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Parameter Estimation of a Class of Hidden Markov Model with Diagnostics 
 

E. B. Nkemnole O. Abass R. A. Kasumu 
University of Lagos, 

Nigeria, Africa 
 

 
A stochastic volatility (SV) problem is formulated as a state space form of a Hidden Markov model 
(HMM). The SV model assumes that the distribution of asset returns conditional on the latent volatility is 
normal. This article analyzes the SV model with the student-t distribution and the generalized error 
distribution (GED) and compares these distributions with a mixture of normal distributions from Kim and 
Stoffer (2008). A Sequential Monte Carlo with Expectation Maximization (SMCEM) algorithm technique 
was used to estimate parameters for the extended volatility model; the Akaike Information Criteria (AIC) 
and forecast statistics were calculated to compare distribution fit. Distribution performance was assessed 
using simulation study and real data. Results show that, although comparable to the normal mixture SV 
model, the Student-t and GED were empirically more successful. 
 
Key words: Hidden Markov Model, sequential Monte Carlo, expectation maximization, Student-t 

distribution, state-space model, stochastic volatility, likelihood, stock exchange. 
 
 

Introduction 
The Hidden Markov Model (HMM), originally 
introduced in 1957, (MacDonald & Zucchini, 
1997, Cappe, et al., 2005) has many applications 
in fields such as signal processing, medicine, 
engineering and management. The HMM is a 
doubly stochastic process, 0),( ≥ttt YX , with an 

underlying stochastic process, tX , that is not 

directly observable but can be observed through 
another process, tY , that produces a sequence of 

independent random observations.HMM are 
equivalently defined via a functional 
representation known as a state space model. 
The state space model (Doucet & Johansen, 
2009) of a HMM is represented by two 
equations:    state (1)    and    observation (2)   as 
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ttt wxfx += − )( 1                      (1) 

 

ttt vxgy += )(                        (2) 

 
where f  and g  are linear or nonlinear function 

sand tw and tv  are white noise processes. Models 

represented by (1) and (2) are referred to as state 
space models and include a class of HMMs with 
non-linear Gaussian state-space model such as 
the stochastic volatility (SV) model. The SV 
model (Taylor, 1982), accounts for time-varying 
and persistent volatility and the leptokurtosis in 
financial return series. The SV model has 
become popular for explaining the behavior of 
financial variables, such as stock prices and 
exchange rates (Durbin & Koopman, 2000; 
Doucet & Tadic, 2003) and its popularity has 
resulted in several different proposed approaches 
for estimating model parameters. Though 
theoretically attractive, the SV model is 
empirically challenging due to the fact that the 
unobserved volatility process enters the model in 
a non-linear fashion which leads to the 
likelihood function depending upon high-
dimensional integrals. 

Estimation procedures, such as the 
Generalized    Method    of    Moments   (GMM) 
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(Mellino & Turnbull, 1990) and the Efficient 
Method of Moments (EMM) (Gallant, et al., 
1997) have been proposed for the SV model. 
Other proposed estimation procedures include 
the method of moments and the quasi maximum 
likelihood approach methodology to 
approximate the SV model to a linear Gaussian 
model (Harvey, et al, 1994; Ruiz, 1994).  

Durbin and Koopman (2000) used the 
idea of linearization of general state-space 
models and matched terms in the likelihood of a 
linearized model to those of a linear Gaussian 
model. Several studies (Jacquier, et al., 1994; 
Chib, et al., 2002; Kim, et al., 1998) adopted the 
Gibbs sampling scheme, and Shephard and Pitt 
(1997) applied the Metropolis-Hastings scheme 
for the analysis of the SV.Kim and Stoffer 
(2008) showed how the incorporation of the EM 
algorithm and SMC (particle filters and 
smoothers) forms a basic idea to handle the 
parameter estimation problem in the SV model. 
Estimation can be accomplished by applying a 
filtering algorithm. (Kitagawa& Sato, 2001) 
combined particle filtering methods and gradient 
algorithms. This article expands the scope of 
application of SV models, by extending SMC 
techniques with the EM algorithm developed by 
Kim and Stoffer (2008) to estimate SV model 
parameters with the student-t distribution. 

The SV model usually assumes that the 
distribution of asset returns conditional on the 
latent volatility is normal. However, financial 
data often have heavier tails than can be 
captured by the standard SV model: This has led 
to the use of non-normal distributions to better-
model and to deal with the heavy tails 
(Shephard, 1996; Kim, et al., 1998; Bai, et al., 
2003; Sadorsky, 2005; Kim & Stoffer, 2008). 
Liesenfeld and Jung (2000) fit a Student-t 
distribution to the error distribution in the SV 
model using the simulated maximum likelihood 
method developed by Danielsson and Richard 
(1993) and Danielsson (1994). A promising 
distribution that models both skewness and 
kurtosis is the Skewed Student-t (Fernandez & 
Steel, 1998). Hence, it is necessary to determine 
the best-fitted model out of a potentially huge 
class of candidates; it has become pertinent to 
develop efficient model selection criteria. As 
this background illustrates there is an ever-
growing   literature   on   time-varying   financial 

market volatility; it is abound with empirical 
studies in which competing models are 
evaluated and compared on the basis of their 
forecast performance (Andersen, et al., 2005). 
 
Stochastic Volatility (SV) Models 

SV models belong to class of Hidden 
Markov model and account for volatility of data. 
The SV model can be expressed as an 
autoregressive (AR) process: 
 

ttt wxx += −1φ                        (3) 

 

t
t

t v
x

y 





=

2
expβ                   (4) 

where ,tw ~ N( 0 , )τ ,2
0 0 0x ~ N( , )μ σ

tv ~ N(0 ,1) , 0}{ ≥tty  is the log-return on day t, 

and β  is the constant scaling factor so that 

0}{ ≥ttx  represents the log of volatility of ty  

(Taylor, 1982).To ensure stationarity of ty  it is 

assumed that 1¦¦ <φ . Squaring (4) and taking its 
logarithm results in the linear equation 
 

ttt zxy ++= α .                   (5) 

 
Equations (3) and (5) form a version of the SV 
model that can be modified in many ways; 
together they form a linear, non-Gaussian, state-
space model for which (5) is the observation 
equation and (3) is the state equation. 
 
Stochastic Volatility with Heavy-Tailed 
Distribution 

The standard form of the SV modelwas 
shown in equations (3) and (4); in (4) tv  follows 

a normal distribution. Various authors have 
argued that real data may have heavier tails than 
can be captured by the standard SV model. 
 
The Stochastic Volatility Model with Normal 
Mixture  

The observational noise process (Kim & 
Stoffer, 2008) is a mixture of two normal’s with 
unknown parameters given as 
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k t ty x z= +                           (6) 

 
with t t t1 t t0z I z (1 I ) z= + − , t0 0 0z ~ N( m ,R ) , 

t1 1 1z ~ N( m ,R ) , 0m α μπ= − , 

1m (1 )α π μ= + −  and tI ~ Bernuolli ( )π . 

tI is an indicator variable, where π  is an 

unknown mixing probability, that is, 
)(~(1)1( ππ BernuolliIpIp tt −=== . The 

likelihood of },,,,,,,,{ 110 nnn IIyyxx   

is shown in Figure 1 where  
 

.)1(,)1( 01
*

01
* qIqIRIRIR tttttt −+=−+= μ

 
In the SV-normal mixture model defined by (6), 
the vector of the model parameter is denoted 
by },,,,{ 1010 πRRqq . These parameters are 

estimated along with the other parameters, 
},{ τφ  (see Kim & Stoffer, 2008 for details). 

 
Student-t as an Observation Noise 

Equations (3) and (5) are an extension of 
the linearized version of the SV model wherein 
it is assumed that the observational noise 
process, tz  is a student-t distribution. The 

model, first presented in Shumway and Stoffer 
(2006), retains the state equation for the 
volatility as: ttt wxx += −1φ .  

However, the proposed Student-t 
distribution with degrees of freedom, v , for the 

observation error term, tz , effects a change in 

the observation equation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ttt zxy ++= α  

t vz ~ t , t 1, ,n=                   (7) 

 
The distribution of the error term for this 

specification according to Shimada & Tsukuda 
(2005) takes the form 
 

|

t t

t t

v 1
x x2 2

t2

f ( y x )

v 1
y e1 2

e 1
v v 2( v 2 )
2

π

+−−−

=
+ Γ     + − −  Γ 

 

 

(8) 
 
where v represents a parameter of degree of 
freedom and Γ  stands for the Gamma function. 
The likelihood function of 

},,,,,,{ 110 nn yyxxx   is 

 

t t

2

0 0

2
00

2n
t t 1

t 1

v 1
x x2n 2

t2

t 1

f ( X ,Y )

x1 1
exp

22

x x1 1
exp

22

v 1
y e1 2

e 1
v v 2( v 2 )
2

μ
σπσ

ϕ
τπτ

π

−

=

+−−−

=

=

   −  −       
  − × −        

+ Γ    × + − −  Γ 
 

∏

∏

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Likelihood of },,,,,,,,{ 110 nnn IIyyxx   

where * *
t t 1 t 0 t t 1 t 0R I R (1 I )R , I q (1 I )qμ= + − = + −  

 

t t

2 n
I 1 It t 1

n t 1
0 0

2 * 2n2
t 10 t t t0
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t 1 t

t
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Generalized Error Distribution as an 
Observation Noise 

The distribution of the GED according 
to Bao, et al. (2006) takes the form 
 

( )







 +







Γ





 −−−
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v

v
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1

1

2
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2

1
exp
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=
−

v

vvψ  

 
The log-likelihood function for the GEDmodel 
is: 

|

                     

                     

vn
t t

t t
t 1

1
1

v

y v1
log f ( y x ) n log v

2

1
nlog nlog

v

nlog 2 .

α
ψ

ψ

=

 + 
 

 − − = −  
 

 − − Γ  
 

−



 

 
The EM Algorithm 

The paramount parameter estimation 
toolto achieve maximum likelihood estimator is 
the EM algorithm and it has been widely applied 
to the cases where the data is considered to be 
incomplete in the sense that it is not fully 
observable. It is comprised of the two following 
steps: 
 
E-step: Compute the expected likelihood,  
 

)|( )(kQ θθ
)y,|)|(log()|( '' θθθθ xfEQ =  

 
M-step: Choose )1( +kθ  the parameter values that 

maximize the function, )|( k)(θθQ  (for details 
see Baum, et al, 1970; Dempster, et al., 1977; 
Rabiner, 1989). 

The E- and M- steps are repeated until some 
stopping criteria is met, such as 

Qn <−+ |ˆˆ| 1n θθ , for some specified Q , 
obtaining suitable initial parameters inclusive. 
An online EM algorithm recently proposed for 
discrete HMM can be extended to more general 
settings, including non-linear non-Gaussian 
state-space models that necessitate the use of 
Sequential Monte Carlo (SMC) filtering 
approximations.  
 
Sequential Monte Carlo Methods (SMC) 

After its introduction in the 1960’s, 
SMC has become an emerging methodology for 
the nonlinear or non-Gaussian state-space 
models. The chief initiative is to represent the 
interested density function )¦( 1:01:0 −− kk yxp  at 

time 1−k  by a set of random samples with 

associated weights, },,1,{ )(
1:0

)(
1:0 Niwx i

k
i
k =−−  

and compute estimates based on these samples 
and associated weights. As the number of 
samples becomes very large, this Monte Carlo 
characterization develops into an equivalent 
representation to the functional description of 
the probability density function (Arulampalam, 
et al., 2002). 

If },,1,{ )(
1:0

)(
1:0 Niwx i

k
i
k =−−  are 

samples and associated weights approximating 
the density function )¦( 1:01:0 −− kk yxp , with 

1
)(

1:1

=
−=

 i

kNi

w , then the density function is 

approximated by 
 

)()¦( )(
11

1

)(
11:01:0

i
kk

N

i

i
kkk xxwyxp −−

=
−−− −≈ δ  

 
where )(xδ  signifies the Dirac delta role. The 

particle approximation N
i

i
k

i
k xw 1

)()( },{ =  is 

transformed into an equally weighted random 
sample from )¦( 1:01:0 −− kk yxp  by sampling, 

with replacement from the discrete distribution 
N
i

i
k

i
k xw 1

)()( },{ = . This procedure, also called 

resampling, produces a new sample with 
uniformly distributed weights so that 

1)( −= Nw i
k . 
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Particle filters and smoothers are SMC 
methods grounded in particle representations 
and are considered generalizations of Kalman 
filters and smoothers for general state-space 
models. The fundamental approach used to 
obtain particles from the desired density is based 
on sequential importance sampling (SIS) and 
resampling. SIS, a Monte Carlo method, forms 
the basis for most particle filtering methods. To 
approximate the conditional density of tx  given 

previous states, 1−tx , and past and present data, 

),|(, 1 tttt yxxpy − , SIS introduces a 

importance sampling density, ),|( 1 ttt yxxq −  

where it is easier to sample from 
),|( 1 ttt yxx −π  than ),|( 1 ttt yxxp −  (Doucet, 

et al., 2001). 
 
Particle Filter Algorithm  

If at time t  weighted particles 

},{ )()( i
t

i
t wf  drawn from )¦( tt yxf , )(i

tf  is a 

set of particle filter with associated weight )(i
tw , 

then this is considered an empirical 
approximation for the density comprised of 

point masses, 
=

−≈
M

i

i
tt

i
ttt fxwyxf

1

)()( )()¦( δ . 

Kitagawa & Sato (2001) and Kitagawa (1996) 
provide an algorithm for filtering in general state 
space model. This is a Monte Carlo filtering for 
general state-space models: 
 
1. For Ni ,,1 = , generate a random number 

)(~ 0
)(

0 xpf i  

 
2. Repeat the following steps for Tt ,,1 = . 

a. For Ni ,,1 = , generate a random 

number )(~)( wqw i
t . 

b. For  Ni ,,1 = , compute 

),( )()(
1

)( i
t

i
t

i
t wfFp −=  

c. For  Ni ,,1 = , compute 

)¦( )()( i
tt

i
t pypw =  

d. Generate Nif i
t ,1,)( =  by 

resampling )()( ,, N
t

i
t pp   

The Monte Carlo filter returns 
( i )

t{ f ,i 1, ,N ,t 1, ,m }= =   so that 

¦
N

( i )
t t t t

i 1

1
( x f ) f ( x Y )

N
δ

=

− ≈ . 

 
Particle Smoothing Algorithm 

If M
i

i
t

i
t ws 1

)()( },{ = is a set of particle 

smoothers and associated weights approximating 
the density function )|( nt Yxf , then the density 

function is approximated by: 
 


=

−≈
M

j

i
tt

i
tnt sxwYxf

1

)()( ).()|( δ  

 
The problem with smoothed estimates is 
degeneracy. Godsill, et al. (2004) suggested a 
new smoothing method (particle smoother using 
backwards simulation). The method assumes 
that filtering has already been performed, thus, 

the particles and associated weights, M
i

i
tf 1

)( }{ = , 
M
i

i
tw 1

)( }{ =  can approximate the filtering density, 

 

)|( tt Yxf , by 




=

−
=

N

i

i
t

i
tt

i
t

w

fxw

1

)(

)()( )(δ
. 

 
The algorithm from Godsill, et al. (2004) 
supposes that weighted particles 

},,2,1;,{ )()( Miwf i
t

i
t =  are available for 

nt ,,2,1 = . The algorithm for 

Mi ,,2,1 =  is: 
 

1. Choose )()( j
n

i
n fs =  with probability )( j

nw  

 
2. For 1−n  to1 

a. Calculate )|( )()(
1

)()(
1|

j
t

i
t

j
t

j
tt fsfww ++ ∝  

for each j . 

b. Choose )()( j
t

i
t fs =  with probability 

)(
1|

j
ttw + . 
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3. ),,( )()(
1

)(
:1

i
n

ii
n sss =

 
is an approximate 

realization from )|( nn YXp . 

 
Sequential Monte Carlo Expectation 
Maximization (SMCEM) Algorithm Analysis 
Parameter Estimation 

The SMCEM estimation procedure 
consists of three main steps: filtering, smoothing 
and estimation. Parameter estimation for the 
Student-t and GED SV model were considered. 
A basic approach for the Student-t SV model, 
equation (7), is to apply the EM algorithm; with 
the output of filtering and a smoothing step an 
approximate expected likelihood is calculated.  
 
Filtering Step 

The algorithm for the filtering and 
smoothing steps shows a slight modification of 
Godsill, et al. (2004) and Kim and Stoffer 
(2008). M  samples from )|,( tt Yxf  for each t  

were obtained as: 
 

1. Generate ),(~ 2
00

)(
0 σμNf i  

 
2. For nt ,,1=  

a. Generate a random number 

MjNw i
t ,,1),,0(~)( =τ  

 

b. Compute )()(
1

)( i
t

i
t

i
t wfp += −φ  

 
c. Compute 

2

1
2

2)()(

2
1),|(

+
−−−









−

+∝=

v
x

t
x

i
tt

i
t v

ey
epypw

tt

 

d. Generate )(i
tf  by resampling with 

weights, )( j
tw  

 
Smoothing Step 

In the smoothing step, particle smoothers 
that are needed to acquire the expected 
likelihood in the expectation step of the EM 
algorithm were obtained. Suppose that equally 

weighted particles Mif i
t ,,1},{ )( =  from 

)|,( tt Yxf  are available for nt ,,1 = , from 

the filtering step. 
 

1. Choose ][][ )()( j
n

i
n fs =  with probability 

M

1
 

 
2. For 01 ton − calculate 
 

| |

( j )
t 1 t 1

( i ) ( j ) 2
( i ) ( i ) ( j ) t 1 t
t t 1 t 1 t

v 1
s s 22

t2

( s f )
w f ( s f ) exp

2

v 1
y e1 2

exp 1
v v 2( v 2 )
2

ϕ
τ

π

+ +

+
+ +

+−
−−

 −∝ ∝ − 
 

+ Γ      +  −−  Γ

 

 
for each j  

 

a. Choose  ][][ )()( j
t

i
t fs =  with probability 

j
ttw 1| + . 

 

3. )},,{()( )()(
0

)(
:0

i
n

ii
n sss =  is the random 

sample from )|,,( 0 nn Yxxf   

 
4. Repeat 1-3, for Mi ,,1= and calculate 

M
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t

n i 1
t

s
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M
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M
( i ) n 2
t t

n i 1
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M 1
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Estimation Step 
This step consists of obtaining 

parameter estimates by setting the derivative of 
the expected likelihood, of the complete data 

},,,,,{ 10 nn yyxx   given },,{ 0 nxx  , with 
respect to each parameter to zero and solving for 

,ˆ,ˆ τφ and α̂ . The complete likelihood of 

},,,,,,{ 110 nn yyxxx  is 

 

t t

t t

2
0 0

2
0 0

2n
t t 1
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( y v )n
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( y v2 2
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1 2
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y e
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σ σπ
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This method results in the estimates: 
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When tz  follows the GED, it is not possible to 

represent it as equation (3.2). Hence, for the SV-

GED model, the parameter v , as well as the 

other parameters, and tx  were sampled from 

their full conditional distributions using 
SMCEM techniques. 
 

Methodology 
The proposed method to compare the fit of the 
distributions is illustrated using three simulated 
data sets and daily exchange rates of the 
Nigerian Naira, Ghana Cedi, British Pound and 
Euro compared to the U. S. Dollar, from March 
3, 2009 to March 3, 2011. Figures 1-3 show the 
plots and histograms of data generated from the 
normal mixture, Student-t and GED SV model 
respectively and Tables 1-4 show the results of 
the estimation for the models. 
 
Simulation 1 

Data were generated from the normal 
mixture SV model ttt wxx += −17.0

, 

t t ty 2.75 x v= − + +
 where 

t
w ~ N( 0 ,0.96 ),

t t t
v ~ I N( 2 ,6 ) (1 I )N( 3.5,4 )− + − −  and 

tI ~ Bernoulli(0.5 )  with true parameter set 

),,,,,,( 1010 πτφ RRqq  = (0.7, 0.96, −3.5, −2, 

4, 6, 0.5). The technique based on mixture and 
Student-t SV was applied to this data to examine 
the performance of the proposed model. To 
make the process stationary, 11,000 samples 
were generated and the first 10,000 values were 
discarded. Figures 2a and 2b show the plot and 
histogram for Simulation 1. 
 
Simulation 2 

Data were generated from the Student-t 
SV model with true parameter set ),,,( vατφ  = 

(0.81, 1.45,−3.01, 8). The technique based on 
the mixture and Student-t SV models was 
applied to this data to examine the merit of the 
Student-t idea; the length of the data, }{ ty , was 

1,000. Figures 3a and 3b show the plot and 
histogram for Simulation 2. The second data set 
was used to observe the behavior of the 
estimation procedure when a departure from the 
normal mixture observational error assumption 
exists. 
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Figure2a: Representation of SMCEM 
SequenceSimulated from the Normal Mixture SV Model 
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Figure 2b: Histogram of Final Values of Parameters 
of the Normal Mixture SV Model 
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Figure3a: Representation of SMCEM Sequence 
Simulated from the Student-t SV Model 
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Figure 3b: Histogram of Final Values of the 
Parameters of the Student-t SV Model 
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Figure4a: Representation of SMCEM Sequence 
Simulated from the Normal Mixture SV Model 
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Figure 4b: Histogram of Final Values of Parameters 
of the Normal Mixture SV Model 
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Simulation 3 
Data were generated from the GED SV 

model with true parameter set ),,,( vατφ  = 
(0.9, 1.6, 0.7). Techniques based on mixture and 
the GED SV model were applied to this data to 
examine the merit of the GED idea; the length of 
the data, }{ ty , is 1,000. Figures 4a and 4b show 

the plot and histogram for Simulation 3. 
 

Results 
Using the procedures described [0.9500, 1.0729, 
−0.6794, −3.6794, 4.000, 4.000, 0.5000] were 
selected for the initial parameters for 

),,,,,,( 1010 πτφ RRqq . Table 1 shows final 

estimates with their standard error (in 
parenthesis) for Simulation 1. The final 
estimates, along with their standard deviations 

(in parentheses), were: =φ̂ 0.7568 (0.027826), 

=τ̂ 0.3466 (0.00931), =0q̂ −1.9486 

(0.10989), =1q̂ −3.7620 (0.08690), 

=0R̂ 2.3169 (0.20936), =1R̂ 7.5643 (0.67241), 

=π̂ 0.3854 (0.02635) where the true parameters 
are (0.7, 1.06, −3.5, −2, 4, 6, 0.5). In this 
approach, 01 ˆ)ˆ1(ˆˆˆ qq ππα −+=  = −2.6475; 

)ˆ,ˆ,ˆ( ατφ = (0.7568, 0.3466, −2.6475); based on 
results, the estimation procedure based on the 
normal mixture model works well because that 
the estimates are close to the true parameters.  

Based on the Student-t technique, 
(0.9500, 1.0729, −2.1496) were used as the 
initial values for parameters ),,( ατφ ; the 
process was stopped when the value of relative 
likelihood was less than 0.001. The final 
estimates, along with their standard deviations 

(in parentheses) were: =φ̂ 0.6913 (0.037981), 

=τ̂ 1.0336 (0.14839), α̂ =−2.9009 (0.024501). 
These results show that the model provides good 
estimates despite the fact that the true 
observation noise is not a normal mixture 
distribution.A similar simulation study was 
performed using the data from simulation 2 (see 
Table 2). 

The initial parameter set [0.8214, 
1.3359, −2.7823, −5.7823, 4.000, 4.000, 0.5000] 
was selected for parameters 

),,,,,,( 1010 πτφ RRqq . Table 2 shows the 

results of the parameter estimation procedure 
based on the normal mixture. The final 
estimates, along with their standard deviations 

(in parentheses) were: =φ̂ 0.6547 (0.005272), 

=τ̂ 1.2930 (0.002473), =0q̂ −3.0180 

(0.0.035241), =1q̂ −5.8536 (0.012445), 

=0R̂ 3.3275 (0.15), =1R̂ 5.2663 (0.32564), 

=π̂ 0.4806 (0.004338) where the true 
parameters are (0.81, 1.45, −3.01) for the 
parameters, ˆ ˆˆ( , , )ϕ τ α ; where 

01 ˆ)ˆ1(ˆˆˆ qq ππα −+=  = −4.3808. 

When the data from simulation 2 was 
fitted with the techniques based on the Student-t 
(0.8214, 1.3359, −2.2823) were used as initial 
parameters of ),,( ατφ . At the 11th iteration the 
relative likelihood was less than 0.001 and the 
process was considered converged. The final 
estimates, along with their standard deviations 

were: =φ̂ 0.8383 (0.008552), =τ̂ 1.5357 

(0.12403), α̂ =−3.0912 (0.005302). These 
estimates are similar to the true parameters 
(0.81, 1.45, −3.01), while Normal mixture 

returns (0.6547, 1.2930,−4.3808) as )ˆ,ˆ,ˆ( ατφ . 
The method based on the Student-t SV model 
worked well in both cases. When the estimation 
procedure based on the normal mixture SV 
model was applied, the estimates were distant to 
the true parameter. Conversely, the application 
of the technique based on Student-t model 
indicated a better proximity to the true 
parameters; therefore, extension of the SV 
model by adopting Student-t is meaningful. 

Table 3 shows the results of the 
parameter estimation procedure on technique 
based on the normal mixture SV and GED on 
data generated from the normal mixture model; 
[0.8699, 3.6899, −4.8897, −7.8897, 4.000, 
4.000, 0.5000] were selected for the initial 
parameter for the parameters 

),,,,,,( 1010 πτφ RRqq . The final estimates, 

along with their standard deviations (in 

parentheses) were: =φ̂ 0.9869 (0.0013341), 

=τ̂ 4.1936 (0.51468), =0q̂ −4.3900 
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(0.021891), =1q̂ −6.4554 (0.026309), 

=0R̂ 3.7342 (0.069579), =1R̂ 4.3517 

(0.16268), =π̂ 0.4895 (0.0032833) where the 
true parameters are (0.8, 3.5, −5, −8, 3, 4.1, 0.5). 
In this approach, 

;4010.5ˆ)ˆ1(ˆˆˆ 01 −=−+= qq ππα
 )ˆ,ˆ,ˆ( ατφ  = 

(0.9869, 4.1936, −5.4010). Results show that the 
estimation procedure based on the normal 
mixture model worked well in the sense that the 
estimates are close to the true parameters.  
For the GED technique, (0.8699, 3.6899, 
−4.4365,) were used as the initial values for 
parameters ),,( ατφ . Table 3shows the results 
of the estimation procedure. The process was 
stopped when the value of relative likelihood 
was less than 0.001. The final estimates, along 
with their standard deviations (in parentheses) 

were: =φ̂ 0.8127 (0.0027854), =τ̂ 4.2368 

(0.020652), α̂ =−4.7144 (0.0083309). Results 
show that the GED model  gives  good estimates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

even though the true observation noise is not a 
normal mixture distribution. 

Table 4 shows results of the parameter 
estimation procedure on technique based on the 
normal mixture SV and GED on data generated 
from the GED SV model. The method based on 
the GED model works well in both cases. When 
the estimation procedure based on the normal 
mixture SV model was applied, the estimates 
were far from the true parameters. By contrast, 
the application of the technique based on GED 
model indicated a better proximity to the true 
parameters. (0.9500, 1.3288, 0.6309) were used 
as initial parameters ),,( ατφ . The final 
estimates, along with their standard deviations 

were: φ̂ =0.9749 (0.0026845), τ̂ =2.3496 

(0.2678), α̂ =0.6821 (0.014247). These 
estimates are similar to the true parameters (0.9, 
1.6, 0.7) while the normal mixture returns 
(0.7515, 2.3496, 1.3259732) as ),,( ατφ . Thus, 
the method based on the GED works well in 
both cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Parameter Estimates and Standard Errors (in parenthesis) on Technique Based on Normal Mixture and 
Student-t on Data Generated from Normal Mixture Model 

 

True 
Parameter 

Normal 
Mixture SV 

Student-t SV 
Normal 

Mixture SV 
Student-t SV 

Normal 
Mixture SV 

Student-t SV 

 500=M  1.0=ε  1000=M  01.0=ε  1000=M  001.0=ε  

)(iφ  0.7 
0.7368 

(0.028438) 
0.6976 

(0.01475 ) 
0.8677 

(0.048671) 
0.7308 

(0.049383) 
0.7568 

(0.027826) 
0.6913 

(0.037981) 
)(iτ  1.06 

0.9408 
(0.014796) 

1.3654 
(0.0029492) 

0.1186 
(0.0059242) 

0.7625 
(0.20677) 

0.3466 
(0.00931) 

1.0336 
(0.14839) 

)(
0

iq  −3.5 
-0.9826 

(0.085676) 
 −0.8746 

(0.084237) 
 −1.0486 

(0.10989) 
 

)(
1

iq  -2 
-3.5081 

(0.037916) 
 −3.4744 

(0.00879) 
 −3.7620 

(0.08690) 
 

)(
0

iR  4 
2.2144 

(0.38686) 
 

1.8883 
(0.27135) 

 
2.3169 

(0.20936) 
 

)(
1

iR  6 
7.5758 

(1.0062) 
 

7.9490 
(0.59001) 

 
7.5643 

(0.67241) 
 

)(iπ  0.5 
0.4330 

(0.017748) 
 

0.4267 
(0.014455) 

 
0.3854 

(0.02635) 
 

)(iα  −2.75 −2.0761 
−2.1465 

(0.0038743) 
−1.983935 

−1.6703 
(0.10626) 

−2.094344 
−2.9009 

(0.024501) 
Rel. 
Lik 

 0.0865 0.0250 0.0025 −0.0021 −0.0004 −0.000 
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Table 2: Parameter Estimation on Technique Based on the Normal Mixture and Student-ton Data Generated 
from the Student-t Model 

 
True 

Parameter 

Normal 
Mixture SV 

Student-t SV 
Normal 

Mixture SV 
Student-t SV 

Normal 
Mixture SV 

Student-t SV 

 500=M  1.0=ε  1000=M  01.0=ε  1000=M  001.0=ε  

)(iφ  0.81 
0.6388 

(0.021863) 
0.8439 

(0.005971) 
0.5601 

(0.052847) 
0.8693 

(0.002036) 
0.6547 

(0.005272) 
0.8383 

(0.008552) 

)(iτ  1.45 
1.2585 

(0.029249) 
1.2696 

(0.0029492) 
1.5805 

(0.092768) 
1.4500 

(0.037812) 
1.2930 

(0.002473) 
1.5357 

(0.12403) 
)(

0
iq   −2.8256 

(0.035245) 
 −2.8979 

(0.02815) 
 −3.0180 

(0.035241) 
 

)(
1

iq   −5.7964 
(0.011406) 

 −5.7544 
(0.002826) 

 −5.8536 
(0.012445) 

 

)(
0

iR   
3.8225 

(0.075907) 
 

3.8111 
(0.057768) 

 
3.3275 
(0.15) 

 

)(
1

iR   
4.6134 

(0.14959) 
 

4.2066 
(0.060831) 

 
5.2663 

(0.32564) 
 

)(iπ   
0.4911 

(0.0025628) 
 

0.4911 
(0.001607) 

 
0.4806 

(0.004338) 
 

)(iα  −3.01 −4.28456 
−3.1243 

(0.000596) 
−4.300727 

−3.1645 
(0.005662) 

−4.3808 
−3.0912 

(0.005302) 
Rel. 
Lik 

 0.0643 0.0045 0.0057 0.0042 0.0009 −0.0010 

 
 

Table 3: Parameter Estimation on Technique Based On the Normal Mixture SV and GED on Data Generated 
from the Normal Mixture Model 

 
True 

Parameter 

Normal 
Mixture SV 

GED SV 
Normal 

Mixture SV 
GED SV 

Normal 
Mixture SV 

GED SV 

 500=M  1.0=ε  1000=M   1000=M   

)(iφ  0.8 
0.7875 

(0.0045855) 
0.8485 

(0.0059856) 
0.8425 

(0.0046651) 
0.8788 

(0.0037027) 
0.9869 

(0.0013341) 
0.8127 

(0.0027854) 
)(iτ  3.5 

3.4771 
(0.17068) 

4.0273 
(0.13077) 

2.9591 
(0.17631) 

3.0502 
(0.052579) 

4.1936 
(0.51468) 

4.2368 
(0.020652) 

)(
0

iq  −5 
−5.5322 

(0.0059081) 
 −4.8080 

(0.026411) 
 −4.3900 

(0.021891) 
 

)(
1

iq  −8 
−8.5269 

(0.00932) 
 

v7.9658 
(0.032108) 

 −6.4554 
(0.026309) 

 

)(
0

iR  3 
3.6937 

(0.10267) 
 

3.7054 
(0.081339) 

 
3.7342 

(0.069579) 
 

)(
1

iR  4.1 
4.4847 

(0.16612) 
 

4.1121 
(0.057281) 

 
4.3517 

(0.16268) 
 

)(iπ  0.5 
0.4895 

(0.003056) 
 

0.4930 
(0.0025453) 

 
0.4805 

(0.0032833) 
 

)(iα  −5.55 −6.9980 
−4.3205 

(0.035379) 
−6.3648 

−4.2576 
(0.003807) 

−5.3824 
−4.7144 

(0.0083309) 
Rel. 
Lik 

 0.0248 0.0853 −0.0148 0.0064 −0.0684 0.0007 
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Application to Real Life Financial Data 

The normal mixture, Student-t and GED 
SV model were applied to analyze daily rates on 
the Naira/Dollar, Cedi/Dollar, Pound/Dollar and 
Euro/Dollar exchange rates from March 3, 2009 
to March 3, 2011. Figures 5-8 show the plots of 
the daily exchange rates and log returns of the 
data.Patterns of behavior are evident in the 
second plots in Figures 5-8: the data experience 
a small variance for some periods of time, and 
for other periods they show a large variance. For 
this reason, it cannot be assumed that the data 
have a constant variance. 

Table 6 presents the estimation results 
along with their standard deviations for the 
Student-t, normal mixture and the GED SV 
models. These distributions produce comparable 
maximum likelihood values, indicating an 
acceptable overall fit. The values (ranging from 
0.927 to 0.988) suggest high persistence of the 
volatility of the series indicatingthat volatility 
clustering is observed in all the exchange rates 
return series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Akaike values and the evaluation 
statistics using the all data are shown in Table 7. 
The AIC and the log-likelihood values highlight 
the fact that (GED) Student-t distribution better 
estimates the series than the normal mixture 
distribution for the SV model. In fact, the log-
likelihood function increases, leading to AIC 
criteria of 2.805, 3.4593, 3.9989 and 9.6632 with 
the normal mixture versus (2.7814304) 
2.776433, (3.4223827) 3.391374, (3.9749741) 
3.969968 and (9.6513786) 9.646376 with the 
non-normal densities, for the Naira/Dollar, 
Cedi/Dollar, Pound/Dollar and Euro/Dollar rate 
respectively. The statistics from the volatility 
forecasts (Sadorsky, 2005) are presented. In 
terms of MSE, the Student-t performs better than 
the normal mixture for the Naira/Dollars and the 
Euro/Dollar exchange rate while the opposite is 
true for the Cedi/Dollars and Pound/Dollar 
exchange rate. Generally, the MAE results are 
not different from the MSE results. In terms of 
MAPE, the Student-t SV model is preferred in 
three cases and the GED SV model once.  

Table 4: Parameter Estimation on Technique Based On the Normal Mixture SV and GED on Data Generated 
from the GED Model 

 

True 
Parameter 

Normal 
Mixture SV 

GED SV 
Normal 

Mixture SV 
GED SV 

Normal 
Mixture SV 

GED SV 

 500=M  1.0=ε  1000=M   1000=M   

)(iφ  0.9 
0.9050 

(0.015127) 
0.9770 

(0.0021463) 
0.8871 

(0.026021) 
0.9754 

(0.0025267) 
0.7515 

(0.015215) 
0.9749 

(0.0026845) 

)(iτ  1.6 
0.3136 

(0.01557) 
2.1311 

(0.2265) 
0.4605 

(0.025703) 
2.3108 

(0.26119) 
1.2777 

(0.069801) 
2.3496 

(0.2678) 
)(

0
iq   

0.1491 
(0.08715) 

 −0.3568 
(0.11521) 

 −0.3193 
(0.088286) 

 

)(
1

iq   −2.4081 
(0.1269) 

 −2.6609 
(0.13263) 

 −3.1988 
(0.15449) 

 

)(
0

iR   
2.9473 

(0.2282) 
 

2.5108 
(0.28846) 

 
1.6365 

(0.47054) 
 

)(
1

iR   
7.8467 

(0.84311) 
 

9.4387 
(1.1097) 

 
8.7981 

(1.1994) 
 

)(iπ   
0.4448 

(0.015076) 
 

0.3916 
(0.028448) 

 
0.3496 

(0.041351) 
 

)(iα  0.7 −0.9883 
0.7654 

(0.018455) 
1.2590 

0.7627 
(0.021224) −1.3259732 

0.6821 
(0.014247) 

Rel. 
Lik 

 0.0052 0.0248 −0.0125 0.0057 0.0003 0.0007 
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Table 5: Descriptive Statistics of Daily Returns for the Exchange Rate 

Statistics Naira/Dollar Rate Cedi/Dollar Pound/Dollar Euro/Dollar 

Mean −0.001385 −0.006258 0.020803 0.001676 

Standard 
Deviation 

0.708650 0.536507 0.506541 0.488392 

Skewness −0.074139 0.966923 0.022958 0.434943 

Kurtosis 8.805879 13.11769 4.262290 7.993814 

Jarque-Bera 735.0376 2312.255 34.76827 559.9343 

 
 

Figure5: Naira/Dollar Daily Exchange Rate and Log Returns 
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Figure 6: Cedi/Dollar Exchange Rate and Log Returns 
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Conclusion 
An extension of the observation error in the SV 
model from normal mixture to Student-t and 
GED distributions was presented. A sequential 
Monte-Carlo expectation maximization 
experiment was used to estimate parameters for 
the extended SV model. Functions provided by 
MATLAB enabled techniques based on the 
Student-t and GED SV model to be developed 
along with a strategy for fitting a model that 
combines the EM algorithm and SMC; this 
change to the proposed model allowed for a 
more robust fit, providing a new tool to explore 
the tail fit. The Student-t and GED SV model 
was compared with the normal mixture. The EM 
algorithm makes it possible to obtain maximum 
likelihood        estimators.      The        estimation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm was completed by applying the 
Godsill, et al. (2004) particle smoothing 
algorithm to the SV model with (3) and (5) as 
the observation and state equations. The 
outcome of the simulation and real data analyses 
confirm the viability of the proposed method. 
Results show that the proposed estimation 
algorithm yields acceptable results when the 
normal assumption is violated as well as when it 
holds, thus widening the range of application of 
the SV model.Statistics were calculated to 
compare the fit of distributions. Results, based 
on data from the Naira/Dollar, Cedi/Dollar, 
Pound/Dollar and Euro/Dollar exchange rates, 
reveal that the Student-t is comparable to the 
normal mixture SV model but is empirically 
more successful. 

Figure 7: Euro/Dollar Daily Exchange Rate and Log Returns 
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Figure 8: Pound/Dollar Daily Exchange Rate and Log Returns 
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Table 6a: Estimation Results - Distribution Comparison 

 Naira/Dollar Cedi/Dollar 

 
Normal 

Mixture SV 
(SD) 

Student-t SV 
(SD) 

GED SV 
(SD) 

Normal 
Mixture SV 

(SD) 

Student-t SV 
(SD) 

GED SV 
(SD) 

)(iφ  
0.9759 

(0.0041766) 
0.9769 

(0.0029595) 
0.9684 

(0.015815) 
0.983 

(0.0049939) 
0.9887 

(0.00078342) 
0.9741 

(0.01001) 

)(iτ  
0.0988 

(0.019774) 
0.1300 

(0.16604) 
0.3227 

(0.030638) 
0.0902 

(0.033484) 
0.0854 

(0.0057923) 
0.09831 

(0.048961) 

)(
0

iq  
3.0673 

(0.043267) 
  

3.4686 
(0.015039) 

  

)(
1

iq  
1.6633 

(0.65851) 
  

0.9826 
(0.22583) 

  

)(
0

iR  0.6954 
(0.11387) 

  
0.1865 

(0.015231) 
  

)(
1

iR  
1.9713 

(0.88689) 
  

2.3618 
(0.10685) 

  

)(iπ  
0.0546 

(0.017691) 
  

0.0705 
(0.006188) 

  

)(iα  −2.0731 
−2.1245 
(0.5369) 

−2.8836 
(0.35001) 

−4.28356 
−3.2243 

(0.0019277) 
−4.9834 

(0.0022972) 

 

Pound/Dollar Euro/Dollar 

Normal 
Mixture SV 

(SD) 

Student-t SV 
(SD) 

GED SV 
(SD) 

Normal 
Mixture SV 

(SD) 

Student-t SV 
(SD) 

GED SV 
(SD) 

)(iφ  
0.9895 

(0.0013354) 
0.9754 

(0.0025267) 
0.9697 

(0.0084966) 
0.9579 

(0.0090241) 
0.9113 

(0.022502) 
0.9763 

(0.0021063) 

)(iτ  
0.7114 

(0.36943) 
0.7627 

(0.26119) 
0.9018 

(0.183815) 
0.4170 

(0.24553) 
0.4731 

(0.45638) 
0.7258 

(0.361172) 
)(

0
iq  

3.3388 
(0.022015) 

  −1.9638 
(0.21412) 

  

)(
1

iq  
0.4351 

(0.023938) 
  −4.3710 

(0.54791) 
  

)(
0

iR  0.7835 
(0.056033) 

  
4.1677 

(1.1257) 
  

)(
1

iR  
4.4129 

(0.14603) 
  

8.1096 
(0.4471) 

  

)(iπ  
0.4941 

(0.0028666) 
  

0.4404 
(0.03083) 

  

)(iα  −4.28356 
2.3108 

(0.021224) 
1.9588 

0.0082487 −4.28356 
−2.2692 

(0.17681) 
−3.5033 

(0.058033) 
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