  ૛) because data are onlyࢄ
exchangeable within – but not between – groups. 
As a consequence of sufficiency of ߯/ࢄ for f 
under H0 the null conditional probability of any 
event A, given ߯/ࢄ, is independent of f – 

whatever it is – because Pr൛ࢄ∗ ∈ ;ܣ ݂ห߯/ࢄൟ =Pr൛ࢄ∗ ∈  ൟ. Therefore, the null permutationࢄ/ห߯ܣ
(conditional) probability is distribution-free and 
nonparametric as well as the distribution of any 
statistic ܶ: ߯௡ → ℛଵ conditional on ߯/ࢄ. 
Moreover, because for finite sample size n the 
number ܯ(௡) = ∑ ∗ࢄ)1 ∈ ࢄ/ఞ(ࢄ/߯  of points in ߯/ࢄ is finite, in H0 the conditional probability of 
any A is calculated as 
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because ݂(ࢄ∗)݀ࢄ∗ = ∗ࢄ for every ࢄ݀(ࢄ)݂ ∈  Note that in carrying out the .ࢄ/߯
calculations for this conditional probability it is 
not necessary to make reference to the so-called 
hypothetical repeated sampling principle; that 
is, it is not necessary to examine the whole 
population sample space ߯௡, which in turn has 
generally a virtual existence, and to consider all 
sample points that could have been realized but 
only the point ࢄ of which has been actually 
observed. In fact, as the observed data ࢄ are 
exclusively taken into consideration, Pr൛ܣห߯/ࢄൟ 
simply requires the complete enumeration of ߯/ࢄ 
which, as it consists of all permutations ࢄ∗	 of ࢄ, 
has an objective existence. 

With different arguments, a similar 
notion is also expressed in Anderson’s article. In 
practice, when sample sizes (n1, n2) are not 
small, to overcome the too large cardinality of ߯/ࢄ, the probability Pr൛ܣห߯/ࢄൟ can be estimated 
at any degree of accuracy by a conditional 
Monte Carlo simulation on ߯/ࢄ as described by 
Anderson. 

A first property of the permutation 
distribution is that in H0 the data set ࢄ is 



FORTUNATO PESARIN & STEFANO BONNINI 
 

13 
 

uniformly distributed over ߯/ࢄ conditionally. In 

fact, Pr൛ࢄ = ൟࢄ/ห߯࢞ =	Pr൛ࢄ∗ = ൟࢄ/ห߯࢞ ࢞ if (௡)ܯ/1= ∈  ,and 0 elsewhere. Essentially ࢄ/߯
this property states that, under H0, the 
permutations in ߯/ࢄ are equally likely; whereas 
under H1, because the set of sufficient statistics 
is the pair (ࢄ૚;  ૛), no data can be exchangedࢄ
between two samples and permutations in ߯/ࢄ 
are not equally likely. This property may suggest 
ways for finding test statistics provided with 
good inferential properties. Further, assuming 
that the exchangeability condition on data ࢄ is 
satisfied in H0, for any randomized test based on 
a statistic T for which large values are 
significant, 
 ߶ோ(ࢄ) = ቐ1	if	ܶ଴ > ఈܶߛ	"	ܶ଴ = ఈܶ0	"	ܶ଴ < ఈܶ , 

 
where ܶ଴ =  is the observed value of T on (ࢄ)ܶ
data ࢄ, and  
ߛ  = ߙൣ − Pr൛ܶ଴ > ఈܶห߯/ࢄൟ൧/ Pr൛ܶ଴ = ఈܶห߯/ࢄൟ, 
 
the ߙ-size conditional critical value ఈܶ = ఈܶ(ࢄ) 
which, if H0 were true, could be determined by 
complete enumeration of ߯/ࢄ. The conditional 
rejection probability of ߶ோ(ࢄ) for any given ߙ ∈ (0,1) is then ॱ൛߶ோ(ࢄ)ห߯/ࢄൟ =  ,Thus .ߙ
under H0, due to sufficiency of ࢄ, test ߶ோ(ࢄ) is 
invariant with respect to all underlying 
distributions f and all sample points ࢄ and so 
independently on how they are selected from ߯௡. This property defines the so-called uniform 
similarity property of randomized permutation 
tests, corresponding to the stronger version of 
the Neymann ߙ-structure. 

One consequence, but not the most 
important, of conditioning on ࢄ is that the 
permutation critical value ఈܶ = ఈܶ(ࢄ) does not 
need to be determined in practice. Unless it is 
known that H0 is true – in which case knowing ఈܶ would be essentially useless – its 
determination would require the ordering of {ܶ(ࢄ∗), ∗ࢄ ∈  that is, that of all ,{ࢄ/߯
permutation values of T, thus it necessarily 
depends on actual data ࢄ and on some unknown 
treatment effect ߜ (if any). One efficient way to 

overcome this apparent drawback is by making 
reference to the significance level 
transformation of T, that is, by considering the 
so-called observed p-value-like score. The 
observed p-value-like score of test ߶ோ, which is 
defined as ߣோ଴ = ோߣ ,ࢄ) ܶ) = Pr൛ܶ∗ > ܶ଴ห߯/ࢄൟ	, 
is a non-increasing function of ܶ଴ and is one-to-
one related with the ߙ-value of T. Because ܶ଴ < ఈܶ implies ߣோ଴ > and ܶ଴ ߙ > ఈܶ implies ߣோ଴ < (ࢄ)ோ߶ :ߙ = ቐ 1		if	ߣோ଴ < ଴ܶ	"		ߛ		ߙ = ఈܶ0		"	ߣோ଴ > ߙ  

 
is the general form of all permutation tests. Of 
course, simple or non-randomized or ordinary 
test ߶(ࢄ)=1 if ܶ ≥ ఈܶ and 0 elsewhere, the p-
value score ߣ଴ = Pr൛ܶ∗ ≥ ܶ଴ห߯/ࢄൟ is defined in 
the discrete set of attainable values, Λ(ࢄ, ܶ) ∈(0,1). 

The statistic ߣ଴ coincides with the p-
value of test T if H0 were true, then it works as a 
p-value score. Thus, we agree with Anderson’s 
notion that ߣ଴ is not a true p-value, unless H0 
were true. We partially disagree, however, 
because ߙ is simply the critical value (i.e., the 
type I error rate ߙ) of any randomized 
permutation test (for non-randomized tests, the 
resulting type I error rate is ߙ′ ≤  so giving rise ߙ
to conservative inferences); exactly as for 
parametric tests. 

In order to establish whether the p-value 
score is a test statistic furnished with good 
inferential properties it is useful to observe that: 
 
i. in H0 the distribution of ߣ଴ is uniform on its 

attainable set Λ(ࢄ, ܶ); 
 

ii. in ܪଵ: ൭ ଵܺ ≥݀ܺଶ൱ = ൭ܺ + ଶܺ݀≤ߜ = ܺ൱ ߜ)≡ > 0), where the unknown treatment 
effect ߜ can be either fixed or random and, 
in the latter case, it could depend on latent 
unobservable values ܺ. The permutation 
distribution of the p-value score is such that ߣ଴(ࢄ, ,ࢄ)଴ߣ݀≥(ߜ 0)=࣯݀[Λ(ࢄ, ܶ)], and thus it 

is uniformly dominated by the uniform 
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distribution over Λ(ࢄ, ܶ); moreover, ߜᇱ > ߜ > 0 implies that ߣ଴(ࢄ, ,ࢄ)଴ߣ݀≥(′ߜ ,ࢄ)଴ߣ݀≥(ߜ 0), so the 

dominance in distribution is monotone with 
respect to ߜ for every ࢄ. 

 
Provided that the exchangeability 

property is satisfied in H0, these properties imply 
that the test statistic based on ߣ଴ is uniformly 
unbiased for all data sets ࢄ, all distributions f, all 
sample sizes (n1,n2) and independently on how 
subjects are selected from a population (i.e., 
possibly under selection-bias sampling if they 
are randomized to treatments). These properties 
guarantee that tests based on the permutation p-
value score are valid for making inference 
whenever the permutation testing principle 
applies (Pesarin, 2001; Pesarin & Salmaso, 
2010a; Pesarin & Salmaso, 2010b). In this we 
agree with Anderson’s view-point that the 
permutation p-value does not impugn the 
validity of related tests. 

With respect to the consistency property, 
if in H0 the population mean value of ܺ is finite, 
that is, ॱ(|ܺ|)<∞, then the permutation test 
based on difference of two sample means, ܶ = തܺଵ − തܺଶ for example, is consistent (Pesarin 
& Salmaso, 2013), that is, its rejection 
probability converges to 1 as min(n1, n2) 
diverges. Thus, not all test statistics are “valid 
irrespective of the shapes of the population 
distributions,” in the sense that there exist 
population f for which there are permutation 
tests T that are not consistent. A way to obtain 
valid consistent test statistics is described in 
(Pesarin & Salmaso, 2010a; Pesarin & Salmaso, 
2010b; Salmaso & Solari, 2005) within the so-
called multi-aspect testing. 

We would like to also underline some 
few other points: 
 
1. The permutation test is unbiased and 

consistent when the effect ߜ is such that the 
distribution of  ଵܺ(ߜ) in the alternative is 
not only shifted, but also when the 
dispersion increases or decreases provided 

that ଵܺ(ߜ)≥݀ܺଶ. For example, the effect on 

high blood pressure of a suitable drug is to 
reduce it towards smaller values by 
diminishing both mean and dispersion. That 
is, it is valid under homoscedasticity in H0 
(when the exchangeability is satisfied) and 
for possible non-homoscedasticity in H1. 
When ߤଵ =  ଶ and homoscedasticity is notߤ
satisfied in H0, so the exchangeability is also 
not satisfied, it falls within the so-called 
Behrens-Fisher problem for which no exact 
parametric and non-parametric non-
randomized solutions exist. In Pesarin 
(2001, Chapter 10) an almost exact (but not 
exact) univariate and multivariate 
permutation solution is provided for 
symmetric distributions. Thus, in our 
opinion, some of the related arguments in 
Anderson’s paper should be accordingly 
modified. 

 
2. Traditional parametric tests are said to be 

generally valid under their conditions. This, 
however, is not always true. For example, in 
a simulation under multivariate normality 
we found that as the number q of processed 
variables increases, while keeping sample 
sizes fixed, the power of Hotelling’s T2 
increased up to a maximum at 
approximately ݍ ≅ (݊ − 2)/2, then it 
decreased and was not calculable when ݍ ≥ (݊ − 1), whereas that of a permutation 
test based on ௣ܶ = ∑ ( തܺଵ௛ − തܺଶ௛)ଶ௛ஸ௤  
always increased up to 1 for divergent q. 
Moreover, depending on the correlation 
matrix, there is a value q’ such that the 
permutation test Tp is more powerful than 
T2. To this end we would like to report a 
brief simulation study from Pesarin and 
Salmaso (2010b). The results in Table 1, 
where 0.05 ,0.01 = ߙ (bold face), B = 1000 
random permutations and MC = 1000 Monte 
Carlo simulations from q-dimensional 

normal distributions ଵܺ =݀ ௤ࣨ(ࢾ, ૚) and 

ܺଶ=݀ ௤ࣨ(૙, ૚) were considered, show that: 

(i) as q increases, the power of Hotelling’s 
T2 increases up to a maximum and then 
decreases to a minimum for q = n−2, after 
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that it cannot be calculated due to singularity 
of estimated covariance matrix; (ii) power of 
Tp increases monotonically with q; (iii) 
power of Tp is not invariant with respect to 
alternatives lying at Mahalanobis distance 
from H0 and so in some circumstances and 
even for small q it can be more powerful 
than T2, which in stringent conditions is the 
uniformly most powerful unbiased similar 
invariant (whereas Tp is simply unbiased). A 
similar result, however less general, is also 
in Blair, Higgins, Karniski and Kromrey 
(1994). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Under selection-bias sampling, any 

parametric inference cannot be extended to 
the target population, even asymptotically, 
unless a suitable treatment independent 
selection model is well-defined, identifiable 
and estimable. Conversely, under mild 
conditions and based on the uniform 
similarity and the uniform unbiasedness, 
permutation inference can be extended 
(Pesarin, 2001; Pesarin, 2002; Pesarin & 
Salmaso, 2010a, Pesarin & Salmaso, 2010b) 
to the possibly unknown population from 
which selected subjects belong. Therefore, 
the result of the inferential conclusion is not 
only valid to the actual subjects (e.g., 
treatment is effective on actual subjects), as 
suggested by Edgington and Onghena 
(2007) and by Lehmann (2009), it is also 
valid to the latent population (e.g., treatment 
is effective), at least in a weak sense. This in 

part contradicts one of Anderson view-
points. 

 
4. When in a multivariate testing problem the 

alternatives are restricted to be one-sided 
and the underlying distribution is not 
multivariate normal with known covariance 
matrix, no parametric solution is known 
(under multivariate normality some 
asymptotic solution are known (Silvapulle & 
Sen, 2005)); whereas within the permutation 
testing principle these solutions are 
straightforward through the so-called 
nonparametric combination of dependent 
partial tests, one for each component 
variable (Basso, Pesarin, Salmaso & Solari, 
2009; Basso & Salmaso, 2011; Finos, 
Salmaso & Solari, 2007; Pesarin & Salmaso, 
2010a). This, together with the fact that no 
single test can recover all of the information 
on f contained in ࢄ, may solve the question 
regarding the “unresolved ambiguity 
concerning the degree to which each of the 
... tests ... provides unique information about 
the null hypothesis” expressed in Andersons 
manuscript. 

 
5. Reported results from Hayes (1996) 

regarding the non “distribution-free” 
property of permutation tests are, in our 
opinion, misleading because in order for the 
permutation test based on ∑ ௜ܺ ௜ܻ for testing 
H0:ρ=0 to be valid, the null hypothesis must 
be H0:X⊥Y , that is, independence must be 
assumed between X and Y, not only zero 
correlation. In other words it is not possible 
to test ρ=0 via permutation without 
assuming independence due to the lack of 
exchangeability (remember that ρ=0 
characterizes independence on bivariate 
normal distributions). In a sense, this implies 
some limitations on the inferential 
possibilities of permutation tests. 
 

6. One important – and very useful property – 
of permutation tests is when there are 
missing or censoring or zero-inflated data 
informative on the treatment effect (see 
Pesarin, 2001; Pesarin & Salmaso, 2010a; 
Pesarin & Salmaso, 2010b) where, unless a 

Table 1: Simulations under 
H1: n1 = n2 = 10, 0.40 = ߜ ,0 = ߤ 

q T2 Tp 

4 .079/.219 .081/.237 
8 .063/.234 .126/.347 
12 .037/.186 .176/.436 
18 .013/.067 .253/.543 
19  .244/.544 
22  .340/.618 
25  .365/.656 
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suitable, identifiable and separately 
estimable model is provided, no parametric 
test exists (Sen, 2007).  
 

7. Permutation testing can be used in an 
intriguing problem as that in which some 
treated subjects have negative and others 
positive effect, as for example with some 
drugs sensitive to genetic interaction, so that 
both ߜ < 0 and ߜ > 0 can be jointly true in 
the alternative. This problem is studied in 
Bertoluzzo, Pesarin & Salmaso (2013).  

 
8. In Pesarin and Salmaso (2010a) and Pesarin 

and Salmaso (2010c) an extended notion of 
consistency is provided for permutation tests 
where it is assumed that sample sizes remain 
fixed and the number of informative 
variables, those which contribute with non-
null effect, diverge to the infinity. A notion 
which can have application, for example, in 
many problems of modern biological 
analyses where the number of observed 
variables per subject can be practically 
unlimited or even in problems where data 
are curves or images which can be reduced 
to a large number of coefficients (e.g., 
functional principal components, Fourier 
and/or wavelets coefficients, area under the 
curve and/or number of picks over a list of 
thresholds, etc.).  

 
9. It is possible to download without cost the 

software NPC-Test R.10 from the Wiley 
website http://www.wiley.com/go/npc for 
Pesarin and Salmaso (2010a), which may 
solve the large majority of unidimensional 
and multidimensional permutation testing 
problems. R coded programs are also 
available for download from the same 
website. 

 
 

References 
Anderson, R. B. (2013). Conceptual 

Distinction between the Critical p Value and the 
Type I Error Rate in Permutation Testing. 
Journal of Modern Applied Statistical Methods, 
12(1), 2-8. 
 

Basso, D., Pesarin, F., Salmaso, L., & 
Solari, A. (2009). Permutation tests for 
stochastic ordering and ANOVA: Theory and 
applications. New York, NY: Springer. 

Basso, D., & Salmaso, L. (2011). A 
permutation test for umbrella alternatives. 
Statistics and Computing, 21, 45-54. 

Bertoluzzo, F., Pesarin, F., & Salmaso, 
L. (2013). On multi-sided permutation tests. 
Communications in Statistics -Simulation and 
Computation, 42, 1380-1390. 

Blair, R. C., Higgins, J. J., Karniski, W., 
& Kromrey, J. D. (1994). A study of 
multivariate permutation tests which may 
replace Hotelling’s t2 test in prescribed 
circumstances. Multivariate Behavioral 
Research, 29, 141-163. 

Finos, L., Salmaso, L., & Solari, A. 
(2007). Conditional inference under 
simultaneous stochastic ordering constraints. 
Journal of Statistical Planning and Inference, 
137, 2633-2641. 

Lehmann, E. L. (2009). Parametric 
versus nonparametrics: two alternative 
methodologies. Journal of Nonparametric 
Statistics, 21, 397-405. 

Pesarin, F. (2001). Multivariate 
permutation tests: with application in 
biostatistics. Chichester, UK: John Wiley & 
Sons. 

Pesarin, F. (2002). Extending 
permutation conditional inference to 
unconditional one. Statistical Methods and 
Applications, 11, 161-173. 

Pesarin, F. (2013). Some elementary 
theory of permutation tests. Communications in 
Statistics - Theory and Methods. Submitted, R1 
version. 

Pesarin F., & Salmaso, L. (2010a). 
Permutation tests for complex data. Theory, 
applications and software: Wiley series in 
probability and statistics. Chichester, UK: John 
Wiley & Sons. 

Pesarin F., & Salmaso, L. (2010b). The 
permutation testing approach: a review. 
Statistica, LXX(4), 1-29. 

Pesarin, F., &. Salmaso, L. (2010c). 
Finite-sample consistency of combination-based 
permutation tests with application to repeated 
measures designs. Journal of Nonparametric 
Statistics, 22, 669-684. 



FORTUNATO PESARIN & STEFANO BONNINI 
 

17 
 

Pesarin, F. & Salmaso, L. (2011). A 
review and some new results on permutation 
testing for multivariate problems. Statistics and 
Computing, 22(2), 639-646. 

Pesarin, F., & Salmaso, L. (2013). On 
the weak consistency of permutation tests. 
Communications in Statistics - Simulation and 
Computation, 42, 1368-1379. 

Salmaso, L., & Solari, A. (2005). 
Multiple aspect testing for case-control designs. 
Metrika, 12, 1-10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sen, P. K. (2007). Union-intersection 
principle and constrained statistical inference. 
Statistical Planning and Inference, 137, 3741-
3752. 

Silvapulle, J. S., & Sen, P. K. (2005). 
Constrained statistical inference: Inequality, 
order and shape restrictions. Hoboken, NJ: 
Wiley. 
 


	Journal of Modern Applied Statistical Methods
	5-1-2013

	A Response to Anderson's (2013) Conceptual Distinction between the Critical p value and Type I Error Rate in Permutation Testing
	Fortunato Pesarin
	Stefano Bonnini
	Recommended Citation


	Microsoft Word - 3_1378 - Pesarin_Bonnini FINAL 12(1)

