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Using the Bootstrap for Estimating the Sample Size in Statistical Experiments 
 

Maher Qumsiyeh 
University of Dayton, 

Dayton OH 
 

 
Efron’s (1979) Bootstrap has been shown to be an effective method for statistical estimation and testing. 
It provides better estimates than normal approximations for studentized means, least square estimates and 
many other statistics of interest. It can be used to select the active factors - factors that have an effect on 
the response - in experimental designs. This article shows that the bootstrap can be used to determine 
sample size or the number of runs required to achieve a certain confidence level in statistical experiments. 
 
Key words: Efron’s bootstrap, experimental factors, statistical estimation, confidence level. 
 
 

Introduction 
Traditional methods of finding sample sizes 
depend on knowing the underlying distribution. 
For example, to determine a sample size that 
will result in (1-α)×100% confidence that the 
sample mean is within E units from the 
population mean the following is used: 
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assuming normality, or using the central limit 
theorem, and determining an approximate value 
for σ. For a multiple regression model 
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a (1−α)×100% confidence interval for βj is given 
by 
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where, R2 is the multiple coefficient of 
determination and Rj

2 is the same when xj is 
predicted from the remaining k−1 regressors. 

Using equation (3), the sample size to 
predict the standardized coefficient within E 
units of the true value (replacing t with normal) 
is given by 
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However with this n there is approximately a 
50% chance that the interval will be longer than 
2E (Kelly & Maxwell, 2003). 

Hahn and Meker (1991) provide a value 
for N for which the confidence is (1-δ)×100% 
that the interval obtained is of a length less than 
or equal 2E. The value of such N is 
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where n is the value found in equation (4). 
 

An alternative is to use the bootstrap 
method to determine if the sample size 
calculated using equations (1) and (5) is 
necessary or if it is larger than what is needed to 
achieve a certain confidence. The bootstrap has 
been shown to provide better than normal 
estimates of distribution functions of studentized 
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statistics (Singh, 1981; Bickle & Freedman, 
1980; Babu and Singh, 1983, 1984). Qumsiyeh 
(1994) showed that bootstrap approximation for 
the distribution of the studentized least square 
estimate is asymptotically better, not only than 
the normal approximation, but also than the two-
term Edgeworth expansion. Lahiri (1992) 
showed the superiority of the bootstrap for 
approximating the distribution of M-estimators. 
Bhattacharya and Qumsiyeh (1989) preseneted 
an Lp -comparison between the bootstrap and 
Edgeworth expansions. Finally, Qumsiyeh and 
Shaughnessy (2008, 2010) showed that the 
bootstrap can be used to determine the active 
factors in two level designs and how to estimate 
missing responses in those designs. In this study 
the bootstrap was applied to three data sets; SAS 
and the SQL procedure in SAS were used to 
perform calculations and resampling. 
 
Data Set 1 

Data set 1 is comprised of 1,000 
randomly selected samples of size 61 each from 
a normal distribution with mean 20 and standard 
deviation 2 (61 is the number n obtained using 
Equation (1) with E = 0.5 and α = 0.05). An 
example of one such sample of size 61 is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mean for this sample was 20.068 and the 
standard deviation was 1.75. 

Data Set 2 
Data set 2 is real data that correlates the 

GPA y (out of 4) of 194 students from 
Bethlehem University, with their high school 
Math (x1) and English (x2) scores (out of 100 
points). The first few observations are shown in 
Table 1. The model for data set two is: 

0 1 1 2 2y β β x β x ε= + + + . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Set 3 

Data set 3 is an example provided by 
Bisgaard and Fuller (1995). It is a 24 full 
factorial experiment to determine if blade size 
(A), centering (B), leveling (C) and speed (D) 
had an effect on the occurrence of undesirable 
marks on a steel sample. The design matrix is 
shown in Table 2, where Y represents the 
number of defective (undesirable marks) among 
20 samples at each setting and P෡ is the 
proportion of defects at each setting. 
 
The Bootstrap 

The bootstrap was used to analyze the 
three data sets. SAS programming and the SQL 
procedure in SAS were used to perform the 
analyses. Resampling with replacement was 
conducted 1,000 times based on Efron and 
Tibshirani (1993) finding that 1,000-2,000 
works best. The SAS program used for data set 1  

21.39 19.92 19.08 19.86 
19.98 20.47 22.84 16.87 
20.86 21.29 22.25 20.14 
23.20 19.86 21.95 19.11 
19.74 23.06 17.06 19.06 
19.92 21.22 25.37 21.60 
19.06 20.87 22.99 21.77 
22.14 21.83 19.61 17.87 
19.59 18.42 17.43 18.98 
19.16 20.49 19.19 19.07 
18.10 19.12 21.01 19.69 
19.13 19.20 19.55 18.51 
17.66 20.90 21.88 21.09 
17.53 20.97 20.41 21.68 
18.93 19.56 19.56 19.17 
15.91    

Table 1: Data Set 2 Example 

y x1 x2 

2.55 75 77 

3.69 87 99 

2.48 80 70 

1.90 70 65 

2.07 70 89 

2.73 72 64 

1.81 80 66 

2.30 71 67 

1.76 83 66 

2.17 78 89 

1.77 65 60 
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is provided in Appendix A; due to the length of 
the programs for data sets two and three they are 
not provided. A different procedure was used for 
each data set. 
 
Data Set 1 

For the first example the sample size 
was 61, this is the sample size necessary for 
95% confidence that the sample mean is within 
0.5 units from the population mean using the 

equation: 
2 2

/2
2

αz σ
n

E
= . Using resampling and 

taking a random sample of size 61 from a N(20, 
22) distribution, it is resampled 1,000 times with 
replacement, the mean of each of the 1,000 
samples is calculated and half the difference 
between the 2.5 and 97.5 percentiles of the 1,000 
means is found. This should be the value of E. 
One sample of size 61 from a N(20, 22) 
distribution to another the value of such E will 
vary to a great degree, thus, this procedure is 
repeated several times (500 in this case) and an 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
interval for the values of such E’s is listed. The 
sample size continued to decrease and the values 
of E continued to be recorded. Results are shown 
in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 shows that a sample of size 61 
was not necessary; 48 would have been 
sufficient. The bootstrap was repeated 500 

Table 2: Data Set 3 Design Matrix 

Run A B C D Y P෡ 

1 -1 -1 -1 -1 0 0 

2 1 -1 -1 -1 16 0.8 

3 -1 1 -1 -1 0 0 

4 1 1 -1 -1 20 1 

5 -1 -1 1 -1 0 0 

6 1 -1 1 -1 10 0.5 

7 -1 1 1 -1 0 0 

8 1 1 1 -1 14 0.7 

9 -1 -1 -1 1 0 0 

10 1 -1 -1 1 10 0.5 

11 -1 1 -1 1 0 0 

12 1 1 -1 1 20 1 

13 -1 -1 1 1 1 0.05 

14 1 -1 1 1 12 0.6 

15 -1 1 1 1 0 0 

16 1 1 1 1 20 1 
 

Table 3: Data Set 1 Results 

n E 

61 0.403-0.458 

53 0.451-0.478 

48 0.463-0.509 

40 0.538-0.567 
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times, each resampling 1,000 times using a 
different 61 randomly selected data points with 
replacement from a N(20,22) distribution and the 
values of all 500 replications were in the interval 
given which is 0.403-0.458 for n = 61. (See 
Appendix A for the SAS program used for data 
set 1 with n = 48.) 
 
Data Set 2 

The second data set, which correlates 
the university GPA to high school English and 
math scores, the model is: y= β0+ β1x1+ β2x2+ε. 
The initial results using SAS for the whole data 
set are shown in Table 4. 

First using equation (4), 
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to find an initial n using α as 0.05 and E as 0.2 
for the standardized betas (the value of E 
depends on the type of data at hand). Using all 
194 data points and the values of R2 and Rj

2 
from the data set (R2 ≈ 0.4192 and Rj

2 ≈ 0.0163) 
and equation (4), the value of ݊ is 60 
(approximating to the next integer), however, 
with this n there is approximately a 50% chance 
that the interval will be longer than 2E. (Kelly & 
Maxwell, 2003). By contrast, using equation (5), 
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δ = 0.05 and j = 2 the value of N is determined 
to be 78; this results in 95% confidence that the 
interval obtained is of a length less than or equal 
2E (Hahn & Meker, 1991). Note that the value 
of E used is for the standardized betas; thevalue 
of E for the non-standardized betas (EN) will be 
approximately 
 

2

0.51651973
E

10.5807703
EN 0.0097y

x

S

S
=≈ = . 

 
Next, the half-length of the confidence 

interval for β2 is determined using the bootstrap 
method and a random sample of size 78 from the 

194 original observations. The procedure is as 
follows: 
 
1. Select 78 points using random sampling 

without replacement from the 194; name this 
as subset and perform a regular regression 
procedure obtaining (X1,1 , X2,1 , Y1 ,E1), 
(X1,2 , X2,2 , Y2 ,E2 ), ..., (X1,78 , X2,78 , Y78 

,E78 ). Here, 
i i iE Y  Y= − , is the residual for 

the ith observation. 
 
2. Select 1,000 samples with replacement from 

the subset, this is the bootstrap sample. Each 
sample has 78 points and samples are 
designated as {sample1}, {sample2}, ..., 
{sample1000}. 

 
3. Examine {sample1}; n=78 points taken with 

replacement from the subset. We have sets 
of points (X1,1*, X2,1*, Y1*, E1*), (X1,2*, 
X2,2*, Y2*, E2*), ..., (X1,78*, X2,78*, 
Y78*,E78*). Each (X1,j*, X2,j*, Yj*, Ej*) can 
be any of the (X1,1, X2,1, Y1,E1), (X1,2, X2,2, 
Y2, E2), ..., (X1,78, X2,78, Y78, E78) with 
probability 1/78. 

 
4. Find the average of the Ei*’s, and name this 

ME1 . Due to the fact that the mean of the 
errors is assumed to be 0, standardize the 
errors by subtracting ME1 from each of 
them.  

 
5. Still using {sample1}, the new Y’s are 

obtained by the adding the respective 
standardized error term to the predicted 
values and these are termed as new Yj’s. 

 
6. Continue to examine {sample1}; using the 

least-square method, find the slope and the 
intercept, (slope1, slope2, intercept1), based 
on (X1,1*, X2,1*, , newY1

*), (X1,2*, X2,2*, 
newY2

*), ..., (X1,78*,X2,78*, newY78*). 
 
7. Repeat steps 3-6 for the other 999 samples 

to obtain 1,000 estimates for the intercept β0 
and the slopes β1 and β2. Interest is in β2. 

 
8. Estimate the value of β2 by averaging the 

1,000 estimates of β2 and calculate a 95% CI 
for β2 by finding the 2.5 and 97.5 percentile 
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of those 1,000 values. Half the length of this 
interval, E*, will be compared with the EN = 
0.0097 previously obtained. 

 
Based on this procedure, how is it 

known that there is 95% confidence that half the 
length of the interval will not exceed EN? The 
answer is that by repeating steps 1-8, 1,000 
times to obtain 1,000 EN’s and then finding the 
top 95 percentile, it should not exceed EN.  

The estimate for β2 from one random 
subset of 78 points was ߚଶ෢ =0.01655 and a 95% 
CI for β2 was (0.0089, 0.0242). This assumes 
that all conditions, such as normal residuals and 
constant variances, hold; in addition, half the 
length of the interval is 0.0077, which is smaller 
than expected (0.0097). The n = 78 guarantees 
that 95% of the cases will result in smaller half 
lengths. 

Using the bootstrap method discussed 
results in a mean half-length of 1,000 runs of the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

bootstrap method of 0.0095 and a 95% 
confidence interval of (0.00915, 0.0102): this is 
without any assumptions on the model. An 
estimate for β2 was calculated as an average of 
the 1,000 bootstrap sample estimate for β2 it was ߚଶ෢ = 0.01643 for one run with a 95% CI of 
(0.0.0162, 0.0167). The bootstrap was repeated 
1,000 times and the average value for the 
estimated values of β2 was 0.01633 with a 95% 
CI of (0.01607. 0.01662). Without any 
assumption on the model, the bootstrap 
produced an estimate for β2 that was close to that 
produced assuming the regular model 
assumptions hold, in addition, the length of the 
95% CI was a little shorter than expected using a 
sample of size 78 (0.0095 vs. 0.0097). It is 
important to note that the calculations were 
carried out without assuming the error terms to 
be normal, however, it is valuable to understand 
what will happen if the error terms in the 
example are exactly normal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: SAS Results for Data Set 2 

Model: Model1 

Dependent Variable: y 

Number of Observations Read: 194 

Number of Observations Used: 194 

Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean 
Square 

F Value Pr > F   

Model 2 21.58370 10.79185 68.92 <0.0001   

Error 191 29.90728 0.15658     

Corrected Total 193 51.49098      

Root MSE  0.39571  R-Square 0.4192   

Dependent Mean  2.65381  Adj R-Sq 0.4131   

Coeff Var  14.91081      

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

t value Pr > |t| 95% Confidence Limits 

Intercept 1 -0.73516 0.29076 -2.53 0.0123 -1.30868 -0.16163 

x1 1 0.02696 0.00294 9.16 <.0001 0.02116 0.03277 

x2 1 0.01659 0.00271 6.11 <.0001 0.01124 0.02194 
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2nd Data Set (Normal Errors) 
For a random sample of size 78, the 

predicted values of the yi’s, i y  were calculated 

and a new variable wi was defined as: 
 


ii iw  y c= + ε  

 
where εi is randomly chosen from a N(0,1) 
distribution. The new wi’s with the original x’s 
will have normal errors with constant variance. 
Note that the variance of the wi’s must be the 
same as the original yi’s to be able to compare 
the length of the confidence interval for the new 
β2 with the previous one. The solver function in 
Microsoft Excel was used to provide a value for 
c to achieve this; this value of c was calculated 
to be 0.4123. This improved the previous results 
and half the length of the 95% CI for β2 using 
the bootstrap method was much smaller (0.0089 
vs. 0.0097). This shows that using the bootstrap 
requires a smaller sample size than the previous 
estimate of n = 78. 
 
Data Set 3 

Bisgaard and Fuller (1995) provided a 
table that gives estimated sample sizes (n) for 
the number of runs at each setting for two level 
full factorial experiments using proportions as a 
response. Their estimate for n which represents 
the number of runs needed to detect an error of 
size Δ in the untransformed scale is given by 
 

2
/2

2

( )βz z
n

Nδ
∝ −

=                        (6) 

 
where N is the total number of basic runs in a 2k 
factorial experiment (4, 8, 16, …), α and β are 
the probabilities of type I and type II errors, 0.05 
and 0.1 respectively, and δ is the expected value 
of the effect (Bisgaard & Fuller, 1995). Bisgaard 
and Fuller’s table presents values of Δ that vary 
from 10% to 90% of the proportion of defective 
(p0) and shows that sample size depends on the 
average defective level. If the average defective 
level is low, for example 5%, a larger sample 
size is needed to indicate that a change has truly 
occurred. 

For the 3rd data set the current level of 
defective (p0) was not known, it was 

approximated with the average proportion of 
defective in the sample at each setting which is ̅݌መ 	≈ 0.384. Because n is given in this 
experiment as 20, the method described in 
Bisgaard and Fuller (1995) or the table they 
provide can be used to determine the minimum 
size of detectable error. For α to be at most 0.05, 
the minimum size is |Δ|>0.185; calculating the 
effect size of each factor, it was found that 
factors A, B and the AB interaction have effect 
sizes larger than this (0.984, 0.208, 0.247 
respectively). This agrees with the half normal 
plot (Daniel, 1959) which states that factors B 
and the AB interaction appear to be slightly 
active (not very clear) and that factor A is a 
definitely active factor (see Figure 1). 

In the calculations described it is not 
certain that a 95% confidence interval for the 
effect size will have its lower bound less than 
0.185 for those factors (A, B and AB).  
 

Qumsiyeh and Shaughnessy (2008, 
2010) showed that the bootstrap can be used 
(under no assumptions) to determine active 
factors in factorial experiments, to estimate the 
size of the effect and to determine a confidence 
interval for the effect size. The method can be 
described with the following steps using factor 
A for illustration purposes: 
 
1. Sample N/2 responses with replacement 

from data at the +1 level of the given factor 
A. 

 
2. Sample N/2 responses with replacement 

from data at the −1 level of the given factor 
A. 

 
3. Estimate the effect of that factor using the 

difference between +1 level and −1 level.  
 
4. Repeat the sampling procedure a large 

number of times (1,000 in this example).  
 
5. Find the average of the 1,000 values; this is 

an estimate of the effect size of factor A. 
 
Determine the upper (1−α/2) and lower α/2 
percentile points of the resampled effect values 
found in step 4. Use these values to construct the  
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effect size. If the confidence interval doesn’t 
contain 0 then this factor is an active factor – a 
factor that has an effect on the response. 

Using the procedure described 
previously for data set 3, the following were 
determined: All confidence intervals for the 
effect size for all factors except factor A 
contained 0, therefore they must be assumed as 
inactive factors. For factors A, B and the AB 
which appear to be effective using the normal 
plot and are reported as active factors by 
Bisgaard and Fuller (1995), using the proportion 
of defectives, the results were as follows: 
 
• Factor A: The mean effect size for the 1,000 

runs was 0.7566 and a 95% confidence 
interval for the effect size was (0.6188, 
0.8875).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Factor B: The mean effect size for the 1,000 

runs was 0.1500 and a 95% confidence 
interval for the effect size was (−0.2313, 
0.5406).  

 
• Factor AB (The AB interaction): The mean 

effect size for the 1,000 runs was 0.1776 and 
a 95% confidence interval for the effect size 
was (−0.2406, 0.5894).  

 
Results show that only factor A can be 
considered active. If this is the case, the 
confidence interval for effect A has a lower 
bound of 0.618 which leads to a much higher 
value than the least expected of 0.185. This 
indicates that a sample size smaller than 20 
would have been sufficient. 
 
 

Figure 1: Half-Normal Plot for the Effects in Data Set 3 
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Conclusion 
The bootstrap method can be used to determine 
sample sizes in statistical experiments and to 
check whether a certain sample size used is 
more than is needed by examining the length of 
the confidence interval resulting from using the 
bootstrap method. The bootstrap is also good for 
selecting active factors and in constructing 
confidence intervals for effect size. The 
availability of computers and statistical software 
make using re-sampling (bootstrap) easy and 
fast and provides good predictions. 
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Appendix A: SAS Program Used for Data Set 1 

%macro rep; 
%do rep=1 %to 500; 
data ma (drop=i); 
*%let num=48; 
*do i=1 to &num; ; 
do i=1 to 48;  
x=2*rannorm(56367)+20; 
output; 
end; 
run; 
%macro numbering(N); 
data numbering; 
do i=1 to &N; output; end; run; 
quit; 
data ma1; 
set numbering; 
set ma; 
run; 
%mend; 
%numbering(48); 
%macro repeat; 
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Appendix A (continued): SAS Program Used for Data Set 1 

%do repeat=1 %to 1000; 
%macro distinct(nThrow, N); 
data table2; 
 do j = 1 to &nThrow; 
   pt = int(int(ranuni(0) * &N) + 1.5); 
    set ma1 point=pt;      
  output;  
  end; 
stop;     * required for point= ; 
run; 
%mend; 
%distinct(48,48); 
run; 
proc means data=Table2 n mean noprint; 
var x; 
output out=Table3 n=n mean=mx; 
run; 
quit; 
proc sql; 
create table tableF as 
select a1.mx as mx1 
from table3 as a1; 
run; 
proc append data=TableF base=summary force; 
run; 
%end; 
%mend; 
%repeat; 
proc univariate data=summary noprint; var mx1; 
output out=z1 mean=tm pctlpts = 2.5, 97.5 pctlname=p25 p975 pctlpre = mx1;  
run; 
data E; 
set z1; 
E=(mx1p975-mx1p25)/2; 
run; 
proc append data=E base=E1 force; 
run; 
proc sql; 
drop table  E ; 
drop table  Ma ; 
drop table  Ma1 ; 
drop table  Numbering ; 
drop table  Summary ; 
drop table  Table2 ; 
drop table  Table3 ; 
drop table  Tablef ; 
drop table  z1 ; 
run; 
quit; 
%end; 
%mend; 
%rep; 
proc univariate data=E1 noprint; var E; 
output out=Length mean=tm pctlpts = 2.5, 97.5 pctlname=p25 p975 pctlpre = E;  
run; quit; 
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