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The X-Alter Algorithm: 
A Parameter-Free Method of Unsupervised Clustering 

 
Thomas Laloë Rémi Servien 
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Toulouse, France 

 
 
Using quantization techniques, Laloë (2010) defined a new clustering algorithm called Alter. This L1-
based algorithm is shown to be convergent but suffers two major flaws. The number of clusters, K, must 
be supplied by the user and the computational cost is high. This article adapts the X-means algorithm 
(Pelleg & Moore, 2000) to solve both problems. 
 
Key words: Clustering, quantization, K-means, free-parameter algorithm. 
 
 

Introduction 
Clustering consists in partitioning a data set into 
subsets (or clusters) so that the data in each 
subset share some common trait; proximity is 
determined according to a distance measure (for 
a thorough introduction to this subject please see 
Kaufman & Rousseeuw, 1990). The origin of 
clustering goes back over 45 years when some 
biologists and sociologists began to search for 
automatic methods to build different data 
groups. Today, clustering is used in many fields, 
for example, in medical imaging it can be used 
to differentiate between types of tissue and 
blood in a three dimensional image. Market 
researchers use clustering to partition the general 
population of consumers into market segments 
and to better understand the relationships 
between different groups of consumers/potential 
customers. There are also many applications in 
artificial intelligence, sociology, medical 
research and political science. 
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K-means clustering is the most popular 

method (Hartigan & Wong, 1979; MacQueen, 
1967); its attractiveness lies in its symplicity and 
its fast execution. It has however two main 
drawbacks. First, the number of clusters K must 
be supplied by the user; for this reason, different 
ways to determine K have been studied in the 
literature (Li, et al., 2008; Pham, et al., 2005). 
Second, the algorithm strongly depends on 
initialization and can easily converge to a local 
minimum. Pelleg and Moore (2000) offered a 
solution for the first problem with a building-
block algorithm called X-means that quickly 
estimates K. After each run of 2-means, local 
decisions are made regarding whether subsets of 
the current centroid should be split; the splitting 
decision is accomplished by computing the 
Bayesian Information Criterion (BIC). In a 
different approach, Laloë (2010) proposed a 
consistent algorithm, called Alter, which also 
requires specification of K. 

This article combines the X-means and 
the Alter algorithm to overcome the drawbacks 
of both algorithms. The complexity of the Alter 
algorithm decreases and an automatic selection 
of the number of clusters is simultaneously 
performed. In addition, the convergence 
properties of the Alter algorithm overcomes the 
local optimality problem of the X-means 
algorithm inherited from the K-means algorithm. 
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Methodology 
The Alter Algorithm 

The Alter algorithm method is based on 
quantization. It is a commonly used technique in 
signal compression (Graf & Luschgy, 2000; 
Linder, 2002). All theoretical results presented 
herein are from Laloë (2010). Consider (H,|.|) a 
normed space. Let X be a H-valued random 
variable with distribution μ such as E|X|<∞. 

Given a set C of points in kH , any Borel 
function q:H→C is called a quantizer. The set C 
is called a codebook, and the error made by 
replacing X by q(X) is measured by the 
distortion: 
 

( , ) ( , ( )) | ( ) | ( ).D q Ed X q X x q x dxμ μ= = −
H

 

 
Note that D(μ,q)<∞ because E|X|<∞. For a given 
k, the aim is to minimize D(μ,.) among the set 
Qk of all possible k-quantizers. The optimal 

distortion is then defined by 
*( ) inf ( , ).

k
k q Q

D D qμ μ
∈

=  

 

When it exists, a quantizer q* satisfying 
* *( , ) ( )kD q Dμ μ=  is said to be an optimal 

quantizer. Laloë (2010) showed that only nearest 
neighbor quantizers can be considered, that is, a 
quantizer q will be characterized by its codebook 

1{ }k
i iC y ==  and the rule: 

 
( ) 1 , ,|| || || ||i i jq x y j k j i x y x y= ⇔ ∀ ≤ ≤ ≠ − ≤ − . 

 
Thus, a quantizer can be defined by its codebook 
only. Moreover the aim is to minimize the 
distortion among all possible nearest neighbor 
quantizers. However, in practice, the distribution 
μ of the observations is unknown, and only n 
independent observations 1,..., nX X  with the 

same distribution than X  are available. The 
goal is then to minimize the empirical distortion: 
 

1

1
( , ( )).

n

i i
i

d X q X
n =
  

 

The L1-based distortion is chosen to obtain more 
robust estimators (Kemperman, 1987). The 

clustering is accomplished by regrouping the 
observations that have the same image by q; 
more precisely, a cluster C  is defined by 

{ : ( ) }Ci iC X q X x= = , Cx  being representative of 

cluster C . 
Laloë (2010) presented theoretical 

results of consistency and rate of convergence. 
In particular, he stated that the rate of 
convergence is closely related to the metric 
entropy, however, the minimization of the 
empirical distortion is not possible in practice 
and Laloë (2010) proposed an alternative to 
perform the Alter algorithm. The idea is to select 
an optimal codebook among the data set. The 
outline of the algorithm is: 
 
1. List all possible codebooks , i.e., all possible 

K-tuples of data;  
 
2. Compute the empirical distortion associated 

to the first codebook. Each observation Xi is 

associated with its closed center; 
 
3. For each successive codebook, compute the 

associated empirical distortion. Each time a 
codebook has an associated empirical 
distortion smaller than the previous smallest 
one, store the codebook;  

 
4. Return the codebook that has the smallest 

distortion.  
 

Theoretical results of consistency and 
rate of convergence have been shown for the 
Alter algorithm. In particular it has been stated 
that the convergence rate is of the same order as 
the theoretical method described previously. 
Moreover, this algorithm does not depend on 
initial conditions (unlike K-means) and it 
converges to optimal distortion; unfortunately its 
complexity is 1( )KO n +  and it is not possible to 
use it for high values of n or K. 
 
The X-Means Algorithm 

Pelleg and Moore (2000) define the X-
means algorithm adapted from a K-means 
algorithm. The X-means algorithm goes into 
action after each run of K-means, making local 
decisions about which subset of the current 
centers should split themselves in order to better 
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fit the data. The splitting decision is done by 
computing the BIC criterion. This new approach 
proposes an efficient solution to one of the 
major drawbacks of K-means: the search for the 
number of clusters K. In addition, X-means has a 
low computational cost. However, results suffer 
from the non-convergence property of the K-
means algorithm. The outline of this algorithm 
is: 
 
1. Perform 2-means to obtain clustering C; 
 
2. Evaluate the relevance of the classification 

C with a BIC Criterion; and 
 
3. Iterate step one and two in each cell of C. 

Continue until there is no more relevant 
discrimination.  

 
The X-Alter Algorithm 

Following X-means, a recursive use of 
Alter with K=2 can simultaneously allow both 
advantages of these two methods to be 
combined: estimation of K/low computational 
cost for X-means and convergence/parameter-
free character for Alter. An aggregation step is 
added at the end of the algorithm to prevent the 
creation of too many clusters. Note that no 
parameter is needed by the algorithm, although a 
user can specify a range in which the true K 
reasonably lies if desired (this would be [2,+∞[ 
if no information was available). The outline of 
the algorithm is: 
 
1. Perform Alter with K=2 to obtain clustering 

C; 
 
2. Evaluate the relevance of the classification 

C (see Figure 1) with a BIC criterion; 
 
3. Iterate steps one and two in each cell of C 

(see Figure 2); continue until there is no 
more relevant discrimination (see Figure 3);  

 
4. Final aggregation; aggregation can be 

considered if BIC(K=1)>BIC(K=2); 
aggregations are successively made 
according to decreasing values of 
BIC(K=1)−BIC(K=2) (see Figure 4). 

 
The algorithm starts by performing Alter 

with K=2 centers. A model selection criterion 

(BIC) is performed on all data in the set. Using 
this criterion, the suitability of the discrimination 
is checked by comparing BIC(K=1) and 
BIC(K=2). The criterion asks if the two cluster 
model is better than the one cluster model. If the 
answer is yes, the iterative procedure occurs in 
the two subsets. 

The structure improvement operation 
begins by splitting each cluster into two subsets. 
The procedure is local in that the children are 
fighting each other for the points in the parent’s 
region, no others; when the discrimination is not 
validated by BIC criterion the algorithm ends in 
this region. Up to that point, the only difference 
with X-means is the utilization of Alter as 
opposed to 2-means because the consistent 
property of Alter must improve results. When all 
regions are asleep and no more clusters are 
needed, the aggregative step prevents the 
creation of too many clusters or the presence of 
split clusters (see Figure 2).  

The complexity of this algorithm in the 
worst case scenario, that is when it creates n 

clusters with one data set, is O(n4) which is less 
than the initial Alter algorithm. However, the 
computational cost is still higher than for X-
means. For several thousand points, this 
complexity is not a critical practical concern but, 
if the database exceeds several tens of thousands 
of points, it could still be too high. 
 
The BIC Criterion 

Pelleg and Moore (2000) used the 
formula from Kass and Wasserman (1995) that 
evaluates the relevance of the classification C 
with 

( ) log
2

p
BIC C l n= −  

 
where l is the log-likelihood of the data 
according to clustering C and taken at the 
maximum likelihood point and p is the number 
of parameters in C. The number of free 
parameters p is the sum of K−1 class 
probabilities, d*K centroids coordinates and one 
variance estimate. Data in each cluster are 
supposed to be normally distributed around the 
center. The empirical study shows that it 
performs well on real data. 
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Figure 1: First Iteration of X-Alter 

 
Notes: The discrimination in 2 clusters (Step 1) was validated 
by the BIC criterion (Step 2); in each cluster, observations are 
represented by a different symbol. 

 
 

Figure 2: Second Iteration of X-Alter 

 
Notes: The sub-classification is done in the two relevant 
clusters (Step 1). Sub-classifications are validated by BIC 
(Step 2) and four clusters are obtained. 
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Figure 3: No Relevant Sub-Classification in the Left 
Cluster According to BIC 

 
Note: In the three other clusters, the same rejection of 
sub-classification was obtained (Step 3). 

 
 
 

Figure 4: Final Discrimination 

 
Note: The two middle clusters were aggregated in Step 4 
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Results 
An empirical study was performed to show the 
relevance of the proposed method. Three 
criterion were considered: the number of 
detected clusters, the Adjusted Rand Index 
(A.R.I.) (Rand, 1971; Hubert & Arabie, 1985) 
and the Dunn index (Dunn, 1974; Handl, et al., 
2005). The Rand Index is a measure of the 
similarity between two clusters. A problem with 
the Rand index is that the expected value of the 
Rand index of two random partitions does not 
take a constant value (for example, zero). Thus, 
Hubert and Arabie (1985) defined the A.R.I. 
which is a corrected-for-chance version of the 
Rand index. Studies have shown the need and 
usefulness of the adjusted measures (Nguyen, et 
al., 2009); more clusters are similar (respectively 
dissimilar) closer to 1 (respectively 0).  

Alternatively, the Dunn Index measures 
the compactness of the clusters and is a worst 
case indicator. The goal is to identify sets of 
clusters that are compact, with a small variance 
between individuals in the same cluster, and 
well separated, where the centers of different 
clusters are sufficiently far apart, as compared to 
the within cluster variance. The higher the Dunn 
Index, the better the clustering. For more details 
on this classical cluster validation indexes the 
interested reader is referred to Dunn (1974) or 
Handl, et al. (2005). 

Pelleg and Moore showed that X-means 
performs better and faster than repeatedly using 
accelerated K-means for different values of K. 
Thus, the X-Alter algorithm is compared to X-
means and to X-means with the aggregation step, 
called X-means-R, that is, a clustering is 
obtained using X-means and then the 
aggregation procedure is computed (Step 4 in 
the X-Alter algorithm ) on this clustering. This 
allows the usefulness and the computational 
time of the aggregation step to be assessed. 
Simulated data 
 
A Simple Case 

Clusters of Gaussian vectors were 

simulated in d . First, two clusters well 

identified in 20  were considered (see Table 1). 
More precisely, two clusters of 25 vectors (in 

20 ) with μ1=−μ2=15 and 2 2
1 2 100σ σ= =  were 

simulated. The covariance matrices are given by 

Σ2=100I20 where I20 is the identity 20*20 

matrix and the mean vectors are: 
 

1 2

1

15

1

M M

 
 = − =  
 
 

 . 

 
This results in 1 25 1, , ( , )X X N M Σ   and 

25 50 2, , ( , )X X N M Σ  . The results are 

averaged on 300 simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As expected, the three methods perform 
well on this very simple case. Next three 

simulated clusters well identified in 5  were 
considered. This allows the relevance of the 
aggregation step to be observed because X-
means will often cut the middle cluster in its first 

iteration. Two clusters of 20 vectors (in 5 ) 
with μ1=−μ2=20 and 2 2

1 2 100σ σ= =  were 

simulated and one cluster of 20 vectors with 
μ3=0 and 2

3 100σ = . The results were averaged 

on 300 simulations (see Table 2). 
The influence of the aggregation step 

can be remarked upon; X-means-R found the 
good number of clusters almost forty percent 
more often than X-means. Moreover, the 
proposed X-means algorithm obtained better 
results than the other two: the inherited 
convergence property of Alter clearly improves 
results. 
 
 

Table 1: Results of the Three Algorithms for the Two 
Well-Defined Clusters 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

X-means 99 1 1.62 

X-means-R 100 1 1.64 

X-Alter 100 1 1.64 
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Finally, tests with random values for the 
numbers of clusters were performed, the mean, 
standard deviation and number of data in cluster. 
The μi are randomly selected between −50 and 

50, the σi between 5 and 15, the number of 

clusters between 2 and 10 and the number of 
vectors in each cluster between 8 and 25. The 
dimension of the data is fixed to 10. Table 3 
summarizes the results averaged over 300 
simulations. The proposed algorithm obtains 
better results than the other two for the estimated 
number of clusters, also the A.R.I. and Dunn 
Index are approximately the same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Functional Case 

Functional data are now considered 
along with computing times. When a dimension 
is small (as in the previous examples), the CPU 
times were approximately the same. Two 
configurations were considered: First, functions 

cos(10 / 2 10) / 5x x π+ + − , 

cos(10 / 2 10) / 5x x π+ + −  and 

² cos(10 / 2 10) / 5x x π+ + −  were taken in [0, 1] 
discretized 20 times. The term 
cos(10 / 2 10) / 5x π+ −  was added to disturb 

functions x , x  and ²x . Each data in 20  was 
noised with a vector composed by twenty 
Gaussian law N(0,σ) where the value of σ is 
selected for each data using σ∼N(0.1,0.02). 
Figure 5 shows examples of some of the 
functions generated. Three clusters of size 
randomly chosen between 15 and 25 were 
simulated 300 times. Results are presented in 
Table 4 (time is given in seconds). 

The proposed method gives better 
results, mainly regarding the search of the 
number of clusters. A slightly more difficult 
case was also considered. This configuration 
was constructed on the same model as the first, 

but based on functions x , 3/4x  and x  which 
are closer than previous ones (see Figure 6 and 
Table 5). 

The proposed method retrieves the 
correct number of clusters more often. Note that 
if the complexity of the algorithm is larger than 
that of the X-means, it is still much smaller than 
the Alter. Moreover Alter does not estimate the 
number of clusters. 
 
Robustness Study 

The robustness properties of the L1 

distance are now illustrated. As a starting point, 
the first functional configuration shown in 
Figure 5 was considered. To obtain noisy data 
the following protocol was used: a value 
x∈[−0.30;−0.15]∪[0.15;0.30] was added to 
a∈[10;25] percent of points (randomly chosen) 
of b∈[10;25] percent of data (randomly chosen) 
(see Figure 7 for an example). This procedure 
was repeated 300 times and averaged results are 
provided in Table 6. 

The relevance of the L1-based distance 
error, which is much more robust to extreme 
values, is shown. If results are compared to 
those shown in Table 4 the correct number of 
clusters is found 95% of the time, while X- 
means and X-means-R do not perform as well 
and X-means-R do not perform as well (a loss of 
respectively 4% and 6%). 

Table 2: Results for the Three Algorithms on the 
Three Clusters 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

X-means 55 0.82 0.22 

X-means-R 76 0.82 0.22 

X-Alter 86 0.84 0.22 

 

Table 3: Results for the Three Algorithms on the 
Random Clusters 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

X-means 63 0.96 0.60 

X-means-R 71 0.97 0.60 

X-Alter 91 0.96 0.59 

 



THOMAS LALOË & REMI SERVIEN 
 

97 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Example of Functions 

 
Notes: Functions based on x  are on dashed lines, ones 

based on x are on solid lines and ones based on x2 are on 
dotted lines. 

 
 
 

Table 4: Results for the Three Algorithms on the Functional Data 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

Time 

X-means 81 0.88 0.63 2.0 

X-means-R 85 0.88 0.63 3.5 

X-Alter 95 0.89 0.63 27.6 
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Figure 6: Example of Functions 

 
Notes: Functions based on x  are on dashed lines, 
ones based on x are on solid lines and ones based on 

3/4x  are on dotted lines. 
 
 
 

Table 5: Results for the Three Algorithms on the Functional Data 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

Time 

X-means 26 0.75 0.43 2.4 

X-means-R 31 0.75 0.46 3.2 

X-Alter 40 0.77 0.46 28.7 
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Real Data 

The proposed method is next used with 
two conventional data sets from the UCI 
Machine Learning Repository (Frank & 
Asuncion, 2010); these are wine and iris data. In 
this case, the spherical Gaussian assumption of 
the BIC criterion cannot be assumed to be 
verified, therefore, it is important to test to 
ensure that this hypothesis is reasonable. The 
proposed method was compared to the X-means 
algorithm but also to the K-means algorithm 
with K known to be 3 (the real number of 
clusters);   thus,   3-means   have   a    significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
advantage over others methods by knowing the 
number of clusters. In these two real cases, as 
suggested in the description of the data sets, 
each variable is centered and standardized 
before performing clustering. Because K-means, 
X-means and X-means-R depend on the 
initialization, averaged results are given (over 50 
runnings) for these methods. 
 
Wine Data Set 

The wine data set is composed of 178 
instances and 13 variables found in each of three 
types of wines.  These  data are  the  results  of a 

Figure 7: Example of the Results of the Perturbation of cos(10 / 2 10) / 5x x π+ + −  

 
Note: Affected functions are on dashed lines. 

 
 
 

Table 6: Results for the Three Algorithms on the Perturbated 
Functional Data Sets 

Algorithm 
% of Correct 
Number of 

Clusters 
A.R.I. 

Dunn 
Index 

Time 

X-means 77 0.87 0.52 2.6 

X-means-R 79 0.87 0.52 3.8 

X-Alter 95 0.88 0.53 29.4 
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chemical analysis of wines grown in the same 
region in Italy but derived from three different 
cultivars. In a classification context, this is a 
well posed problem with well-behaved class 
structures. The results for the 4 methods are 
presented in Table 7. The proposed method 
retrieves the real number of clusters and the 
same adjusted Rand index of 3-means is 
obtained, which is slightly less than the 2 others. 
Conversely, the method does not result in a good 
Dunn Index because one extreme instance is bad 
classified. X-Alter can also be compared to other 
methods used on this data set and listed on the 
UCI Machine Learning (Frank & Asuncion, 
2010). For example, it better estimates the 
number of clusters than Dy and Brodley (2004) 
with their different methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iris Data Set 
The iris data set is composed of 150 

instances and 4 variables of 3 classes of 50 
instances each, where each class refers to a type 
of iris plant. One class is linearly separable from 
the other two; the latter are not linearly 
separable from each other which makes it more 
difficult to classify. The results are gathered in 
Table 8. 

The proposed method does not find the 
real number of clusters but it gets closer than 
other methods. Although the adjusted Rand 
Index was previously very close for all methods, 
the X-Alter is significantly better. Because the 
adjusted Rand Index is here considered – as 
opposed to the Rand Index – it does not indicate 
that the classification is perfect.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Results for the Wine Data Set 

Algorithm 
Number of 

Clusters 
A.R.I. Dunn 

X-means 
8.67 

(var=6.92) 
0.78 

(var=0.03) 
0.162 

(var=2.10−4) 

X-means-R 
8.54 

(var=6.01) 
0.78 

(var=0.03) 
0.165 

(var=10−4) 

3-means - 
0.76 

(var=0.03) 
0.163 

(var=0.0002) 

X-Alter 3 0.76 0.142 

 
 

Table 8: Results for Iris Data Set 

Algorithm 
Number of 

Clusters 
A.R.I. Dunn 

X-means 
13.7 

(var=6.2) 
0.46 

(var=0.07) 
0.0405 

(var=6.10−5) 

X-means-R 
8 

(var=1.56) 
0.57 

(var=0.03) 
0.0398 
(var=0) 

3-means - 
0.46 

(var=0.0036)
0.04 

(var=0) 

X-Alter 6 1 0.402 
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However, the high value of the A.R.I. 
indicates that the great majority of iris plants are 
well-classified; the 3 additional clusters are very 
small and do not affect the A.R.I and the global 
quality of the obtained clustering. In Dy and 
Brodley (2004), the estimation of the number of 
clusters was slightly better but, as discussed, the 
quality of clustering seems (as different 
criterions are used) to be better. Moreover, the 
interest of the aggregation step in X-means-R is 
enlightened and it appears that the spherical 
Gaussian assumption required for the BIC is 
acceptable and the X-Alter can be used with 
every data set. 

Finally, in all cases the proposed method 
performed better than the others to estimate the 
number of clusters. This confirms that the local 
convergence of X-means, inherited from K-
means, is avoided. Further, according to the 
adjusted Rand and the Dunn Indexes the quality 
of clustering is either equal to or significantly 
better than the other methods considered. 
 

Conclusion 
A simple new algorithm to perform clustering 
was presented. The main advantage of this 
method is that it is parameter-free and, thus, it 
can be easily used without an expert knowledge 
of the data. This algorithm combines the Alter 
and X-means algorithms to benefit from the 
qualities of both (respectively the convergence 
and the automatic selection of the number of 
clusters). Moreover, combining the methods 
eliminates the main drawbacks of these two 
methods: the high complexity for Alter and the 
dependence on initials conditions for X-means.  

Experiments using both simulated and 
real data sets show the relevance of the proposed 
method. However, even if complexity decreases 
(with respect to the Alter algorithm) it is too 
important for the method to be applied on very 
large data sets. A possible way to overcome this 
problem could be the utilization of the Alter-Fast 
algorithm (Laloë, 2010) as opposed to the Alter. 
Alter-Fast runs several times Alter in randomly 
chosen partitions of a data set and it can help 
save computational time but with some loss of 
efficiency. In future studies it would be 
interesting to look for others ways to accelerate 
Alter while preserving (as much as possible) its 
properties of convergence. 
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