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An Approximate Approach to the Economic Design of x  Charts 
By Considering the Cost of Quality 

 
M. A. A. Cox 

Newcastle University 
Newcastle upon Tyne, United Kingdom 

 
 
The selection of three parameters { }nkh ,,  is necessary to design a x  control chart. A cost model 
employing a Burr distribution is examined. Previously employed methods are refined and extended. A 
series of approximations are proposed that enable a rapid parameter selection. It is hoped that reducing 
the computational complexity of previous approaches will lead to wider utilization of x  control charts. 
 
Key words: Burr distribution, control charts, cost of quality, generalized charts. 
 
 

Introduction 
When designing a x  control chart to monitor a 
process three parameters must be selected, 
sample size ( n ), interval between successive 
subgroups ( h ) and control limits ( k ). A cost 
model is employed to assist in the selection of 
these parameters (Duncan 1956, Alexander, et 
al. 1995, Chou, et al. 2000). (A summary of 
notations adopted, which closely follows that of 
Chou, et al. (2000), is listed in the Appendix.)  

Chou, et al. (2000) did not fully describe 
their numerical approach: They used tables 
presented in Burr (1942) to estimate the 
parameters of the eponymous distribution given 
the first four central moments for a data set; the 
mean and standard deviation of this distribution 
corresponding to the parameters from tables 
presented in Burr (1942) were then introduced. 
Finally a computer program, which employs a 
grid search to minimize the cost model, is 
mentioned and finally key parameters {h, k, n} 
are estimated. No technical details were 
provided of this procedure, for example, which 
interval was scanned and what step length was 
employed. 
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In this study, neither Burr’s (1942) 

tables nor a grid search is employed. Instead, 
numerical procedures are employed to address 
estimation of the parameters for the Burr 
distribution. The key estimation step is divided 
into three sub-problems, one for each parameter 
{h, k, n}, to make estimation more efficient and 
accurate. Chou, et als. (2000) original work 
presented two key equations and a related table 
(see equations (9) and (12) and Table 1). 
Although the equations are correct, their range 
of application is limited, as noted when the 
density function is defined in equation 5 of the 
original work; thus the equations are not strictly 
consistent with the results presented in their 
table. This shortcoming will be addressed, which 
is essentially notational. In addition a four-step 
procedure for parameter selection is developed 
and is further refined as a series of approximate 
methods to allow more rapid calculation of these 
parameters. 
 
The Key Equations 

The Burr (1942) distribution density 
function (1) is defined as 
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with cumulative density 



M. A. A. COX 
 

171 
 

( )
, for 0.qc

1
F( y ) 1 y

1 y
= − ≥

+
      (2) 

 
This is particularly useful in modeling data that 
does not follow a normal distribution; note that 
the argument (y) is non-negative. The Burr 
distribution density function is frequently used 
to model data that has a slight positive skewness, 
such as for the size of insurance claims. To 
avoid the problem of the argument straying 
outside the region of interest the Heaviside step 
function (3) is employed. 
 

1

for 0, or 0 otherwise

H( y )

 y .

=
≥

         (3) 

 
The expected cost (E, equation 4) is from 
equation 4 in Chou, et al. (2000). All parameters 
are defined in the Appendix and the elements of 
the equation (B, υ1, υ2, L1 and L2) are presented 
in (5), (6) and (7). 
 

5
3 1 2

1 2

a
a L P L P Ba a n hE

h 1 B

αλ λ

λ

+ + ++= +
+

, 

(4) 
 

1 1 h
B h D gn

1 2 12
λ

β
 
 
 

= − + + +
−

, 

(5) 
 

1

2
2

v

v 1

σ
σ δ





=

= +
                      (6) 

 

 for =1, 2.2
i i2 i

A
L v=

Δ
                 (7) 

 
The probabilities associated with Type I errors 
(α ) and Type II errors ( β ) are of key interest. 
The Type I error, or producers risk, is defined in 
terms of the probability of deviation of the 
sample mean outside the upper and lower 
confidence limits ( ) UCL, LCL . It is essential, at  

 
 

this stage, that the Heaviside function be 
associated with the density to correctly restrict 
its range. This was omitted, although tacitly 
assumed, in the original work. 
 

( ) ( )Pr x UCL Pr x LCLα = > + <  

 

( ) ( )Pr y M kS Pr y M kSα = > + + < −  
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( ) ( )
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α
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(8) 
 
The Type II error, or consumer’s risk, is defined 
in terms of the probability of deviation of the 
sample mean outside the upper and lower 
confidence limits ( ) UCL, LCL  when the 

deviation from the target mean (δ) is known. 
 

( )Pr LCL x UCL| Tβ μ δσ= ≤ ≤ = +  

 

( )Pr M kS S n y M kS S nβ δ δ= − − ≤ ≤ + −
 

( ) ( )
( ) ( )

F M kS S n H M kS S n

F M kS S n H M kS S n

β δ δ

δ δ

= + − + −

− − − − −
(9) 

 
Equations (8) and (9) may be combined 

with that for the cumulative density (2) into a 
more appropriate form than those previously 
presented (Chou, et al., 2000). A four-step 
procedure was developed to derive the 
parameters from equations (4), (8) and (9) and 
the steps described will be used consistently 
throughout this article; the numerical 
methodology will be also be discussed. Because 
these procedures are eliminated from the final 
approach, they are included as an indication of 
the massive computational effort associated with 
the problem; they are also necessary to indicate 
the reliability of the approximate methods 
employed. 
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Methodology 
Step 1 

Previous data is used to evaluate the 
skewness and kurtosis coefficients of the 
underlying process and these are then used to 
estimate the parameters { }qc,  of the 
corresponding Burr distribution. The moments 
of the distribution are estimated by numerical 
integration. 
 
Step 2 

Burr parameters { }qc,  are used to 

estimate the mean and standard deviation { }SM ,  
of the distribution by numerical integration and 
equation 8 is then employed to estimate k  for 
given α . 
 
Step 3 

The available estimates { }kSM ,,  and 

equation (9) are used to estimate n  (for 
consumer’s risk β ), and absolute mean shift 

( )δ  for an out of control process. 

 
Step 4 

The parameters, plus the estimates {k, 
n} and the minimization of equation (4) are used 
to estimate h.  
 
This completes the procedure; the three 
parameters { }nkh ,,  for an ideal x  control chart 
are now available. It is now appropriate to 
address the lengthy numerical procedures 
required to complete these steps. 
 
Numerical Method 
Step 1 

The Powell (1970) hybrid method is 
used to simultaneously solve the equations for 
skewness and kurtosis. For each evaluation, four 
calls to a numerical integration procedure 
(Piessensl, 1983) are required to evaluate the 
first four moments, providing two function 
estimates. 
 
Step 2 

A procedure is required to find the zero 
of a continuous function introduced in Step 2; 
the method of Bus and Dekker (1975) is 

employed. This procedure incorporates 
interpolation, extrapolation plus bisection. 
 
Step 3 

To find the zero of a continuous 
function employed in Step 3; the method of Bus 
and Dekker (1975) is employed. 
 
Step 4 

Applying simple algebra this step 
reduces to finding the roots of a quartic 
equation. Prior to substituting B defined in 
equation (5), it is written as a quadratic function 
of h: 

2
0 1 2B c c h c h= + +  
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The expected cost (4) may also be represented as 
a function of h. 
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The numerator coefficients are 
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and the denominator coefficients are 
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To minimize the cost, a turning point is required. 
This corresponds to a zero in the numerator of 
the derivative of E  (11) with respect to h . This 
derivative polynomial is denoted by dE.  
 

2 3 4
40 1 2 3dE dE dE h dE h dE h dE h= + + + +  

(14) 
 
with coefficients 
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      (15) 

 
A variant of Laguerre’s method may be 
employed (Smith, 1967) to solve this quartic 
equation. It should be noted that, as h  increases 
from the minimum, the gradient is relatively 
small. Thus, a large increase in h  will lead to 
only a small increase in E . This completes the 
outline of the numerical approach. For given 
{ }βα ,  the procedure may be repeated and Table 
1 from the original work (Chou, et al., 2000) 
reproduced. 
 
A Numerical Example for an Exact Solution 

To illustrate the numerical methods 
procedure, consider an example employed by 
Chou, et al. (2000), which corresponds to the 
first row of Table 1 (Alexander, et al., 1995). 
 
Step 1 

The first four moments of a given data 
set, from the process for which an x  chart is 
required, are calculated. The required measures 
are: 0.4836skewness =  and kurtosis 3.3801.=  
Resulting in 3.0003=c  and 5.9989=q . The 

exact measures for 3=c  and 6=q  correspond 
to a skewness of 0.48364038 and a kurtosis of 
3.38009234. 
 
Step 2 

Calculating the moments corresponding 
to { }qc,  results in: .51090=M  and .20220=S . 

Selecting the Type I error probability as 
.0050=α  gives 3.0299.k =  

 
Step 3 

The Type II error probability and the 
magnitude of the mean shift for an out of control 
process are now selected as .081140=β  and 

1=δ , where power1−=β . These result in 

18.9998.n =  Because n is the sample size it is 
adjusted to 19; in general estimates of n are 
rounded up to the nearest integer. 
 
Step 4 

All additional parameters (see Table 1), 
reflecting details of the cost and frequency of the 
measurement process, are now required. These 
result in numerical values (see Table 2) where 
the estimates are obtained from the equations 
described. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Input Coefficients for the Numerical 
Example 

Coefficient Description 

11 =a  fixed cost of taking a sample 

102 .a =  variable cost of sampling 

503 =a  cost of eliminating an 
assignable cause 

505 =a  cost of investigating a false 
alarm 

5=A  cost to rework or scrap a 
faulty item 

2=D  
time required to investigate 
an out-of-control signal 

01.0=g  time to measure and record 
the quantity of interest 

3.0=Δ  tolerance 

25.0=λ  frequency of process shifts 

1.0=σ  process standard deviation, 
from past data 

100=P  production rate 
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For the final parameter (Step 4) the root of 
interest (14) is 1.1523h = . These estimates 
agree with those previously reported (Chou, et 
al., 2000) and result in an expected cost: 

88.7779.E =  
A great deal of computer code was 

required to reach this point. To encourage the 
adoption of this approach approximate methods 
for each step of the procedure are proposed. 
These eliminate the computational complexity; 
however this results in the introduction of 
additional notation and the consideration of 
certain special cases. 
 
Approximate Methods 

The computational complexity of the 
numerical methods described may discourage 
some users. In view of this, a series of 
approximations are proposed. Although care 
must be taken in creating the various terms 
required it is not necessary to employ the 
complex numerical procedures utilized 
previously. 
 
Step 1 

The proposed method is entirely 
different from that previously employed. The tail 

areas { } 1 2,β β  associated with the upper/lower 

cut-off { } U Ly , y  for the raw data are selected. 

The values adopted would be { }0.75, 0.25  for 

quartiles. Employing (2) with some 
manipulation results in a function that should 
vanish for c . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) ( )
( )
( )
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−
−= + − +  

(16) 
 
To obtain the zero the Newton-Raphson method, 
which requires evaluation of the first derivative 
of Z , may be employed. 
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Then successive estimates { }nccc ,...,, 10  for c  are 
then obtained 
 

( )
( )

i
ii 1

i

Z c
c c

Z c+ = −
′

                  (18) 

 
based on an initial estimate for 0c , for example, 
2.  

The simplest choice for the exponent in 
equation 16 is 2. If 121 =+ ββ  is set – which is a 
reasonable choice for the tail areas – then the 
corresponding estimates are 
 

6180.0
2

51
1 =+−=β  

and 

3820.0
2

51
12 =+−−=β . 

 

Table 2: Calculated Coefficients for the Numerical Example 

Source Equation 

10 6 7 12 13 15 

2.19 0c =  0.01 1v =  0.5555 1L = 4.7378 0n =  1.5475 1d =  7.3317 0dE =  

0.58831c =  0.1414 2v =  1.1111 2L =  129.3569 1n = 0.1471 2d =  1.3936 1dE =  

0.0208 2c =    16.3569 2n =  0.0052 3d =  -6.2191 2dE =  

   0.5787 3n =   -0.4441 3dE =  

     0.00008 4dE =
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This leads to associated simplifications in (17). 
Recognizing that the expected value of Ncy  
takes the form 
 

( )
( )∏

=
−

=
N

i

Nc

iq

!N
y

1

ε  for qN < . 

 
(Note that the above expression may be proved 
inductively employing the following result: 

( )
Nq

q
y
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−
=


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
 +1ε  for qN < .) In particular for 

1=N , ( )
1

1

−
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q
ycε  ( ) 




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


+= 1

1
cy

q
ε

, thus using c  

and the raw data ( )( )cyε  the parameter q  may be 
immediately estimated. Alternately employing 
the median ( )My  for the sample  
 

( )c
My

q
+

=
1ln

)2ln(
 

 
the parameter q  may again be immediately 
estimated. 
 
Step 2 

The program employed for Step 1 was 
used to generate 5,041 examples of the mean 
and standard deviation for given c  and q  

( )20,...,75.2,5.2:,20,...,75.2,5.2: qc . This data was 
used to train a neural network (Goodman, 2001) 
to provide estimates {M, S}. A simple topology 
was employed with 2 inputs, 2 outputs and a 
hidden layer of width 2. The inputs are cx =1  

and qx =2  and the transfer functions are 

( ) xx =0φ  and ( ) ( )x

x

e

e
x −

−

+
−=

12

1
1φ . The activation 

level of the neurons in the hidden layer is 

4,3
2

1
1 =










+= 

=

jaxux
i

ijijj φ  and the activation 

of the output neurons is 

6,5
4

3
0 =










+= 

=

jaxux
i

ijijj φ . Which result in 

the required outputs: 5xM =  and 6xS = . In this 
case the fitted values from the software 

(Goodman, 2001) are: -1.06871,3u =  

0.00297517,4u =  0.3449995u =  and 

0.254552.6u =  The weights representing the 

links between neurons are: 0.120744,13a =  

0.185339,23a =  -0.22152,14a =  

-0.00139201,24a =  -0.544563,35a =  

-0.157016,36a =  -1.5558645a = and 

0.252306.46a =  

Alternately the integrals may be 
evaluated numerically employing Simpson’s 
rule or other quadrature formulas. Given the 
mean and standard deviation two cases must be 
considered when estimating k . 
 
Case 1: M – kS > 0 

In this case both tails of equation (8) 
contribute, a Taylor expansion of ( )αln  as a 

function of k , because k  is small, is generated. 
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It is necessary to ensure that the expected 
criterion, 0>− kSM , is satisfied. 
 
Case 2: M – kS ≤ 0 

In this case only one tail of equation (8) 
contributes, a Maclaurin expansion of ( )αln  as a 

function of k  about z  is generated. 
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Because 
S

M
k ≥ , z  is chosen to satisfy this 

criterion, typically ( )α404.1 −





=

S

M
z . It is 

necessary to ensure that the expected criterion, 
0≤− kSM , is satisfied. 

 
Step 3 

Two cases arise when evaluating n . 
 

Case 1: 
δS

kSM
n

+≤  

In this case only one tail of equation (9) 
contributes, a Maclaurin expansion of β  as a 

function of n , about z  is generated. 
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Where the floor function returns the largest 

previous integer. Because 
δS

kSM
n

+≤ , z  is 

chosen to satisfy this criterion, typically 

( )β
δ

9.19.0 −





 +=

S

kSM
z . It is necessary to 

ensure that the expected criterion, 
δS

kSM
n

+≤ , 

is satisfied. 
 

Case 2: 
δS

kSM
n

−≤  

This case is extremely complex 
requiring examination of the two-tail situation 
for (9). It is unlikely to be satisfied because 
 

2







 −≤

δS

kSM
n  

 
for the parameters generally considered, as is the 
case here, leads to n = 0. Thus this case is not 
considered. 

Step 4 
It is straightforward to employ Step 4 

from the numerical methods, however, if 
desired, a slight variant on the procedure may be 
adopted. Noticing that 04 ≈dE , the problem 
reduces to solving a cubic equation. To derive a 
solution the following coefficients (recall 
equation 14) are useful: 
 

2
1 3 2

3 2
3

3dE dE dE
p

3dE
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3 2
2 1 2 3 0 3

3 3
3

2dE 9dE dE dE 27dE dE
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1
32 3

3 3 3
3

q q p
u

2 2 3
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1
32 3

3 3 3
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q q p
v

2 2 3

             
= − − +  

 
result in: 

2
3 3

3

dE
h u v

3dE
= + −  

 
A Numerical Example for the Approximate 
Solution 

The approximation procedure outlined 
may be used to reproduce the results presented 
in Table 1 of Chou, et al. (2000); bearing in 
mind that in this case the parameters and 
moments of the Burr distribution are already 
available. Thus, 3,c =  6,q =  0.5109,M =  

0.2022,S =  skewness 0.4836=  and 

kurtosis 3.3768.= . 
The values presented in Table 3 are in 

exact agreement to the precision given with 
those earlier reported (Chou, et al., 2000). This 
suggests that the numerical approximations 
described are reliable and may safely replace the 
previously described complex computational 
approach. This leaves the accuracy of two of the 
numerical procedures undemonstrated. To check  
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the estimation of c  and q , 1,000 
observations from a Burr distribution 
( )6 ,3 == qc  were produced. Initially uniform 

random numbers in the interval [ ]0, 1  were 

generated, and then transformed to { }iy  using 
equation (2). The quartiles for this data were 

( )0.375, 0.655  which should be compared 

with the exact values ( )0.366, 0.638 . 

Employing the measured values with tail values 

( )0.25, 0.75 , the iterative scheme (equation 18) 

results in: 2.000,0c =  2.497,1c =  

2.843,2c =  2.982,3c =  3.000.4c =  

Successive estimates converge to the expected 

result for c, then 1
1

1000

1

+=


=i

c
iy

q  because 

( )cy
1

q 1
ε =

−
, which results in 5.68, a 

reasonable estimate for q. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alternately employing the median for 
the sample, the value (yM) = 0.504, which is 
close to the exact value 0.497. This results in 

986.5=q , again very close to the true value. A 
detailed analysis would be necessary to assess 
which of the methods to estimate q  is superior 
and whether selection depends on the parameters 
of the underlying distribution. 

The final procedure requiring 
verification is to use a relatively small neural 
network to estimate the mean and standard 
deviation. Using the same test example, the 
inputs are 31x c= =  and 62x q.= =  These 

generate the following potentials in the hidden 
layer 0.10003x =  and -0.16154x = . which 

result in the output 0.54185x M= =  and 

0.18816x S.= =  

The results exhibit reasonable 
agreement with the exact values (M = 0.5109 
and S = 0.2022), if improved accuracy is 
desirable a larger network could be developed or 
a quadrature procedure might be employed to 
evaluate the required moments. 
 

Table 3: Results of the Numerical Approximation 

α Power (1−β) n h k Cost 

0.00500 0.918860 19 1.15 3.03 88.78 

0.00500 0.939008 20 1.19 3.03 88.80 

0.00500 0.955365 21 1.23 3.03 88.84 

0.00500 0.968362 22 1.26 3.03 88.89 

0.00500 0.978435 23 1.30 3.03 88.96 

0.00500 0.986008 24 1.33 3.03 89.03 

0.00500 0.991489 25 1.35 3.03 89.12 

0.00455 0.993538 26 1.37 3.08 89.21 

0.00406 0.994851 27 1.39 3.14 89.30 

0.00362 0.995924 28 1.41 3.20 89.39 

0.00322 0.996797 29 1.43 3.26 89.48 

0.00282 0.997296 30 1.45 3.33 89.57 
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Conclusion 
To help popularize the economic design of x  
control charts, this study employed the Burr 
distribution for non-normal data. Slight 
shortcomings in an earlier work (Chou, et al., 
2000) were corrected and a series of 
approximations were used to reduce 
computational complexity. It is hoped that the 
reduction of the computational effort involved in 
the approach will encourage wider adoption. 
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Appendix: Notation and Definitions 

1a : fixed cost of taking a sample 

2a : variable cost of sampling 

3a : cost of eliminating an assignable cause 

5a : cost of investigating a false alarm 

ija : weights in neural networks 

A: cost to rework or scrap a faulty item 

B : sub-equation of the expected cost 

c : first parameter of the Burr distribution 

{ }210 ,, ccc : coefficients for B  as a function of h  

{ }nccc ,...,, 10 : successive numerical estimates for c  

{ }210 ,, ddd : coefficients for the denominator of E  as a function of h  

 



M. A. A. COX 
 

179 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix (continued): Notation and Definitions 

dE : the numerator of the derivative of E  

{ }43210 ,,,, dEdEdEdEdE : coefficients for dE  as a function of h  

D : time required to investigate an out-of-control signal 

E : expected cost 

f : density function of the Burr distribution 

F : cumulative density function of the Burr distribution 

g : time to measure and record the quantity of interest 

h : 
parameter of the x  control chart, interval between successive 
subgroups 

H : Heaviside step function 

k : parameter of the x  control chart, control limits 

{ }21 , LL : sub-equation of the expected cost 

LCL : lower control limit 

M : the mean of the fitted Burr distribution 

n : parameter of the x  control chart, sample size 

{ }3210 ,,, nnnn : coefficients for the numerator of E  as a function of h  

P : production rate 

3p : factor in the cubic solution 

q : second parameter of the Burr distribution 

3q : factor in the cubic solution 

S : the standard deviation of the fitted Burr distribution 

T : target mean 
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Appendix (continued): Notation and Definitions 

3u : factor in the cubic solution 

iu : potentials for the neural networks 

UCL : upper control limit 

{ }21 , vv : sub-equation of the expected cost 

3v : factor in the cubic solution 

x : random variable 

ix : inputs/outputs for the neural networks 

y , { }iy : Burr random variables 

My : the median of the raw data 

{ }LU yy , : upper/lower cut offs of the raw data corresponding to { }21, ββ  

z : point about which the Maclaurin expansion is performed 

ZZ ′, : the function (and its derivative) with a zero at c 

α : probability of a Type I error 

β : probability of a Type II error 

{ }21, ββ : tail areas associated with estimating c 

δ : magnitude of the mean shift for an out of control process 

ε : expectation (average) over the observed data 

Δ : tolerance 

{ }10 ,φφ : decision function for the neural networks 

λ : frequency of process shifts 

μ : process mean 

σ : process standard deviation (from past data) 

 


	Journal of Modern Applied Statistical Methods
	5-1-2013

	An Approximate Approach to the Economic Design of x̅ Charts By Considering the Cost of Quality
	M. A. A. Cox
	Recommended Citation


	Microsoft Word - 19_1354 - Cox FINAL 12(1)

