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for Data Mining Applications 
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The use of logistic regression for outcome classification of dichotomous variables is well known in data 
mining applications. The estimated probability of the logit transformation belongs to the class of 
canonical link functions that follow from particular probability distribution functions. A closely related 
model is the probit link which can be used for binary responses. Although the probit link is not canonical, 
in some cases the overall fit of the model can be improved by using non-canonical link functions. This 
article reviews the properties of the probit link function and discusses its applications in data mining 
problems. Contrasts and comparisons are made with the logistic link function and an example provides 
further illustration. 
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Introduction 
The problem of outcome classification of 
qualitative data is a major task in data mining. 
The goal of classification is to accurately predict 
the target class for each case in the data. 
Specifically, in binary classification, the target 
attribute has only two possible outcomes and 
fast and accurate classifiers are highly desirable. 
Several predictive models such as naïve Bayes, 
classification trees, support vector machine and 
k-nearest neighbor have traditionally been used 
with some success. However, recently the use of 
logistic regression has found more widespread 
popularity and the method has attracted the 
attention of several practitioners. The advantage 
of such a model is that it transforms information 
about the binary dependent variable into an 
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unbounded continuous variable and estimates a 
regular multivariate model. Komarek and Moore 
(2005) present a simple parameter-free 
implementation of the logistic regression and 
demonstrate that the model is sufficiently fast 
and accurate for classification of binary 
outcomes in large real-world datasets. Maalouf 
(2011) presented an overview of various aspects 
of logistic regression, calling it one of the most 
important and one of the most widely used data 
mining techniques. Comparatively less attention 
has been focused on a similar, but slightly 
different probit model. The difference between 
the two models is that the logistic model is based 
on the logit transformation while the probit 
model uses the inverse Gaussian link. In most 
cases, the classification outcome is similar for 
the two models even though the underlying 
distributions are different. 
 
Generalized Linear Models 

In linear regression analysis there is a 
random component Y which identifies the 
response variable and several explanatory 
variables (features or attributes) X1, X2, …, Xp . 
The response variable is expressed as a linear 
predictor     of     the     explanatory      variables, 
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ࢅ = ଴ߚ	 ૚ࢄଵߚ	+ ૛ࢄଶߚ	+ + ࢖ࢄ௣ߚ	+⋯ +   ࢿ	
(1) 

 
where ࢿ is the error term and Y, X1,  X2, … Xp 

and  ࢿ are all n × 1 vectors where n is the 
number of instances or the sample size. In 
matrix form, the model can be expressed as 
ࢅ  = ࢼࢄ +  (2)                         ࢿ	
 

where ࢼ = ൫ߚଵ, ,	ଶ	ߚ … ,  is the n × p ࢄ ௣൯் andߚ
data matrix often referred to as the design 
matrix. The assumption of linearity in this model 
can be too restrictive and in many cases is 
unrealistic. In addition, the model assumes that 
response variable 	ࢅ has a normal distribution 
with a constant variance; that is, if 	ࢅ ,ଵݕ)= ,ଶݕ … , =	ߤ =௡)் then it is assumed that E(Y)ݕ 	,ࢼࢄ =	ߤ ,ଵߤ) ,ଶߤ … , 		ࢀ(௣ߤ and that yi has a 
normal distribution with mean μi = E(yi ) and 
variance σ2 for i = 1, 2, …, n. These 
assumptions, in many instances, may not be 
justified. To overcome this problem, the 
assumptions are relaxed by allowing ߤ and ࢼࢄ	
to be related by a so-called link function, g, so 
that ݃(ࣆ	) =  (3)                       .ࢼࢄ	
 
In this way, the normal model becomes a special 
case of generalized linear model in which the 
link function is the identity function. Therefore, 
in general, for distributions other than normal 
that fit the data, a suitable link function can be 
determined. Specifically, if responses are binary 
as in the binomial distribution, the two popular 
link functions are the logit transformation, log ቀ ఓ೔ଵି	ఓ೔ቁ and the probit transformation, ିߔଵ	(ߤ௜) where ߔ is the cumulative distribution 
function of the standard normal distribution. In 
the case of logit transformation, the outcome 
probability is assumed to have the logistic 
distribution, whereas in the case of the probit 
link, the distribution of the outcome probability 
does not have an easily interpretable form. This 
is why the logit transformation belongs to the 
canonical family of link functions while the 
probit link is not canonical. 
 
 

Logistic Regression Model 
Assume that response variable Y is 

binary and let P(yi = 1) = πi be the success 
probability for the ith measurement. Then, it can 
be shown that E(yi) = πi  and V(yi) = πi (1 − πi). 
In ordinary regression, π = (ߨଵ, ,ଶߨ  ௡)் isߨ…
modeled as a linear function X with a constant 
variance. However, because the expected value 
and variance of the response variable are not 
constant, ordinary linear regression does not 
apply. Moreover, it can be shown that the 
relationship between π and X is generally not 
linear. Constant changes in the explanatory 
variables usually have less impact in the success 
probability πi especially when πi is close to 0 or 
1. Sigmoid shaped curves are often more 
realistic for such relationships, and among these, 
the most commonly used is the logistic function 
defined as 
௜ߨ  = 	 (1  ଵ                 (4)ି(ࢼ೔࢞ି݁	+
 
where xi is the ith row of the X matrix, that is, the 
ith record in the dataset. Taking the logarithm of 
the odds ratio, called the logit transformation, 
from equation (4) results in the logistic 
regression model 
 logit(ߨ௜) = log ቀ గ೔ଵିగ೔	ቁ = ࢼ௜࢞	 +	߳௜     (5) 

 
where	߳௜ is the error term. A vast body of 
literature exists regarding methods for fitting a 
logistic regression model. The popular 
maximum likelihood method is used to estimate 
model parameters. Note that if the responses are 
independent, then by applying the Bernoulli 
distribution, the likelihood for n binary 
observations as a function of the parameters is 
(ࢼ)ܮ  = 	∏ ୀ૚࢏࢔௜௬೔ߨ (1        (6)	௜)ଵି௬೔ߨ	−
 
and the log-likelihood is given by 
 

( ) ( ( ) ( ))
n

i i i i
i 1

log L y log 1 y log 1  π π
=

= + − −β  

(7) 
 
which must be maximized in order to derive the 
maximum likelihood estimates of the model 
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parameters. The first derivative of equation (7) 
is referred to as the score function (McCullagh 
& Nelder, 1989). Because no analytic solution 
for the maximum likelihood estimates can be 
derived, numerical methods are used. The most 
popular method for numerical derivation of the 
parameter estimates is an adaptation of the 
Newton-Raphson method, called the Iteratively 
Re-Weighted Least Squares (IRLS). In this 
method, a new set of weights are estimated at 
each iteration (Hosmer & Lemeshow, 2000; 
Hilbe, 2009; Maalouf, 2011). 
 
Probit Regression Model 

The probit model is another sigmoid-
shaped curve used in modeling dichotomous 
outcome variables. For this model, the link 
function, called the probit link, uses the inverse 
of the cumulative distribution function of the 
standard normal distribution to transform 
probabilities to the standard normal variable. 
Thus Φିଵ(ߨ௜) = ࢞௜ࢼ +	߳௜                  (6) 
 
where  Φ(ݖ) = ׬	 ଵ√ଶగ 	݁ିభమ௧మ݀ݐ.௭ିஶ               (7) 

 
The use of the probit regression model 

dates back to Bliss (1934). Bliss was interested 
in finding an effective pesticide to control 
insects that fed on grape leaves (Greenberg, 
1980). He found that the relationship between 
response to a dose of pesticide was sigmoid and 
he applied the probit transformation to transform 
the sigmoid shape dose-response curve to a 
linear relationship. His ideas were later 
generalized in a book by Finney (1985) where 
the applications of probit analysis in 
toxicological experiments were explored. 
According to some sources, probit analysis 
remains the preferred method in understanding 
dose-response relationships. In data mining, 
however, this application remains fairly 
unknown even though most popular statistical 
software such as SPSS, SAS and R carry 
functions for probit regression.  

The probit model has also found 
popularity in economics. Cramer (2003) 
provides a survey of the early origins of the 
model. In comparing the probit model to the 

logistic model, many authors believe that there 
is little theoretical justification in choosing one 
formulation over the other in most 
circumstances involving binary responses. The 
logit model is considered to be computationally 
simpler but it is based on a more restrictive 
assumption of error independence, although 
many other generalizations have dealt with that 
assumption as well. By contrast, the probit 
model assumes that random errors have a 
multivariate normal distribution. This 
assumption makes the probit model attractive 
because the normal distribution provides a good 
approximation to many other distributions. The 
model does not rely on the assumption of error 
independence and econometricians utilize a 
general random utility model to describe the 
correlation. Hausman and Wise (1978) defined 
the covariance probit model and used it in 
economic applications. The model parameters 
are estimated by using the generalized least 
squares 
෡ࢼ  = 	  (7)            ࢆᇱ઱ି૚ࢄଵି(ࢄ઱ି૚	ᇱࢄ)
 
where ઱ is the covariance matrix of the errors 
and ࢆ is the vector of observed probits:  
ࢆ  = 	 (Φିଵ(ߨଵ), Φିଵ(ߨଶ), … ,Φିଵ(ߨ௡))ࢀ. 
 
In practice, ઱ is replaced by some consistent 
estimate of the covariance matix. This makes the 
probit model computationally more complicated; 
however, as argued by Judge, et al. (1980) the 
probit model is more flexible. The use of 
noncanonical link functions is not prohibited by 
the fact that they are more computationally 
complex. Czado and Munk (2000) argued that, 
in some applications, the overall fit of the model 
as measured by the p-value of the goodness-of-
fit statistics can be improved significantly by the 
use of a noncanonical link. 
 
Applications in Data Mining 

Now consider a data set with binary 
responses and consider analyzing the data using 
both logistic regression and probit regression 
models. This study used a data set regarding 
credit reliability of individuals. If a financial 
institution gives a loan based on a credit to a 
person, they clearly would be interested in 



MEHDI RAZZAGHI 
 

167 
 

estimating the person’s ability to pay the loan 
back, thus, the aim is to model credit reliability 
as a function of the person’s risk factors 
(covariates). The data set consists of 1,000 
customers from a bank in southern Germany. 
The response variable is in dichotomous form 
using 0 for a reliable client and 1 for not reliable. 
The data set, which is described in Fahrmeir and 
Hamerele (1994), consists of the following 20 
covariates that were considered to be important 
in credit evaluation of a client: 
 
X1: Running account (trichotomous) 

X2: Duration of credit (month) 

X3:  Payment of previous credits 

X4: Purpose of Credit 

X5: Amount of credit 

X6: Value of savings or stocks  

X7: Employment history 

X8: Credit payment as percentage of income 

X9: Marital status 

X10: Further debtors/guarantors 

X11: Number of years in current household 

X12: Most valuable assets 

X13: Age 

X14: Running credits in other institutions 

X15: Own/rent  

X16: Number of previous credits at this bank 

X17: Occupation 

X18: Number of persons entitled to maintenance 

X19: Telephone 

X20: Foreign or national worker 
 

Fahrmeir and Hamerele (1994) used a 
logit model to analyze a subset of the data with 
seven covariates; later Fahrmeir and Tutz (1997) 
used  the   data  set  to  illustrate  an  example  in  
 
 

logistic regression. The data set was further 
analyzed in depth as a case study by Giudici 
(2003) where a descriptive analysis of the data 
set was also included. PROC LOGISTIC and 
PROC PROBIT in SAS were used to analyze the 
data. Table 1 provides the parameter estimates 
for each covariate under the two modeling 
structures together with standard error, the value 
of the Wald Chi square and the significance 
level as measured by the p-value. It can be 
observed that, although the values of the 
parameter estimates are different – as they 
should be, both models produce very similar 
results and point to the same set of parameters as 
significant. The standard error of the estimates 
appears to be smaller for some variables in the 
logistic model and larger in others. The 
predicted values and other standard statistics 
were computed and again very similar results 
were obtained under both models. 
 
Discussion 

In data mining, there is a strong urge to 
use logistic regression as one of the main 
approaches for classification of binary 
responses. Komarek and Moore (2005) 
presented an argument in introducing the logistic 
regression as a core in data mining tools. A large 
body of literature exists on the use of logistic 
regression in data mining applications. 
Comparatively less is known about a similar, but 
intrinsically different approach of probit 
regression. This article introduced this model as 
another powerful and useful approach for 
modeling binary data. Many authors have used 
the probit model in other applications with 
success; for example, Shariff, et al. (2009) 
compared the two models for estimating the 
strength of gear teeth. The goal herein was to 
present the probit regression to the data mining 
community; it was not to introduce the probit 
model as a rival to the logistic model, but rather 
as an alternative. Experience shows that in most 
situations the two approaches produce similar 
results although some differences exist. This 
similarity is not necessarily sustained when 
multivariate responses are used. Further research 
is needed to investigate the advantages or 
disadvantages in using one model over the other 
in data mining applications. 
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Table 1: Maximum Likelihood Estimate of Model Parameters 

Logistic Regression Parameters Probit Regression Parameters 

 
Estimate SE Chi-Square Pr > ChiSq Estimate SE Chi-Square Pr > ChiSq 

Intercept 3.9940 1.0238 15.2178 <.0001 2.2004 0.5729 14.7500 0.0001 

X1 -0.5799 0.0700 68.5630 <.0001 -0.3424 0.0400 73.4300 <.0001 

X2 0.0246 0.0087 7.9300 0.0049 0.0140 0.0051 7.4600 0.0063 

X3 -0.3822 0.0874 19.1204 <.0001 -0.2220 0.0501 19.6300 <.0001 

X4 -0.0315 0.0301 1.0980 0.2947 -0.0173 0.0173 1.0000 0.3180 

X5 0.0001 0.0000 5.4199 0.0199 0.0001 0.0000 5.7000 0.0170 

X6 -0.2391 0.0583 16.8395 <.0001 -0.1312 0.0326 16.2000 <.0001 

X7 -0.1517 0.0712 4.5444 0.0330 -0.0876 0.0413 4.4800 0.0342 

X8 0.2983 0.0828 12.9949 0.0003 0.1748 0.0478 13.3800 0.0003 

X9 -0.2574 0.1157 4.9473 0.0261 -0.1477 0.0668 4.8800 0.0271 

X10 -0.3473 0.1777 3.8188 0.0507 -0.1804 0.1011 3.1800 0.0744 

X11 0.0141 0.0774 0.0332 0.8553 0.0076 0.0453 0.0300 0.8660 

X12 0.1828 0.0910 4.0367 0.0445 0.1102 0.0528 4.3500 0.0369 

X13 -0.0089 0.0082 1.1807 0.2772 -0.0055 0.0047 1.3500 0.2457 

X14 -0.2419 0.1111 4.7428 0.0294 -0.1381 0.0650 4.5100 0.0337 

X15 -0.2931 0.1677 3.0542 0.0805 -0.1629 0.0981 2.7600 0.0969 

X16 0.2436 0.1610 2.2894 0.1303 0.1460 0.0921 2.5100 0.1130 

X17 -0.0189 0.1367 0.0191 0.8901 -0.0101 0.0805 0.0200 0.8996 

X18 0.1708 0.2319 0.5421 0.4616 0.1133 0.1348 0.7100 0.4007 

X19 -0.2947 0.1880 2.4567 0.1170 -0.1692 0.1089 2.4100 0.1204 

X20 -1.1582 0.6078 3.6317 0.0567 -0.6389 0.3292 3.7700 0.0523 
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