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On The Gamma-Half Normal Distribution and Its Applications 
 

Ayman Alzaatreh Kristen Knight 
Austin Peay State University, 

Clarksville, TN 
 

 
A new distribution, the gamma-half normal distribution, is proposed and studied. Various structural 
properties of the gamma-half normal distribution are derived. The shape of the distribution may be 
unimodal or bimodal. Results for moments, limit behavior, mean deviations and Shannon entropy are 
provided. To estimate the model parameters, the method of maximum likelihood estimation is proposed. 
Three real-life data sets are used to illustrate the applicability of the gamma-half normal distribution. 
 
Key words: T-X families; gamma-X family; unimodal; bimodal; Shannon entropy. 
 
 

Introduction 
In recent years, advancements in technology and 
science have resulted in a wealth of information, 
which is expanding the level of knowledge 
across many disciplines. This information is 
gathered and analyzed by statisticians, who hold 
the responsibility of accurately assessing the 
data and making inferences about the population 
of interest. Without this precise evaluation of 
data, each field remains limited to its current 
state of knowledge. In the last decade, it has 
been discovered that many well-known 
distributions used to model data sets do not offer 
enough flexibility to provide an adequate fit. For 
this reason, new methods are being proposed 
and used to derive generalizations of well-
known distributions. With these distributions, 
strong applications have been made to real-life 
scenarios. 

Alzaatreh, et al. (2013b) proposed the T-
X families of distributions. These families of 
distributions were used to generate a new class 
of distributions which offer more flexibility in 
modeling a variety of data sets. Several 
members of the T-X families have been studied  
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in the literature (e.g., Alzaatreh, et al. (2013a); 
Alzaatreh, et al. (2013b); Alzaatreh, et al. 
(2012a); Alzaatreh, et al. (2012b); Lee, et al. 
(2013)).  

One well-known distribution is the half-
normal distribution, which has been used in 
variety of applications. Previous work by Bland 
and Altman (1999) used the half-normal 
distribution to study the relationship between 
measurement error and magnitude. Bland (2005) 
extended the work of Bland and Altman (1999) 
by using the distribution to estimate the standard 
deviation as a function so that measurement 
error could be controlled. In his work, various 
exercise tests were analyzed and it was 
determined that variability of performance does 
decline with practice (Bland, 2005). 
Manufacturing industries have utilized the half-
normal distribution to model lifetime processes 
under fatigue. These industries often produce 
goods with a long lifetime need for customers, 
making the cost of the resources needed to 
analyze the product failure times very high. To 
save time and money the half normal 
distribution is used in this reliability analysis to 
study the probabilistic aspects of the product 
failure times (Castro, et al., 2012). 

Due to the fact that the half-normal 
distribution has only one shape, various 
generalizations of the distribution have been 
derived. These generalizations include the 
generalized half-normal distribution (Cooray, et 
al., 2008), the beta-generalized half-normal 
(Pescrim, et al., 2010) and the Kumaraswamy 
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generalized half-normal (Cordeiro, et al., 2012). 
Several of the corresponding applications 
include the stress-rupture life of kevlar 49/epoxy 
strands placed under sustained pressure (Cooray, 
et al., 2008), failure times of mechanical 
components and flood data (Cordeiro, et al., 
2012). In this article the gamma and half normal 
distributions are combined to propose a new 
generalization of the half-normal distribution, 
namely, the gamma half-normal distribution. 

Let ( )F x  be the cumulative distribution 
function (CDF) of any random variable X and 

( )r t  be the probability density function (PDF) 

of a random variable T defined on [0, )∞ . The 
CDF of the T-X family of distributions defined 
by Alzaatreh, et al. (2013b) is given by 
 

( ) { } log 1 ( )

 0
( ) ( ) log(1 ( )

F x
G x r t dt R F x

− −
= = − −  

(1.1) 
 
When X is a continuous random variable, the 
probability density function of the T-X family is 
 

( )( )
( )

( )
( ) log 1 ( )

1 ( )

( ) ( ) ,

f x
g x r F x

F x

h x r H x

= − −
−

=
 

(1.2) 
 
where ( )h x  and ( )H x  are the hazard and the 
cumulative hazard functions of the random 
variable X associated with ( )f x . 

If a random variable T follows the 
gamma distribution with parameters α  and β , 

( ) 1 1 /( ) ( ) , 0,tr t t e tα α ββ α
− − −= Γ ≥  then the 

definition in (1.2) leads to the gamma-X family 
with the PDF 

( )( ) ( )
11 1

( )

1
( ) log 1 ( ) 1 ( ) .

( )

g x

f x F x F x
α

β
αα β

− −

=

− − −
Γ

(1.3) 
 
When 1β = , the gamma-X family in (1.3) 
reduces to the gamma-generated distribution 
introduced by Zografos and Balakrishnan 

(2009). When 1α =  and 1/ nβ = ∈ , the 
gamma-X family reduces to the distribution of 
the first order statistics of the random variable
X . 

If X is the half normal random variable 
with the density function 

2 2/22
( ) , 0,xf x e xθ

θ π
−= >  then (1.3) gives 

 

2

2

1
1

12
2

( log(2 ( ))) (2 ( )) ,
( )

( )

, , 0; 0

x
x x

e

g x

x

α βθ

α θ θπ θ α β

α β θ

−
−

−− −
− Φ Φ

Γ

=

> >
(1.4) 

 
where Φ  is the CDF of the standard normal 
distribution.  

A random variable X with the PDF g(x) 
in (1.4) is said to follow the gamma-half normal 
distribution with parameters α , β  and θ . From 
(1.1), the CDF of the gamma- half normal 
distribution is obtained as 
 

1( ) { , log(2 ( / ))} / ( ),G x xγ α β θ α−= − Φ − Γ  
(1.5) 

 

where 1

0
( , )

t ut u e duαγ α − −=   is the incomplete 

gamma function.  
A series representation of ( )G x  in (1.5) 

can be obtained by using the series expansion of 
the incomplete gamma function from Nadarajah 
and Pal (2008) as 
 

0

( 1)
( , ) .

!( )

k k

k

x
x

k k

α

γ α
α

+∞

=

−=
+              (1.6) 

From (1.6), the CDF of the gamma half-normal 
distribution can be written as 
 

0

1 ( 1) [ log(2 ( / ))]
( ) .

( ) !( )

k k

k
k

x
G x

k k

α

α
θ

α α β

+∞

+
=

− − Φ −=
Γ +  

(1.7) 
 
The hazard function associated with the gamma-
half normal distribution is 
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2 2
1

1
/2 1

1

( )
( )

1 ( )

2 ( log(2 ( / ))) (2 ( / ))
,

[ ( ) { , log(2 ( / ))}]

0.

x

g x
h x

G x

e x x

x

x

θ α β

α

θ θ
πθβ α γ α β θ

−
− −

−

=
−

− Φ − Φ −=
Γ − − Φ −

>
(1.8) 

 
Some Properties of the Gamma-Half Normal 
Distribution 

Lemma 1 gives the relation between the 
gamma-half normal distribution and the gamma 
distribution. 
 
Lemma 1 (Transformation) 

If a random variable Y follows the 
gamma distribution with parameters α  and β , 
then the random variable 

1(1 0.5 )YX eθ − −= Φ −  follows the gamma-half 

normal distribution with parameters α , β  and 

θ .  
 
Lemma 1 (Transformation) Proof 

The results follow by using the 
transformation technique.  

The limiting behaviors of the gamma-
half normal PDF and the hazard function are 
given in Lemma 2. 
 
Lemma 2 

The limit of the gamma-half normal 
density function as x → ∞  is 0 and the limit of 
the gamma-half normal hazard function as 
x → ∞  is ∞. Also, the limit of the gamma-half 

normal and hazard function as 0x +→  is given 
by 

0 0

0, 1

2
lim ( ) lim ( ) , 1

, 1.

x x
g x h x

α

α
π θβ

α

+ +→ →

>

= = =

∞ <

 

(2.1) 
 
 
 
 
 

Lemma 2 Proof 
Since the random variable X is defined 

on (0, )∞ , this implies lim ( ) 0
x

g x
→∞

= . Using 

L’Hôpital’s rule it can be shown that 
lim ( )
x

h x
→∞

= ∞ . Now, ( )[1 ( )] ( )h x G x g x− =  

implies that 
0 0

lim ( ) lim ( ).
x x

g x h x
+ +→ →

=  Results in 

(2.1) follow immediately from definition (1.4).  
The modes of the gamma-half normal 
distribution can be obtained by taking the 
derivative of ( )g x . The derivative with respect 
to x of (1.4) can be simplified to 
 

2

2

1
2

22
2

( log(2 ( ))) [2 ( )] ( ),
( )

'( )
x

x x
e k x

g x

α βθ

α θ θπθ α β

−
−

−− −
− Φ Φ

Γ

=

(2.2) 
 
where 
 

1

( )

log(2 ( )) ( 1) ( )

( 1) ( ) log(2 ( )

z

z

k x

x x x
h

x x
h

α
θ θ θ

β
θ θ

−

=
− Φ + − 

 
− + − Φ  

 

 
Setting (2.2) to 0, the critical values of

( )g x  are 0x =  and the solution of the equation 

( ) 0k x = . The solution of ( ) 0k x =  is 
equivalent to the equation  

 

1 1
( / ) 1

log(2 ( / ))zx h x
x

αθ θ
β θ

 −= − − Φ − 
, 

(2.3) 
 
where ( / ) ( / ) / (1 ( / )).zh x x xθ φ θ θ= − Φ  

Corollary 1 
If 1α ≤  and 1β ≤ , the gamma-half 

normal distribution is unimodal and the mode is 
at 0x = .  
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Corollary 1 Proof 
If 1α < , then Lemma 2 implies that 

0x =  is a modal point. When 1α <  and 1β ≤ , 

it follows from (2.3) that 0x < , and hence 
equation (2.3) has no solution, thus, 0x =  is a 
unique modal point. The proof is complete by 
noting that when 1α =  and 1β ≤ , the PDF of 
gamma-half normal in (1.4) is a strictly 
decreasing function. 

Figures 1-3 show various graphs of 
( )g x  and ( )h x . These figures indicate that the 

gamma-half normal PDF may take on a variety 
of shapes for different values of , and .α β θ  
The shapes range from reversed-J shape, 
bimodal, right-skewed and approximately 
symmetric. As β  decreases, the right tail of the 
gamma-half normal distribution becomes longer. 
Bimodality appears when α  is less than 1. 
Figure 3 indicates that the gamma-half normal 
hazard function is either a bathtub shape or 
increasing failure rate shape. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

When 1α < , and for certain values of 
β , the gamma-half normal distribution becomes 
bimodal. It is difficult to find analytically the 
region where the distribution is bimodal. 
However, a numerical solution is obtained to 
determine the number of roots of the derivative 
of the gamma-half normal distribution. Figure 4 
shows the boundary region of α  and β  where 
the gamma-half normal distribution is bimodal. 
 
Lemma 3 

If ( ), 0 1Q λ λ< <  denotes the quantile 
function for the gamma-half normal distribution, 
then 

 

( )1 1( ) 0.5exp{ ( , ( ))}Q λ θ βγ α λ α− −= − Φ − Γ . 

(2.4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Gamma-Half Normal PDF for Various Values of α, β and θ 
 

 

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

g(
x)

alpha =1,     beta =1,  theta=1
alpha =0.2,  beta =1,  theta=0.95
alpha =0.8,  beta =3,  theta=0.9
alpha =0.9,  beta =4,  theta=0.45
alpha=1,     beta=3, theta=1



AYMAN ALZAATREH & KRISTEN KNIGHT 
 

107 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Gamma-Half Normal PDF for Various Values of α, β and θ 
 

 
 
 
 

Figure 3: The Gamma-Half Normal Hazard Function for Various Values of α, β and θ 
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Lemma 3 Proof 
The proof follows by taking the inverse 

function of (1.5).  
The entropy of a random variable X is a 

measure of variation of uncertainty (Rényi, 
1961). Shannon’s entropy (Shannon, 1948), for a 
random variable X with PDF g(x) is defined as 

( ){ }log ( ) .E g X−  Since 1948 many 

applications have been used with Shannon’s 
entropy in different areas, including engineering, 
physics, biology, economics and information 
theory. 

According to Alzaatreh, et al. (2013b), the 
Shannon entropy of the gamma-X family of 
distributions is given by 
 

( )( ){ }1log 1 (1 )

        log log ( ) (1 ) ( )

T
X E f F eη α β

β α α ψ α

− −= − − + −

+ + Γ + −
, 

(2.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where ψ is the digamma function and T is the 

gamma random variable with parameters α  and 
β .  
 
Theorem 3 

The Shannon entropy for the gamma-
half normal distribution is given by  
 

2 2
2

log 2 log log

1
        ( ) (1 ) log

2
        log ( ) (1 ) ( ),

Xη π θ

σ μ α β β
θ

α α ψ α

= − + +

+ + + − +

+ Γ + −
 

(2.6) 
 
where μ  and σ  are the mean and variance of 
the gamma-half normal, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Bimodal Region for the Gamma-Half Normal Density Function where θ = 1 
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Theorem 3 Proof 
First it is necessary to find 

( )( ){ }1log 1 0.5 TE f F e− −− − , where ( )f x  

and ( )F x  are the PDF and CDF of the half-
normal distribution, respectively. From the CDF 
of the half-normal distribution it follows that 

1 1 1
( ) ( )

2

x
F x θ− − += Φ  and hence, 

 

( )( ){ }1

1 2
2

log 1

      log 2 log log

1
         ( ) ( (1 0.5 ))

2

T

T

E f F e

E e

π θ

θ
θ

− −

− −

− −

= − + +

+ Φ −

, 

 
where T follows the gamma distribution. By 

Lemma 1, 1(1 0.5 )Teθ − −Φ −  follows the 

gamma-half normal with parameters α , β  and 

θ . Hence 1 2 2( (1 0.5 ))TE eθ σ μ− −Φ − = +  

where 2σ  and μ  are the variance and the mean 
for the gamma-half normal distribution. The 
result in (2.5) follows from equation (2.4).  
 
Moments and Mean Deviations  

The thr  moments for the gamma-half 
normal distribution in (1.4) can be written as 
 

2

2

1
1

 
12

 

2
( log(2 ( ))) (2 ( )) .

( )

( )

x

r

r

x x
x e dx

E X

α βθ

α θ θ θπθ α β

−
−∞ −− −

− Φ Φ
Γ

=


 

(3.1) 
 
Using the substitution log(2 ( / ))u x θ= − Φ − , 
(3.1) reduces to 
 

1 1 /

0

( 1)
( ) ( (0.5 )) .

( )

r r
r u r uE X e u e duα β

α
θ

α β
∞ − − − −−= Φ

Γ 
(3.2) 

 
Because no closed form is found for 

(3.2), numerical integration can be used to 

calculate the thr  moments. 

Table 1 provides the mode, mean, 
median and variance of the gamma-half normal 
distribution for various values of α  and β  

when 1θ = . Equations (2.2) and (3.2) are used 
for these calculations. For fixed α  and θ , the 
mode, mean, median and variance are increasing 
functions of β . Also, for fixed β  and θ , the 
mode, mean, median and variance are increasing 
functions of .α  Figure 5 displays the skewness 
and kurtosis graphs of the gamma-half normal 
distribution for different values of α  and β  

with 1.θ = For fixed α , the skewness and 
kurtosis are decreasing functions of β ; for fixed 

β , the skewness and kurtosis are decreasing 

functions of α . 
 
Lemma 5 

If the median is denoted by M, then the 
mean deviation from the mean, ( )D μ , and the 

mean deviation from the median, ( )D M , for 
the gamma-X distribution are given by 
 

1( ) 2 { , log(2 ( )} / ( ) 2D Iμμ μγ α β μ α−= Φ − Γ −
 
and 

( ) 2 MD M Iμ= − ,                 (3.3) 

 

where 
2 1

0 0

2
( , ) ( , ( )),

( )

k

m i
k i

I a k i m
θ γ α δ

α

∞ +

= =

=
Γ   

2 1 2 1 ( 1)
( , ) ( / 2)

2 1 (1 )

i
kkc k

a k i
k i i απ

β
+ + − =  + + 

 

and ( ) ( 1/ ) log(2 ( / )).i m i mδ β θ= − + Φ −  

 
Lemma 5 Proof 

If ( )g x  and ( )G x  are the PDF and the 
CDF of the gamma-half normal distribution, 
then the mean deviations from the mean and the 
median can be written as 
 

0
( ) 2 ( ) 2 ( )D G xg x dx

μ
μ μ μ= −      (3.4) 

and 

0
( ) 2 ( ) .

M
D M xg x dxμ= −         (3.5) 
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Consider the integral: 

2

2 1 (1/ ) 12

0

0

2
( log(2 ( ))) (2 ( ))

( )

( )

x

m

m

m

x x
dxxe

I xg x dx

α βθ

α θ θπθ α β

−

− −− −
− Φ Φ

Γ
=

=




 

    (3.6) 
 
By substituting log(2 ( / ))u x θ= − Φ −  and 

because erf ( / 2 ) 2 ( / ) 1x xθ θ= Φ − , 
equation (3.6) can be written as 
 

log(2 ( )) 1 1

0

2
erf (1 )

( )

um
u

mI e u e duα βθ
α

θ
α β

−−− Φ − − −= −
Γ 

(3.7) 
 
Using the series representation for 

1erf (1 )ue− −−  (see Wolfram website), results in 
 

1 2 1 2 1

0

erf ( ) ( / 2)
2 1

k kk

k

c
x x

k
π

∞
− + +

=

=
+ , 

(3.8) 

where 
1

1

0 ( 1)(2 1)

k
m k m

k
m

c c
c

m m

−
− −

=

=
+ +  

and  0 1c = . 

Using (3.8), equation (3.7) reduces to  
 

2 1

0

log(2 ( )) 2 1 1

0

2

2

( ) 2 1

1

( )

( ) .

kk
m

k

um
u k

c

k

e u e du

I α

α βθ

πθ
α β

∞
+

=

−−− Φ − + −

Γ +

−

= 


(3.9)  

 

Using the series expansion of 2 1(1 ) ,u ke− +−  
(3.9) reduces to  
 

2 1

0 0

2
( , ) ( , ),

( )

k

m i
k i

I a k i
θ γ α δ

α

∞ +

= =

=
Γ   

 
where 

2 1 2 1 ( 1)
( , ) ( / 2)

2 1 (1 )

i
kk

kc
a k i

ik i απ
β

+ +  −=  + + 
  

and ( / ) ( 1/ ) log(2 ( / )).i m i mδ θ β θ= − + Φ −   

The results follow by substituting mI  in ( )D μ  

and ( )D M  in (3.3). 
 
Order Statistics  

The density function of the thr  order 
statistic, :r nX , for a random sample of size n  

drawn from (1.3), is  
 

11
( ) ( )( ( )) (1 ( )) .

( , 1)
r n rf x g x G x G x

B r n r
− −= −

− +
(4.1) 

 
Using the binomial expansion, (4.1) can be 
written as 
 

:

1

0

( )
( )

( , 1)

( 1) ( ( )) .

r n

n r
j r j

j

g x
f x

B r n r

n r
G x

j

−
+ −

=

=
− +

− 
−  

 


(4.2) 

 
From (1.7), equation (4.2) can be written as 
 

: 1
0

1

0

( ) ( 1)
( )

( , 1) ( )

( 1) ( log(2 ( / )))
 

!( )

jn r

r n r j
j

r jk k

k
k

n rg x
f x

jB r n r

x

k k

α

α

α

θ
β α

−

+ −
=

+ −+∞

+
=

− −=  − + Γ  

 − − Φ −× + 




  

1 2

1

0 0 0

( 1) 1
0

( 1)

( 1)

( )

   ( log 2 ( ))

( )
....

( , 1)

1
  

.

k
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Table 1: Mode, Mean, Median and Variance for Some Values of α  and β  with 1θ =  
 

α  β  Mode Mean Median Variance 

0.5 

0.5 0 0.2482 0.1351 0.0887 

1 0 0.4347 0.2578 0.23895 

4 0 1.1785 0.8370 1.3385 

7 0 1.6911 1.2718 2.4929 

9 0 1.9761 1.5177 3.2649 

0.9 

0.5 0 0.4255 0.3292 0.1355 

1 0 0.7298 0.5969 0.3442 

4 0, 1.0373 1.8914 1.6854 1.7215 

7 0, 1.7998 2.6687 2.4242 3.0935 

9 0, 2.1818 3.0968 2.8303 3.9973 

1 

0.5 0 0.4674 0.3757 0.1449 

1 0 0.7979 0.6745 0.3634 

4 1.3744 2.0485 1.8627 1.7774 

7 2.1441 2.8811 2.6601 3.1744 

9 2.5481 3.3388 3.0973 4.0932 

4 

0.5 1.3439 1.4376 1.4069 0.2516 

1 2.1644 2.2701 2.2349 0.5257 

4 4.9410 5.1202 5.0607 2.0628 

7 6.7013 6.9392 6.8604 3.5516 

9 7.6885 7.9315 7.8419 4.5361 

7 

0.5 2.0642 2.1197 2.1012 0.2677 

1 3.1775 3.2457 3.2229 0.5355 

4 6.9108 7.0418 6.9982 2.0578 

7 8.0469 9.4615 9.4032 3.5509 

9 10.5824 10.7830 10.7164 4.5419 
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Using (1.4), 
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The result in (4.3) shows that the PDF of 

the thr  order statistics of the gamma half-normal 
distribution can be expressed in terms of infinite 
sums of the gamma half-normal PDFs. Using the 
same technique as Ristic and Balakrishnan 
(2012), the asymptotic distribution of the sample 
minimum 1:nX  can be obtained by utilizing 

Theorem 8.3.6 in Arnold, et al. (1992), which 

states that if 
1 (0)

( )
lim

( )G

G x
x

G
γ

ε

ε
ε−→

= , then the 

asymptotic distribution of 1:nX  will be of 

Weibull type with shape parameter .γ   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The Gamma-Half Normal Skewness and Kurtosis Graphs for Various Values of α and β when θ = 1 
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For the gamma half-normal distribution, 
1(0) 0G− =  and 

 

0 0
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(4.4) 
 
Hence, the asymptotic distribution :r nX  is of 

Weibull type with shape parameter α . The 
asymptotic distribution of the sample maximum 

:n nX  can be viewed as ( ),nG x  where 

1( ) 1 ( )nG x G x= − −  and 1G  is the CDF of 1: .nX   

 
Parameter Estimation 

Let a random sample of size n be taken 
from the gamma-half normal distribution. The 
log-likelihood function for the gamma-half 
normal distribution in (1.4) is given by 
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(5.1) 
 
The derivatives of (5.1) with respect to α , β  

and θ  respectively, are given by 
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(5.4) 
 
Setting (5.2), (5.3) and (5.4) to zero and solving 

them simultaneously results in α̂ , β̂  and θ̂ . 

The initial values for the parameters α , 
β  and θ  can be obtained by assuming the 

random sample, , 1, ,ix i n=  is taken from 

the half-normal distribution with parameter θ . 
By equating the population mean to the sample 
mean of , 1, ,ix i n=  and solving for θ , the 

initial value ˆ / 2 xθ π= . Assuming 

ˆlog(2 ( / )), 1, ,i iy x i nθ= − Φ − =   are taken 

from the gamma distribution with parameters α
 and β  (see Lemma 1). By equating the 
population mean and the population variance of 
gamma distribution (with parameters α   and   
β ) to the corresponding sample mean and 

sample variance of , 1, ,iy i n=   and solving 

for α  and β , the initial values are 2 2
0 / yy sα =  

and 2
0 /ys yβ = , where y  and 2

ys  are the 

sample mean and the sample variance for 1y , 

2y , …, ny . 
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When 1,α β= =  the gamma-half 
normal distribution reduces to the half-normal 
distribution; thus, the likelihood ratio test can be 
used to determine whether the gamma-half 
normal distribution or the half-normal 
distribution is the best model for fitting a given 
data set. The likelihood ratio test can be used for 
testing the hypothesis 0 : 1H α β= =  against 

: 1 or 1aH α β≠ ≠ , which is based on 

0
ˆ ˆˆ( ) / ( , , )aL Lλ θ α β θ=  , where 0L  and aL  are 

the likelihood functions for the half-normal and 
the gamma-half normal distributions, 
respectively. The quantity 2log λ−  follows the 
Chi-square distribution with 2 degrees of 
freedom asymptotically. 
 
Application 

Three data sets were applied to the 
gamma-half normal distribution, and compared 
with the half-normal, generalized half-normal, 
beta generalized half-normal and inverse 
Gaussian distributions. The first two data sets 
(see Tables 2 and 4), were analyzed by Raqab, et 
al. (2008). This data represents the tensile 
strength data measured in GPa for single-carbon 
fibers that were tested at gauge lengths of 20 
mm and 10 mm. The third data set (see Table 6) 
was analyzed by Cheng, et al. (1981) and 
represents the flood level for the Susquehanna 
River at Harrisburg, PA. The maximum 
likelihood estimates, KS (Kolmogorov-Smirnov) 
test-statistics and p-values for the fitted 
distributions are reported in Tables 3, 5 and 7. 

The data in Tables 2 and 4 are fitted to 
the gamma-half normal, half-normal, 
generalized half-normal and beta generalized-
half normal distributions. The half-normal 
distribution did not produce an adequate model 
for the data. However, the generalized half-
normal, beta generalized and gamma-half 
normal each provide a good fit for the two data 
sets. Among the three generalizations of the 
half-normal distribution, the gamma-half normal 
provides the best fit for the first data set, and 
generalized half-normal provides the best fit for 
the second. When graphing the first data set, an 
approximately symmetric distribution is 
obtained. The distribution of the second data set, 
however, is a right-skewed shape. This suggests 

that the gamma-half normal distribution is able 
to model data of both approximately symmetric 
and right-skewed shapes. Figures 6 and 7 
display the empirical and fitted cumulative 
distribution functions; these figures support the 
results in Tables 3 and 5, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The third data set (see Table 6) was 
analyzed by Cheng, et al. (1981) and fitted to the 
inverse Gaussian distribution. These results, as 
well as the comparisons made to the half-
normal, beta generalized half-normal and 
gamma-half normal distributions, are reported in 
Table 7. The generalized half-normal 
distribution was divergent for the third data set. 
In view of these results, the gamma half-normal 
and inverse Gaussian distributions give a 
moderate fit to the data. The half-normal 
distribution does not give an adequate fit to the 
data, while the generalized half-normal provided 
the best fit. In viewing the distribution of the 
third data set, another right-skewed distribution 
is observed. This confirms the fact that the 
gamma-half normal distribution can be used to 
fit data of a right-skewed shape. Figure 8 
displays the empirical and fitted cumulative 
distribution functions. 
 
 

Table 2: Single Carbon Fibers at 20 mm 

0.312 0.314 0.479 0.552 
0.700 0.803 0.861 0.865 
0.944 0.958 0.966 0.997 
1.006 1.021 1.027 1.055 
1.063 1.098 1.140 1.179 
1.224 1.240 1.253 1.270 
1.272 1.274 1.301 1.301 
1.359 1.382 1.382 1.426 
1.434 1.435 1.478 1.490 
1.511 1.514 1.535 1.554 
1.566 1.570 1.586 1.629 
1.633 1.642 1.648 1.684 
1.697 1.726 1.770 1.773 
1.800 1.809 1.818 1.821 
1.848 1.880 1.954 2.012 
2.067 2.084 2.090 2.096 
2.128 2.233 2.433 2.585 
2.585    

 



AYMAN ALZAATREH & KRISTEN KNIGHT 
 

115 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
The gamma-half normal distribution, a new 
generalization of the half-normal distribution, 
was derived using the method proposed by 
Alzaatreh, et al. (2013b). Various properties of 
the distribution were studied including the 
moments, mean deviations from the mean and 
median, hazard function, modality and Shannon 
entropy. The maximum likelihood method was 
proposed for the estimation of the gamma-half 
normal parameters. In order to demonstrate the 
applicability of the gamma-half normal 
distribution it was fitted to three real data sets 
and compared with the half-normal, generalized-
half normal, inverse Gaussian and beta 
generalized half-normal distributions.  

Results show that the gamma-half 
normal distribution provides an adequate fit for 
each data set. Because the distribution was fitted 
to data sets with right-skewed and 
approximately symmetric shapes, this indicates 
that the gamma-half normal distribution offers 
flexibility that extends beyond the half-normal 
distribution. Although the gamma-half normal 
distribution can be bimodal, it was difficult to 
find data in the literature with the specific form 
of bimodality. The maximum likelihood 
functions may be further studied under different 
types of censoring for future applications of the 
gamma-half normal distribution. 
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Distribution Half-Normal 
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Figure 6: CDF for Fitted Distributions for Gauge Length of 20mm Data 
 

 
 

Table 4: Single Carbon Fibers at 10 mm 

0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 
0.597 0.645 0.654 0.674 0.718 0.722 0.725 0.732 
0.775 0.814 0.816 0.818 0.824 0.859 0.875 0.938 
0.940 1.056 1.117 1.128 1.137 1.137 1.177 1.196 
1.230 1.325 1.339 1.345 1.420 1.423 1.435 1.443 
1.464 1.472 1.494 1.532 1.546 1.577 1.608 1.635 
1.693 1.701 1.737 1.754 1.762 1.828 2.052 2.071 
2.086 2.171 2.224 2.227 2.425 2.595 3.220  

 
 

Table 5: Parameter Estimates for Single Carbon Fibers at 10mm 

Distribution Half-Normal 
Generalized 
Half-Normal 

Beta 
Generalized 
Half-Normal 

Gamma-Half 
Normal 

Parameter 
Estimates θ̂ = 1.4019 

â = 1.5347 

q̂ = 1.4798 
ˆ 0.0699μ =  

ˆ 1.9544a =  
ˆ 0.1522b =  
ˆ 1.0954α =  
ˆ 0.4722θ =  

â = 2.4260 

b̂ = 0.4216 

θ̂ =  1.4529 

KS 0.2099 0.0606 0.0863 0.0678 

P-value 0.0078 0.9748 0.7361 0.9342 
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Figure 7: CDF for Fitted Distributions for Gauge Lengths of 10mm Data 
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Table 6: Maximum Flood Level for Susquehanna River 

.654 .613 .402 .379 

.269 .740 .416 .338 

.315 .449 .297 .423 

.379 .324 .418 .412 

.494 .392 .484 .265 
 
 
 

Table 7: Parameter estimates for maximum flood levels 

Distribution Half-Normal 
Generalized 
Half-Normal 

Beta 
Generalized 
Half-Normal 

Gamma-Half 
Normal 

Parameter 
Estimates q̂ = 0.4404 Divergent 

ˆ 244.48a =  
ˆ 176.11b =  
ˆ 0.1901α =  
ˆ 1.2483θ =  

â = 0.1780 

b̂ =0.245 

λ̂ = 0.9140 

KS 0.4026  0.1507  0.1026 

P-value 0.0031  0.7540 0.5638 

 
 

Figure 8: CDF for Fitted Distributions for Maximum Flood Level 
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