
Journal of Modern Applied Statistical
Methods

Volume 12 | Issue 1 Article 17

5-1-2013

An Alternative Approach to Reduce
Dimensionality in Data Envelopment Analysis
Grace Lee Ching Yap
The University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia

Wan Rosmanira Ismail
Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia

Zaidi Isa
Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Yap, Grace Lee Ching; Ismail, Wan Rosmanira; and Isa, Zaidi (2013) "An Alternative Approach to Reduce Dimensionality in Data
Envelopment Analysis," Journal of Modern Applied Statistical Methods: Vol. 12 : Iss. 1 , Article 17.
DOI: 10.22237/jmasm/1367381760

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12/iss1/17?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages


An Alternative Approach to Reduce Dimensionality in Data Envelopment
Analysis

Cover Page Footnote
The authors would like to thank L. P. Teo for constructive advice.



Journal of Modern Applied Statistical Methods   Copyright © 2013 JMASM, Inc. 
May 2013, Vol. 12, No. 1, 128-147                                                                                                                           1538 – 9472/13/$95.00 

128 
 

An Alternative Approach to Reduce Dimensionality in Data Envelopment Analysis 
 

Grace Lee Ching Yap Wan Rosmanira Ismail Zaidi Isa 
The University of Nottingham Malaysia Campus, 

Selangor Darul Ehsan, Malaysia 
Universiti Kebangsaan Malaysia, 
Selangor Darul Ehsan, Malaysia 

 
 
Principal component analysis reduces dimensionality; however, uncorrelated components imply the 
existence of variables with weights of opposite signs. This complicates the application in data 
envelopment analysis. To overcome problems due to signs, a modification to the component axes is 
proposed and was verified using Monte Carlo simulations. 
 
Key words: Data envelopment analysis, principal component analysis, redundancy analysis, Monte 

Carlo simulation. 
 
 

Introduction 
Data envelopment analysis (DEA), first 
introduced by Charnes, et al. (1978), serves as a 
tool for relative performance evaluation and 
benchmarking among decision making units 
(DMUs) with common inputs and outputs. In 
many circumstances, researchers may be faced 
with too many variables (inputs and outputs) 
involved in a performance measure: This will 
distort the discerning power of the analysis if the 
number of observations cannot be increased 
accordingly due to the curse of dimensionality 
(Daraio, et al., 2007). There are several 
approaches to increasing discrimination between 
observations. Based on reviews by Angulo-
Meza and Lins (2002) and Podinovski and 
Thanassoulis     (2007),     the     most     popular 
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approaches used are super efficiency (Andersen 
& Petersen, 1993) and cross-efficiency (Doyle & 
Green, 1994; Green, et al., 1996; Sexton, et al., 
1986). These approaches do not attempt to 
reduce dimensionality but, by using complete 
information, they involve additional procedures 
to rank the observations. Conversely, to increase 
discrimination, researchers may consider 
keeping a reasonable dimensionality in a DEA 
model. Dyson, et al. (2001) indicated that the 
number of observations must be at least 2p × q 
where p × q is the product of the number of 
inputs and outputs; thus, practitioners should be 
parsimonious in numbers of inputs and outputs. 
Although it is tempting to omit correlated 
variables in order to increase discrimination, 
Dyson, et al. (2001) showed that omitting even 
highly correlated variables could have a 
significant effect on computed efficiency scores.  

Several approaches address issues of 
determining relevant variables, including: 
aggregates (Simar & Wilson, 2001), variable 
reduction (VR) (Jenkins & Anderson, 2003), 
principal component analysis (PCA-DEA) 
(Alder & Golany, 2001, 2002; Alder & 
Yazhemsky, 2010; Ueda & Hoshiai 1997), 
efficiency contribution measure (ECM) (Pastor, 
et al., 2002) and regression-based test (RB) 
(Ruggiero, 2005). These approaches were 
compared and reviewed by Sirvent, et al. (2005), 
Alder & Yazhemsky (2010) and Nataraja & 
Johnson (2011). Their analyses showed that the 
aggregates method requires the longest run time 
and its performance is not satisfactory. ECM 
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performs moderately well under most scenarios, 
but it requires a long run time. The performance 
of RB is not as good as ECM, but its run time is 
significantly shorter than that of ECM. RB 
performs worst when variables are highly 
correlated; this is due to misspecification 
because the correlated variables would not be 
identified as part of the production process. 
Under such a scenario, PCA-DEA outperforms 
the other methods because it considers all 
original variables in the form of principal 
components. Most importantly, PCA-DEA 
involves the smallest run time due to its non-
iterative characteristic. Unfortunately, PCA-
DEA may not work well when data are high 
dimensional, meaning that some variables with 
weak correlation are included in the dataset. 
Under such a condition, these variables may 
cloud the principal components’ dominant 
attributes and, consequently, the efficiency 
estimation is corrupted. This problem becomes 
less severe as the correlation between variables 
increases. Thus, it may be concluded that PCA-
DEA is preferable when all variables are known 
to be relevant, and performance improves as the 
correlation between variables increases. In 
addition, PCA-DEA is robust to sample size.  

Alternative to principal components, 
Kao, et al. (2011) proposed independent 
components to be used as new variables in a 
DEA model. The independent components are 
generated from independent component analysis 
(ICA) which is viewed as an extension of PCA 
in the sense that it not only de-correlates the 
data, but it also reduces high order statistical 
dependencies (Lee, 1998). However, ICA does 
not overcome the problem of PCA-DEA. 
Because PCA is popular due to its undemanding 
nature to reduce the dimensionality, this study 
focuses on the use of principal components in 
DEA.  

PCA reorients multivariate data so that 
the first few dimensions account for as much of 
the information as possible. To be uncorrelated 
to each other amongst the principal components, 
the underlying eigenvectors must be orthogonal. 
This implies the existence of variables with 
opposite signs within a principal component 
because the principal components are 
constructed based on a mixture of positive and 
negative weights due to the eigenvectors. This 

research finds that these principal components 
are not suitable to replace the original variables 
in a DEA model as they violate the disposability 
assumption, consequently, meaningful efficiency 
estimates may not be feasible. In addition, the 
existence of positive and negative weights 
within a principal component may give rise to 
the problem of unboundedness in the linear 
program of a DEA model that uses principal 
components as input and/or output variables.  

Although available literature does not 
report such a problem caused by principal 
components, the possibility exists for obtaining 
an unbounded feasible region due to the effect of 
positive and negative weights in the constraints 
of a linear program. To avoid these problems, 
this article proposes modifying the weights to 
form the principal components. As 
modifications to the principal components may 
misrepresent the original dataset, a procedure 
that leads to a minimal alteration is sought. The 
viability of such modification will be justified 
via a redundancy analysis whereby the 
proportion of explained variation in an original 
dataset is examined. To ascertain the motivation 
of such modification, the accuracy of this 
proposed method will be compared with the 
results of the standard DEA. 
 
Reviews on Data Envelopment Analysis Model 
and Principal Component Analysis: Data 
Envelopment Analysis (DEA) Model 

Data envelopment analysis (DEA) is a 
non-parametric method of measuring the 
efficiency of a decision making unit (DMU) 
with multiple inputs and outputs without pre-
defining a production function. Following 
standard economic theory, the production set 
must be a set that contains all the input-output 
correspondences that are feasible in principle. 
The framework is similar to that in Daraio and 
Simar (2007), Kneip, et al. (1998), Kneip, et al. 
(2008) and Simar and Wilson (1998; 2000a). To 
illustrate, let there be a vector of p inputs, 

px +∈R  and a vector of q outputs qy +∈R . The 
production set may be defined as: 
 

that can producep qx y x y+
+= ∈ψ {( , ) R |   }.  

(2.1) 
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Specifically, the production set is assumed to be 
closed and strictly convex (Shephard, 1970; 
Fare, 1998), with the assumption of 
monotonicity of technology both inputs and 
outputs are strongly disposable. This can be 
described as: 
 
 
 

(2.2) 
 
 
Consequently, the DMUs that are relatively 
efficient will lie on the production frontier. In 
the input orientation, the production frontier 

)( yX∂  is defined as: 
 

( ) { ( , ) , ( ) , 0 1}X y x | x y ex, y e .∂ = ∈ ∉ ∀ < <ψ ψ
(2.3) 

 
Based on the efficient front of the production 
set, the Debreu-Farrell input measure of 
efficiency can be computed in a radial direction 
orthogonal to y , defined as follows: 
 

})(|{)( 0 ,inf, >∈= ey x,eeyxe ψ      (2.4) 
 
In practice, with the strong disposability and 
constant returns-to-scale assumptions, the DEA 
estimator of ߰ is the conical hull of the free 
disposal hull of an observed sample with inputs 

][ ix=X  and outputs niyi  , 1, ],[ ==Y , xi where 
yi is the column vectors of p inputs and q 
outputs. The DEA estimator of ߰ is given by 
 

0}    ,    |){( ≥≥≤= λλλ XY x,yyx,ψ    (2.5) 
 
where λ = column vector of n non-negative 
variables. 

The measure of efficiency is estimated 
using a linear programming model: 
 

ˆ( , )

0| ,   ,
min

, , 0

y x

y x 

e x y

e y s ex s

s s

λ λ
λ

=
> = − = +  

 ≥  

Y X

(2.6) 

where ys  = column q-vector of output slack 

variables and xs  = column p-vector of input 
excess variables. 

It is observed that the mechanism 
underlying this method depends largely on the 
constraints imposed on the model. When there 
are too many constraints, desirable solutions 
might be ruled out. In the context of DEA, this 
might lead to the problem of overestimating the 
efficiencies due to sparsity bias (Smith, 1997; 
Pedraja-Chaparro, et al. 1999). To avoid this 
problem, Simar and Wilson (2000b) suggested 
that the number of DMUs must increase 
exponentially with the addition of variables. 
Based on their bootstrap results, there must be at 
least 25 DMUs involved for the case of single 
input and output. For the same scenario, more 
than 100 DMUs are needed to have an almost 
exact confidence interval of the efficiency 
estimator. Unfortunately, this is almost 
impossible to achieve as large samples are 
generally not available in practice. This 
illustrates the need for discrimination improving 
methodologies. Because DEA is a non-
parametric method, the principal component 
analysis (PCA) seems to be a good choice and 
this method has been proposed by some 
researchers (Ueda & Hoshiai, 1997; Alder & 
Golany, 2001, 2002; Alder & Yazhemsky, 
2010). However, noting that PCA might violate 
the assumption of non-negative data in DEA, 
possible approaches to improve the construct of 
principal components for the use in DEA must 
be sought. 
 
Reviews on Data Envelopment Analysis Model 
and Principal Component Analysis: Principal 
Component Analysis (PCA) 

Principal component analysis (PCA) is a 
statistical technique that reorients a dataset so 
that the first few dimensions account for as 
much information as possible. These dimensions 
are represented by the principal components, 
which are in the form of uncorrelated weighted 
linear combinations of the original variables that 
capture the maximum variance. The 
uncorrelated property is imposed in order to rule 
out the possibility of overlapped variation. These 
weights can be found by Eigen-decomposition, 
where the correlation matrix of the original set 

If ,ψ∈) ,( yx  then for any ) ,( y'x'  such that xx' ≥  and 
,yy' ≤ ψ∈) ,( y'x'  



YAP, ROSMANIRA & ISA 
 

131 
 

of variables is taken as the basis for PCA. To 
illustrate, let there be p original standardized 
variables ix~  of size n × 1, i =1, …, p with the 

matrix .,,, 21 ]~...~~[X pxxx=  The correlation matrix 

of these variables is a p × p matrix R. The 
decomposition of the correlation matrix R is 
 

T

1

2

1 2 1 2

0 0

0 0

0 0

T
p p

p

v v v v v v

β
β

β

=

 
 
    =     
 
  

R VLV



 
  


 (2.7) 

 
where jv  = jth eigenvector of size p × 1, j = 1, 

…, p and jβ  = jth eigenvalue that corresponds to

jv eigenvector, j = 1, …, p. 

Note that the eigenvalues represent the 
explained variation the principal components, 
thus, they are arranged such that 1β  ≥ 2β ≥ … ≥ 

pβ ≥ 0. The corresponding principal components 

,][ T
jγ=K  with jγ  being the column vector of j 

principal component, j = 1, …, p are constructed 
based on the weights obtained from the 
eigenvectors: 
 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

i.e.,

T

p p

p p

p p p pp p

v x v x v x

v x v x v x

v x v x v x

γ
γ

γ

=

= + + +
= + + +

= + + +

K V X

  
  


  

     (2.8) 

 
where ijv = ith entry of jth eigenvector, i, j = 1, …, 

p. 
For the purpose of dimension reduction, 

Kaiser’s rule is typically followed to choose the 
principal components whose eigenvalues are 
greater than 1; otherwise, an elbow in the Scree 
plot may be identified to determine the number 
of components to be retained. In the context of 
DEA, Adler and Yazhemsky (2010) noted that it 

is ideal to drop the principal components one-
by-one until a reasonable level of discrimination 
is achieved or until the principal components 
capture at least 80% of the variance of the 
original data. These principal components are 
then used to replace the targeted inputs or 
outputs in the DEA model. Adapting to the 
additive DEA model with constant returns-to-
scale (CRS) of Charnes, et al. (1985), a mixture 
of original data and principal components may 
be used to arrive at the additive model as 
described by Adler and Yazhemsky (2010). 
Equivalently, the model can be written in the 
form of input oriented, CRS, radial linear 
program as in equation (2.6). 
 
Contrast Variables in Principal Components 

Because the eigenvectors are 
orthogonal, there must be a mixture of positive 
and negative entries ijv , i, j = 1, …, p within 

them. To illustrate, consider the first eigenvector 

to be 
T

pvvvv 121111 = . Even if 1v  has all 

positive entries, note that in order to be 
orthogonal to 1v , the second eigenvector 

T

pvvvv 222122 =  must satisfy the equation: 

 

1 2

11 12 21 22 1 2

0

i.e.,

0p p

v v

v v v v v v

⋅ =

+ + + =
    (2.9) 

 
Thus, it is straightforward to conclude that 

T

pvvvv 222122 =  consists of a mixture of 

positive and negative entries, for example 
02212 >v,v  and 0232 <pv,,v  .  

For the corresponding principal 
component pp xvxvxv ~~~

22221122 +++= γ , the 

variables 1x~  and 2x~  are in contrast with the 

other variables 3x~ , … , px~  as 1x~  and 2x~  

correlate positively with 2γ  but 3x~ , … , px~  

correlate negatively with 2γ . To use principal 
components in a DEA model it is good to avoid 
variables with counter effect within a principal 
component. To simplify the label, the group of 
variables that capture a smaller portion of sum 
of squared loadings (SSL) of a principal 
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component are called contrast variables. 
Particularly for this illustration, the proportion of 
SSL for },{ 21 xx ~~  in 2γ  is 

2
2

2
22

2
12

2
22

2
12

)(2
SSL

pvvv

vv

+++
+=+ γ . Thus, if )(2

SSL +γ < 
2

1 , 

then 1x~  and 2x~  are the contrast variables in ,2γ  

and they are to be avoided in the construct of .2γ   
In a very unfortunate (and unlikely) case 

if )(2
SSL +γ = 

2

1 , the contrast variables may be 

classified to the group },{ 21 xx ~~  or },,{ 3 pxx ~~   

that consists of the variables that have not been 
labeled as contrast variables in other principal 
components; this is to minimize the loss of 
information when the components are used to 
replace the original variables in a DEA model. 
To secure orthogonality, there must be contrast 
variables in the subsequent principal 
components p,, γγ 3 , and the contrast variables 

may be any of the original variables }.,,{ 1 pxx ~~   

In other words, the contrast variables cannot be 
identified prior to PCA and they are not the 
same from one principal component to another; 
thus, the contrast variables are classified per 
principal component based on the sign of the 
entries in the eigenvector and they are not a 
cluster of variables that have diverse 
characteristics from the other variables in the 
dataset as a whole. 
 
Problems of Principal Components in DEA 

With the counter effect due to contrast 
variables, a component score can be minimized 
by increasing the variables that are assigned with 
negative weights. Hence, it cannot be interpreted 
that the bigger the values of the original 
variables, the bigger the principal component 
score or vice versa. This implies that the 
principal components violate the free 
disposability assumption of a DEA model as 
described in equation (2.2). As a result, 
efficiencies cannot be meaningfully estimated 
because the measures of efficiency rely on 
estimating maximum output levels for given 
input levels, or alternatively, minimum input 
levels for given output levels (Thanassoulis, 
2001). In addition, the counter effect may lead to 
the problem of unboundedness in the linear  

program. To illustrate the problem, let there be 

m principal components mjT
j ,1, ,][ == γ*K  

replacing all p original input variables, with the 
other conditions remains the same as in equation 
(2.6). The linear program for DMU0 with data 
(x0, y0) is then in the form:  
 

0

* * *
0

1 2

* *
0 0

Minimize 

Subject to

0

where

y

T
x

y x

m

T

e

s y

s ek

s s

v v v

k x

λ

λ
λ

− =

+ =
≥

=

=

*

Y

K V

, ,

V [ ]

V



           (2.10) 

 
Note that the constraints in terms of the principal 
components can be restructured as follows: 
 

0

0

0

)(

)()(

     

xes

xes

eks

T
x

T

T
x

TT

x
T

**

***

***

VXV

VVXV

VK

=+

=+

=+

λ

λ

λ

 

(2.11) 
 
To simplify the notation, let 

x
T

p sttt +== λXT ]  [  21   and ].[
000 210 pxxxx =  

By using the notations in equation (2.8), 
constraints in equation (2.11) can be written as: 
 

11 1 21 2 1
11 21 1

12 1 22 2 2
12 22 2

1 1 2 2
1 2

1
( )

( )

1
( )

( )

                                                           

1
(

( )

+ + + =
+ + +

+ + + =
+ + +

+ + +
+ + +












0 0 0

0 0 0

0 0 0

p p
1 2 p p

p p
1 2 p p

m m pm
m 1 m 2 pm p

v t v t v t e
v x v x v x

v t v t v t e
v x v x v x

v t v t v t
v x v x v x

)









 =


p e

(2.12) 
 

Based on equation (2.10) and the 
requirement that ,px +∈R  note that tk ≥ 0, k = 1, …, p. Thus, when all the weights vij, i = 1, …, p, 
j = 1, …, m in equation (2.12) are the same sign 
(positive or negative), the linear program 



YAP, ROSMANIRA & ISA 
 

133 
 

produces a meaningful solution because the 
feasible region is bounded (≥ 0), and an optimal 
e* can be obtained to minimize the objective 
function in equation (2.10). However, when 
there are positive and negative weights within a 
constraint, the problem of unboundedness may 
arise. This problem occurs when there is at least 
a variable xu with moderately large weights 

umuu vvv ,,, 21   of which the weights are in the 

opposite sign with the weights of another 
variable xs that are moderately large 

smss vvv ,,, 21   

giving the product: 
 

,m, j 
sj

v
uj

v 1  0))(( =∀<              (2.13) 

 
The effect on the constraints in equation (2.12) 
is illustrated by equation (2.14) shown in Figure 
1. 

Note that when the weights vectors 
umuu vvv  , , , 21   and smss vvv  , , , 21   are dominating, 

and equation (2.13) is met, the values on the left 
hand side of equation (2.14) can be made zeros 
(or even negative) by loading huge input excess 
for, sx~  and/or ,ux~ , namely, )(sxs  and .)(uxs  This 

will inflate the magnitudes of tu and/or ts, and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

subsequently cause the feasible region to be 
unbounded, of which e can be made as small as 
possible. In other words, this gives an 
unbounded solution to the objective function in 
equation (2.10). In order to meet the free 
disposability assumption and to avoid the 
problem of unboundedness in linear program, it 
is crucial to ensure that the weights assigned to 
the variables are non-negative. 
 

Methodology 
As weights are extracted from the eigenvectors, 
modifications to the eigenvectors are needed to 
avoid the problems of contrast variables. 
Nonetheless, changes made to the eigenvectors 
may hamper the components’ potential to 
represent the original dataset. To provoke 
minimal alteration to the eigenvectors, it would 
be good to work on the simple structure 
produced by a varimax rotation; that is, an 
orthogonal rotation of the factor axes that 
maximizes the variance of the squared loadings 
on all the variables in a factor matrix (Kaiser, 
1958). As a result, each factor tends to have a 
few high loadings with the rest of the loadings 
being zero or close to zero, leading to a simple 
structure, where ideally each item is loaded on 
only one axis (Kline, 2002). Traditionally, based  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Effect on the Constraints in Equation (2.12) 
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on the simple structure, only variables with 
loadings above a cutoff point (for example, 0.5) 
are interpreted (Jolliffe, 2002). Component 
scores computed with such simple weighting 
schemes often hold up better under cross-
validation compared to the exact component 
scores (Dunteman, 1989). By having the 
advantage to omit the variables with small 
loadings, it would be possible to restructure the 
weighting vectors with minimal perturbation. 

To start, a varimax rotation is performed 
on the loadings matrix in order to obtain the 
simple structure ][ 21

r
m

rrr vvv =V . From the 
simple structure, dominating variables can be 
identified, whereby the variables with high 
loadings exhibit strong correlations with a 
principal component. In order to avoid counter 
effects within a component, for each component 
axis mjvr

j ,...,, 1=  the variables with positive 

loadings should be segregated from those with 
negative loadings. For illustrative purposes, the 

groups are labeled as positive group r
jv
( )+

 and 

negative group 
)( −r

jv . The explained variation 

associated to each group is depicted by the 
corresponding SSL, that is, )SSL( )(+r

jv  and 

)SSL( )(−r
jv .  

To minimize deviations from the 
original principal components, the group of 
variables that capture a bigger portion of 
explained variation (the one with a larger SSL) 
will be extracted. Variables of another group 
with smaller SSL are labeled as the contrast 
variables. These variables are relatively less 
significant and are subject to be dropped: this is 
equivalent to assigning a zero weight to each of 
the contrast variables. To satisfy the requirement 
of unit vector (Hand, 2001), these vectors are 
then normalized, and hence are called the 
modified principal directions. The absolute 
values of these modified principal directions are 
taken to form the new weights for the 
construction of the modified components. The 
modifications can be performed with MATLAB, 
and the steps are described in algorithmic form 
as: 
 
1. Launch varimax rotation, obtain the 

rotational matrix, Λ . 

2. Obtain the rotated component axes, that is 
ΛVV *== ][ 21

r
m

rrr vvv  . 
 
3. Divide the entries in each vector r

jv into two 

groups, one with positive sign ,
)( +r

jv  and 

another with negative sign mjvr
j  , .. . 1, , =

− )(

. 

 
4. In each vector r

jv , identify the group that 

has a bigger SSL, 
jDv  (e.g.

)( −
= r

jD vv
j

). 

 
5. Normalize the vectors mjv

jD ,,1, = . 

 
6. Take the absolute values on the principal 

directions formed in step (5), giving the 
modified axes matrix: 

 

0 for 1, , , 1, , 

11 p1

12 p2

pm1m

ij i m  j p

ω ω
ω ω

ωω
ω

 
 
 
 
 
 
 
 

≥ = =







 

W =
 

(3.1) 
 
7. Form the modified components C =[ࣷ1 ࣷ1 ⋯ ࣷm]T based on the weights in equation (3.1): 
 

ppmmmm

pp

pp1

xωxωxωc

xωxωxωc
xωxωxωc

+++=

+++=
+++=







2211

22221122

1221111

        (3.2) 

 
Simply stated, this modification only 

involves the exclusion of a less significant group 
of variables. Alternatively, to avoid negative 
weights, other options may be considered, such 
as: (1) taking the squared values on the 
eigenvectors, or (2) taking the absolute values of 
the eigenvectors. The option that best fits the 
original dataset should capture the most amount 
of explained variation in the original data. 

To compare the options graphically, a 
specific case with 3 variables that can be 



YAP, ROSMANIRA & ISA 
 

135 
 

explained by two principal components is used. 
Figure 2(a) shows how the eigenvectors capture 
the distribution of the data. Using the same set 
of data, the modified axes from the proposed 
model and the other options (1) squaring the 
entries of the eigenvectors and (2) taking 
absolute values of the eigenvectors are shown in 
Figures 2(b), 2(c) and 2(d) respectively. Note 
that the proposed model gives the nearest 
approximation to the original eigenvectors, 
hence capturing almost the same amount of 
explained variation in the original data. To 
consolidate the justification, the amount of 
explained variation will be verified via 
redundancy analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Justification of Modifications 
The aim of the proposed modifications 

is to avoid the contrast variables in principal 
components without much sacrifice to the ability 
to represent the original data. To examine this 
aspect, redundancy analysis (Van den 
Wollenberg, 1977) is used. This procedure aims 
to extract factors from the set of dependent 
variables Y

~
 that are the most predictive of the 

independent variables X
~

. Because interest lies 
in knowing how much of the variance in the 
original variables is explained by the modified 
components, let the modified components be the 
dependent   variables,   Y

~
,   and   the   original  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A Comparison between Eigenvectors and the Modified Directions 

(a) Eigenvectors of Principal Components (b) Principal Directions of Proposed Modification 

(c) Principal Directions of Squared Modification (d) Principal Directions of Absolute Value Modification 
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variables be the independent variables, X
~

. 
Based on the objective of canonical correlation 
analysis (Hotelling, 1936), two sets of canonical 
variates, ][

jxx u=u  and mju
jyy  ,1, ],[ ==u  are 

constructed to represent X
~

 and Y
~

 respectively, 
such that the correlation between the canonical 
variates, mjuur yjxjj  , ,1 =),,(  is maximized. 
Based on the canonical correlations, the 
proportion of variation in X

~
 being explained by 

Y
~

 can be computed using the redundancy index 
developed by (Stewart and Love 1968): 
 

2

1 1

2

j

m

j

p

i

x

xy r
p

a
rd ji 













=

= =
→

,                   (3.3) 

 
where 

jixa
,

 = canonical loadings. 

To compare the proposed modification 
to the other two options, redundancy analysis 
will be carried out on all the methods. The 
option causing the least perturbations to the 
eigenvectors should largely retain the proportion 
of explained variation, which will then be 
indicated by a largest redundancy.  
 
Modified PC-DEA 

After the modification that captures the 
largest redundancy is identified, the modified 
PC-DEA model can be constructed based on the 
modified axes and the corresponding 
components. To simplify the notation, assume 
that the proposed modification gives the largest 
redundancy. Thus, the modified components C  
and the modified axes W  will be used to replace 
the principal components and the eigenvectors in 
equation (2.10). In essence, the modified PC-
DEA model for DMU0 with data (x0, y0) is as 
follows: 
 

0

0

0 0

Minimize 

Subject to

, , 0

where 

y

T
x

y x

T

e

s y

s e

s s

x

λ

λ
λ

− =

+ =
≥

=

Y

C W

W

c
c

                (3.4) 

As shown in (3.4), the modified PC-
DEA is similar to PCA-DEA, except changing 
the eigenvectors to the modified axes. Thus, the 
modified PC-DEA is suitable for the scenarios 
that are favorable to PCA-DEA, particularly 
when all the variables are known to be relevant 
in the production function under study. The 
modification can be obtained by running 
MATLAB codes that execute steps 1-6 
described earlier. Because these steps are not 
heavy, the inclusion of them in a computer 
program would not increase the run time, and 
hence would preserve the strength of having the 
shortest run time amongst the alternatives to 
reduce the dimensionality. In other words, by 
having a better data reconstruction that avoids 
the problem of unboundedness in a linear 
program, the modified PC-DEA improves the 
use of principal components in a DEA model, 
and it offers a convenient alternative to 
dimension reduction. 
 

Results 
To demonstrate the problem of contrast 
variables within principal components in the 
DEA framework, the data generation process 
(DGP) based on the idea of Kneip, et al. (1998) 
and Simar and Wilson (1998, 2000a, 2001) were 
followed where each DMU is attached with 
single output efficiency and no DMU is regarded 
as strictly efficient. However, DEA identifies the 
estimates of relative efficiency. By definition, at 
least one DMU will be identified as relatively 
efficient. To mitigate the need of large sample 
size, it is necessary to restrict to CRS because 
when the boundary of the production set 
displays constant returns-to-scale, the DEA 
estimators converge faster and, hence, introduce 
less noise (Daraio & Simar, 2007). Each DMUk 
is associated with an inefficiency index, τk, 
which is drawn independently from an 
inefficiency distribution. Following the criteria 
set by Alder and Yazhemsky (2010), a DMU is 
deemed relatively efficient if the simulated τ−e  
is greater than 0.9.  

To emphasize the problem of 
discriminatory power, consider cases with 
relatively many input variables compared to the 
number of DMUs and begin with a numerical 
illustration that consists of 20 DMUs that use 7 



YAP, ROSMANIRA & ISA 
 

137 
 

inputs to produce an output. Correlated input 
variables 7 , 1, , =jx j

~  are generated by post-

multiplying a set of random numbers from a 
uniform distribution on the interval (0, 100) by 
the upper triangular Cholesky decomposition of 
a pre-assigned correlation matrix 1R  with 
moderate pairwise correlation (r < 0.6). These 
input variables are used in a Cobb-Douglas 

production function .)(
7

1

7

1

∏=
=j

jxy ~~  An inefficiency 

index is simulated for each DMU independently 
from a half normal distribution, that is, τk ~ 
HN(0,1). Under CRS, the inefficiency parameter 
can be assigned to either input side or the output 
side, as they produce the same efficiency score. 
In this example, the output values are calculated 

based on the equation ,)(
7

1

7

1
τ−

=
⋅∏= exy

j
j

~~  and the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

data for 20 DMUs are generated as shown in 
Table 1(a). The correlation matrix for the input 
variables is shown in Table 1(b). 

To reduce dimensionality, PCA is 
applied to all the input variables. Four principal 
components were extracted in order to retain at 
least 80% explained variation. These 
components are then taken for efficiency 
estimations using equation (2.10). The 
component scores are shown in the first 4 
columns of Table 2 and the eigenvectors are the 
first 4 rows of Table 3. From the eigenvectors, 
observe that the weights attached to variables 

4 5,  x x   and 7x  are dominant and a combination 

of these weights will cause the feasible region to 
be unbounded. To illustrate, following equation 
(2.12), the constraints relating to the principal 
components for the efficiency estimation for 
DMU1 are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Simulated Data and Correlation Matrix for Input Variables 

(a) Simulated Data for τ−

=
⋅∏= exy

j
j

7

1

7

1

)(~~  

DMU y~  
1x~  2x~  3x~  4x~  5x~  

6x~  7x~  τ−e  

DMU1 26.260 75.793 89.197 73.386 88.115 0.201 123.52 73.210 0.728
DMU2 9.977 93.371 67.702 101.92 91.872 19.778 74.313 10.790 0.194 
DMU3 48.509 15.580 74.798 80.262 97.408 36.999 143.91 17.229 0.961 
DMU4 18.868 14.366 65.858 94.079 64.095 17.039 84.701 66.670 0.397 
DMU5 26.997 9.258 78.416 88.645 65.644 49.054 141.87 9.075 0.630 
DMU6 17.032 34.792 40.767 47.370 86.329 9.530 97.046 3.994 0.569 
DMU7 5.631 37.114 16.970 53.378 37.088 65.351 73.318 10.042 0.163 
DMU8 16.999 41.154 90.177 87.628 53.287 15.536 116.66 69.836 0.293 
DMU9 11.283 66.556 76.222 28.593 54.421 3.057 48.587 58.638 0.319 

DMU10 10.045 80.534 36.821 78.626 135.93 5.326 135.96 15.306 0.225 
DMU11 11.785 24.151 25.517 61.538 85.657 15.639 115.45 13.299 0.328 
DMU12 15.525 64.394 33.103 105.25 102.50 41.122 84.464 54.637 0.243 
DMU13 8.922 86.984 30.712 86.334 102.49 7.062 96.267 14.978 0.211 
DMU14 7.937 32.015 51.944 60.220 103.44 15.248 129.60 23.887 0.170 
DMU15 8.212 21.021 16.192 99.012 112.37 54.485 110.26 12.282 0.190 
DMU16 5.920 33.092 38.637 40.868 51.107 17.277 45.590 30.691 0.169 
DMU17 9.307 2.936 53.055 102.67 84.770 1.466 140.52 2.934 0.496 
DMU18 13.535 70.179 87.534 120.91 77.687 5.979 109.71 4.156 0.340 
DMU19 14.805 6.832 61.754 57.921 42.567 63.600 58.750 3.897 0.520 
DMU20 12.697 29.560 9.457 38.286 104.42 39.826 78.962 37.364 0.328 
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1 2 3 4

5 6 7

1 2 3 4
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1 2 3 4
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0.446 0.46 0.067( 6.635)

0.305 0.193 0.36

0.342 0.357 0.564(0. 51)

0.51 0.314 0.427

0.183 0.325 0.0( .345)

t t t t1
e

t t t

t 0.421t t t1
e

t t t7

t 0.566 t t t1

t t1

− − − −
=

+ − −−

+ − −
=

− − +

− + + −

+ + +

 
 
 

 
 
 

7

1 2 3 4

5 6 7

04

0.486 0 0.191

0.365 0.405 0.281( .153)

e
t

t 0.085 t .587 t t1
e

t t t0

=

+ + −
=

+ − −









 
   
 
   

(4.1) 
 

To emphasize the problem of 
unboundedness, choose a point within the 
feasible region, that is, t1 = t2 = t3 = t6 = 0. At this 
point, equation (4.1) is simplified to 
 




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
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754

754

754
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      (4.2) 

 
Observe that if the input excesses )5()4( , xx ss  and 

)7(xs  are loaded heavily, for example 

, )7()5()4( bxxx ssss ===  where bs  is a large 

number, the constraints will then be driven by 
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                      (4.3) 

 
It can be observed from equation (4.3) that the 
constraints related to 32  , γγ  and 4γ  lead to 

unbounded feasible region for  e because e can 
be made as small as possible in the linear 
program. In the constraint related to 1γ , the 
input excesses are weighted with a very small 
positive number. Thus, this constraint can easily 
be made zero or negative, if )(T

1 λXv  is negative. 
As a result, the PCA-DEA estimator encounters 
the problem of unboundedness, and this is 
shown in the efficiency scores obtained in 
column 2 of Table 4. These values are close to 
zero due to the setting of the lower bound of e to 
a zero in the linear program.  

To produce non-negative data that meet 
the free disposability assumption in a DEA 
model, modifications on the eigenvectors were 
performed on the same set of data following the 
procedure suggested herein. First, the 
eigenvectors are rotated with a varimax rotation, 
giving the rotated factor axes shown in rows 5-8 
of Table 3. Note that the first rotated axis rv1  is 
dominated by the variables with negative  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 (continued): Simulated Data and Correlation Matrix for Input Variables 
(b) Correlation Matrix of Input Variables 

 1x~  2x~  3x~  4x~  5x~  
6x~  7x~  

1x~  1 0.110 0.154 0.323 -0.454 -0.164 0.198 

2x~  0.110 1 0.290 -0.320 -0.346 0.220 0.318 

3x~  0.154 0.290 1 0.295 -0.065 0.471 -0.106 

4x~  0.323 -0.320 0.295 1 -0.254 0.505 -0.142 

5x~  -0.454 -0.346 -0.065 -0.254 1 -0.199 -0.256 

6x~  -0.164 0.220 0.471 0.505 -0.199 1 -0.180 

7x~  0.198 0.318 -0.106 -0.142 -0.256 -0.180 1 
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weights. Thus, variables 521  , , xxx ~~~  and 7x~  with 

positive weights that capture 17.1% of the SSL 
in 1γ  are classified as contrast variables in .1γ  
To form an axis without the counter effect from 
the contrast variables, these variables are 
excluded, and the remaining variables 43  , xx ~~  and 

6x~  are used to form the normalized principal 

direction .1ω  This procedure is repeated for the 

other rotated axes 4 ,3 ,2, =jvr
j  and the 

corresponding normalized principal directions 
4 ,3 ,2, =jjω  are produced (refer to rows 10-12 

of Table 3).  
This example illustrates that the contrast 

variables differ from one component to the 
other, and they cannot be identified prior to 
PCA. To examine if the modifications made to 
the eigenvectors weaken the components’ ability 
to represent the dataset, a redundancy analysis 
was performed on the modified components 
against the original dataset. Results show that 
the modified components retain 82.1% 
explained variation of the original dataset, 
compared to 84.8%, captured by the principal 
components. 

As described in the methodology, there 
are alternatives to avoid negative weights in 
eigenvectors, for example, (1) squaring the 
entries of the eigenvectors and (2) taking 
absolute values of the eigenvectors. To compare 
these alternatives, redundancy analyses were 
performed on the modified components 
corresponding to these methods against the 
original dataset using equation (3.3). The 
redundancy analyses show that there is a 69.0% 
redundancy from components obtained by 
option (1) and 69.5% redundancy from 
components obtained by option (2). This means 
that, although there is a drop in the amount of 
retained variation, the proposed modification is 
still the best among the other options. Hence, the 
components from the proposed modifications are 
used to replace the original variables in the DEA 
model for the efficiency estimation. 

To illustrate the benefit gained from the 
dimensionality reduction due to these modified 
components the efficiency scores of the 
proposed method (modified PC-DEA) was 
compared to the results of the standard DEA 
(columns 2 and 4 of Table 4). As expected, the 

standard DEA suffers from overestimation. 
Refer to the efficiencies pre-assigned, τ−e  (see 
column 10, Table 1), DMUs 1, 5, 6, 17, 18, 19 
and 20 should not be classified as efficient as 
being identified by the standard DEA (see 
column 2, Table 4). This problem is overcome 
by the proposed method, whereby only DMU3 is 
identified as efficient, reflecting the scenario as 
portrayed in the pre-assigned efficiencies. As 
such, it may be said that there is no significant 
loss of information due to the modified 
components. This example shows that the 
efficiency estimates obtained from the modified 
PC-DEA is more accurate than that of the 
standard DEA. 

It is known that DEA is sensitive 
towards the dimensionality relative to the 
sample size and PCA is best used for dimension 
reduction when data are highly correlated. To 
generalize the findings, Monte Carlo simulations 
that take 100 trials were designed for each of the 
cases classified by these factors, that is, the 
dimensionality, correlation levels and the sample 
sizes. The data generating process is the same as 
described above, whereby a production function 

∏=
=

p

j

p
jxy

1

1

,)(~~  where p is the number of inputs is 

used to simulate data with CRS. For the factor of 
correlation, two levels of correlations are 
examined; a case where variables are moderately 
correlated (r < 0.6); pre-assigned with a 
correlation matrix R1, and another case where 
variables are highly correlated (r > 0.6); pre-
assigned with a correlation matrix R2. Random 
samples for both levels of correlation are 
generated based on the upper triangular 
Cholesky decomposition of 1R  and 2R  
respectively. These cases were repeated for the 
sample sizes of 20, 50 and 100 (see Table 5). 

Results shows that, on average, for the 
inputs that are highly correlated, there is 1 
principal component returned for case of 4 
inputs and 1.4 principal components returned for 
the case with 7 inputs for all the sample sizes. 
The sharp reduction in the dimensionality 
validates the use of PCA when the data that are 
highly correlated. For the inputs that are 
moderately correlated, more principal 
components are returned in order to capture at 
least 80% of explained variation. On average,  
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Table 2: Principal Components )( jγ  and Modified Components )( jc  

DMU 1γ  
2γ  

3γ  
4γ  

1c  
2c  

3c  
4c  

DMU1 -6.635 0.751 1.345 0.153 5.420 4.536 5.439 4.488 
DMU2 -5.867 -0.876 0.495 2.702 4.371 4.784 3.270 5.423 

DMU3 -5.417 -2.427 2.552 0.189 6.172 2.328 3.900 4.853 

DMU4 -4.665 -0.079 2.314 0.555 3.929 2.332 4.453 4.633 

DMU5 -4.680 -2.417 3.450 0.847 5.370 1.692 3.865 5.311 

DMU6 -4.377 -1.700 0.523 0.024 4.646 2.510 2.124 2.862 

DMU7 -1.916 -1.910 1.080 1.683 2.874 2.024 1.408 3.591 

DMU8 -5.456 0.529 2.789 0.543 4.441 3.032 5.429 4.964 

DMU9 -3.829 1.724 0.475 0.372 2.613 3.448 4.091 2.459 

DMU10 -6.962 -2.320 -0.440 0.425 6.909 4.864 2.608 4.301 

DMU11 -4.496 -2.252 0.809 -0.120 5.126 2.315 2.014 3.302 

DMU12 -5.221 -1.361 0.417 1.823 4.891 4.379 3.209 5.375 

DMU13 -5.917 -1.524 -0.443 1.486 5.131 4.672 2.234 4.381 

DMU14 -5.392 -1.887 1.083 -0.374 5.907 2.875 3.150 3.639 

DMU15 -4.570 -3.680 0.958 1.202 5.755 2.754 1.853 5.039 

DMU16 -2.773 -0.130 0.541 0.593 2.492 2.181 2.336 2.483 

DMU17 -5.872 -2.627 2.441 0.107 5.843 1.765 2.992 4.746 

DMU18 -6.683 -1.084 2.055 2.291 4.957 3.911 4.032 6.076 

DMU19 -2.000 -1.562 2.392 1.611 2.659 1.109 2.632 3.910 

DMU20 -3.324 -1.954 -0.399 -0.138 4.613 2.804 1.726 2.583 
 
 

Table 3: Eigenvectors )( jv , Rotated Axes )( r
jv  and Modified Principal Directions )( jω  

 1x~  
2x~  

3x~ 4x~ 5x~ 6x~ 7x~  

1v  -0.342 -0.272 -0.448 -0.440 0.446 -0.460 -0.067 
2v  0.305 0.421 -0.193 -0.360 -0.342 -0.357 0.564 
3v  -0.510 0.566 0.314 -0.427 0.183 0.325 0.004 
4v  0.486 0.085 0.587 -0.191 0.365 -0.405 -0.281 
rv1  0.156 0.037 -0.066 -0.575 0.380 -0.703 0.031 
rv2  0.806 -0.046 0.121 0.299 -0.373 -0.273 0.176 
rv3  -0.051 0.718 0.110 -0.349 -0.329 0.145 0.468 
rv4  0.171 0.244 0.806 -0.018 0.303 0.136 -0.389 
1ω  0 0 0.072 0.632 0 0.772 0 
2ω  0.910 0 0.136 0.337 0 0 0.198 
3ω  0 0.820 0.126 0 0 0.166 0.534 
4ω  0.186 0.265 0.875 0 0.329 0.148 0 
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Table 4: Estimated Efficiency Scores for DEA, PCA-DEA and Modified PC-DEA 

DMU 
e
  e

  e
  

(DEA) (PCA-DEA) (mPC-DEA) 

DMU1 1 5.4E-14 0.616 
DMU2 0.398 4.0E-15 0.290 

DMU3 1 3.1E-15 1 

DMU4 0.750 2.7E-15 0.611 

DMU5 1 2.0E-16 0.766 

DMU6 1 1.2E-16 0.645 

DMU7 0.466 9.4E-18 0.321 

DMU8 0.707 5.8E-14 0.487 

DMU9 0.958 1.1E-16 0.549 

DMU10 0.729 2.6E-15 0.310 

DMU11 0.689 1.2E-16 0.470 

DMU12 0.655 2.4E-15 0.404 

DMU13 0.642 2.0E-16 0.321 

DMU14 0.304 2.2E-15 0.218 

DMU15 0.679 1.2E-16 0.356 

DMU16 0.385 2.3E-17 0.302 

DMU17 1 4.2E-15 0.253 

DMU18 1 5.4E-15 0.347 

DMU19 1 6.3E-18 0.708 

DMU20 1 7.6E-17 0.591 
 
 

Table 5: List of Monte Carlo Experiments 

Experiment Sample Size n (inputs) Pairwise Correlation Level 

1 20 4 High (r > 0.6) 

2 20 4 Moderate (r < 0.6) 

3 20 7 High (r > 0.6) 

4 20 7 Moderate (r < 0.6) 

5 50 4 High (r > 0.6) 

6 50 4 Moderate (r < 0.6) 

7 50 7 High (r > 0.6) 

8 50 7 Moderate (r < 0.6) 

9 100 4 High (r > 0.6) 

10 100 4 Moderate (r < 0.6) 

11 100 7 High (r > 0.6) 

12 100 7 Moderate (r < 0.6) 
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there are 2.7-3.0 principal components returned 
for the case with 4 inputs, and 3.9-4.4 principal 
components returned for the case with 7 inputs. 
To compare the information retention power, 
redundancy analyses between the original 
variables and the modified components were 
performed on these simulated dataset, 
comparing the redundancies due to the proposed 
method, taking squared value of eigenvectors 
(option 1) and taking absolute value of the 
eigenvectors (option 2). The results of the 
analyses are shown in Table 6. Note that, when 
there is only 1 principal component returned, 
there is no difference between the three options 
because there is only one factor axis to be 
considered. However, when there is more than 
one principal component, the redundancies 
captured by these options differ. As the 
proposed method provokes the least 
perturbations to the eigenvectors, it captures the 
most explained variation in all the cases, with 
reasonably low standard deviation. Referring to 
column 2 of Table 6, it is observed that the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

modified components obtained with the 
proposed method retain almost as much the 
information as in the principal components, that 
is, capturing at least 80% of explained variation. 
Thus, it may be concluded that the proposed 
method is the best alternative among these 
options to avoid negative weights in principal 
components because it causes the least 
information loss. 

To compare the efficacy of the proposed 
method (modified PC-DEA) to the standard 
DEA, the efficiency estimates from the modified 
PC-DEA and the standard DEA were compared 
to the simulated efficiencies. Figure 3 illustrates 
the comparisons for two extreme cases, namely 
(a) the worst case with a sample size n = 20, 1 
output and 7 moderately correlated inputs, and 
(b) the best case with a sample size n = 100, 1 
output and 4 highly correlated inputs. Note that 
for both cases, the efficiency estimates from the 
modified PC-DEA are closer to the simulated 
efficiencies compared to the standard DEA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Results of the Redundancy Analyses 

Experiment 

Redundancya 
Proposed Method 

Redundancya 
Option 1b 

Redundancya 
Option 2c 

Average Std Dev Average Std Dev Average Std Dev 

1 0.937 0.021 0.937 0.021 0.937 0.021 

2 0.883 0.046 0.833 0.069 0.822 0.070 

3 0.860 0.034 0.857 0.033 0.857 0.032 

4 0.846 0.031 0.770 0.060 0.760 0.058 

5 0.936 0.011 0.936 0.011 0.935 0.012 

6 0.905 0.033 0.845 0.042 0.838 0.041 

7 0.851 0.034 0.849 0.032 0.850 0.032 

8 0.831 0.034 0.773 0.052 0.759 0.053 

9 0.933 0.009 0.933 0.009 0.933 0.009 

10 0.910 0.020 0.834 0.032 0.827 0.030 

11 0.841 0.033 0.839 0.031 0.839 0.031 

12 0.834 0.043 0.780 0.058 0.762 0.059 

a: Redundancy between the original variables and the modified components 
b: Option 1 represents the squared value of eigenvectors 
c: Option 2 represents the absolute value of eigenvectors 
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Figure 3: Comparison of Efficiency Estimates to the Simulated Efficiencies 

(a) Efficiency Estimates for 20 DMUs with 1 Output and 7 Moderately Correlated Inputs 

 
 
 

(b) Difference in Efficiency Estimates for 100 DMUs with 1 Output and 4 Highly Correlated Inputs 
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To further examine the discriminatory 
power of the estimators, the percentages of 
overestimation and underestimation of each 
model were reckoned. An overestimation is 

observed when an inefficient DMU ( τ−e < 0.9) 
is identified as efficient ( 1=e

 ), and an 
underestimation occurs when an efficient DMU 

( τ−e > 0.9) is identified as inefficient ( 1<e
 ). 

The results of the Monte Carlo simulations are 
shown in Table 7. Note that the standard DEA 
suffers from the curse of dimensionality. As 
expected, the worst case (Experiment 4, of 
which n = 20, with 1 output and 7 moderately 
correlated inputs) produces huge overestimation 
(42%). Consistent with Simar and Wilson 
(2000b), the increase in the sample size (from n 
= 20 to n = 100) does not give much ease to the 
overestimation problem (from 42% to 26.31%). 
Conversely, note that by using the modified 
components to replace the original variables, the 
problem of overestimation is reduced sharply.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For this worst case (Experiment 4), the 
proposed method replaces all the 7 inputs with 4 
modified components, thus reduces the 
overestimation to 17.8%. Note also that both the 
modified PC-DEA and the standard DEA work 
better when data are highly correlated because 
the constraints attributable to the variables are 
rather similar to each other. Nonetheless, even in 
the best scenario (Experiment 9, of which n = 
100, with 4 highly correlated inputs), the 
modified PC-DEA is still better than the 
standard DEA by having a much slighter 
overestimation (0.06% compared to 4.24%). The 
modified PC-DEA performs well in all cases to 
overcome the problem of overestimation. 
Although it produces underestimations (0.24% − 
2.11%) due to the loss of information, the effect 
is deemed slender compared to the improvement 
in the discriminatory power. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Results of Monte Carlo Simulations (100 trials) on the Percentages of Overestimation and 
Underestimation 

Experiment 

% Overestimation % Underestimation 

Std DEA 
Modified PC-

DEA 
Std DEA 

Modified PC-
DEA 

1 11.50 1.30 0 1.65 

2 22.05 11.05 0 0.20 

3 18.75 2.80 0 1.15 

4 42.00 17.80 0 0.30 

5 7.20 0.30 0 1.70 

6 14.58 6.98 0 0.16 

7 13.26 1.18 0 1.20 

8 33.16 12.32 0 0.28 

9 4.24 0.06 0 2.11 

10 10.05 4.32 0 0.28 

11 9.08 0.33 0 1.80 

12 26.31 8.91 0 0.24 
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Conclusion 
Literature shows that PCA-DEA outperforms 
other methods when all the variables under 
consideration are relevant. Furthermore, it is a 
convenient approach to reduce the 
dimensionality because it involves the least run 
time and estimation results are satisfactory. 
Principal components are the uncorrelated 
weighted linear combinations of original 
variables that capture the maximum variance. As 
the linear combinations are formed with a 
mixture of positive and negative weights, 
principal components could not meet the free 
disposability assumption in a DEA model. 
Consequently, the problem of unboundedness 
might arise in the linear program of the DEA 
model.  

To overcome this problem, this study 
proposed that the eigenvectors be modified 
whereby each of the modified axes is 
constructed based on a set of variables that 
correlate in the same direction to the respective 
principal component. The modification involves 
the exclusion of contrast variables that capture a 
smaller portion of SSL, thus, there would not be 
significant information loss due to the 
modification. This was illustrated in redundancy 
analysis using Monte Carlo experiments. 
Compared to other possible alternatives to 
obtain non-negative weights for the principal 
components, the modified components due to 
proposed method captured the largest 
redundancy – in fact, they retained almost as 
much the explained variation as in the extracted 
principal components.  

This study showed that the modified 
PC-DEA performs well to overcome the 
problem of overestimation, particularly when 
data are highly correlated. Because the 
modification can be obtained easily by adding 
programming codes to existing PCA-DEA its 
run time is not different from that of PCA-DEA. 
Better data reconstruction avoids the problem of 
unboundedness in a linear program, thus, the 
modified PC-DEA is a practical alternative to 
reduce dimensionality in a DEA model. In 
circumstances when there are many relevant 
variables, but not many comparable 
observations, researchers may consider applying 
the proposed method to aid meaningful 
benchmarking processes. 
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