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Bayesian Inference of Pair-Copula Constriction for Multivariate Dependency 
Modeling of Iran’s Macroeconomic Variables 

 
M. R. Zadkarami O. Chatrabgoun 

ShahidChamran University, 
Ahvaz, Iran 

 
 
Bayesian inference of pair-copula constriction (PCC) is used for multivariate dependency modeling of 
Iran’s macroeconomics variables: oil revenue, economic growth, total consumption and investment. 
These constructions are based on bivariate t-copulas as building blocks and can model the nature of 
extreme events in bivariate margins individually. The model parameter was estimated based on Markov 
chain Monte Carlo (MCMC) methods. A MCMC algorithm reveals unconditional as well as conditional 
independence in Iran’s macroeconomic variables, which can simplify resulting PCC’s for these data. 
 
Key words: Monte Carlo Markov Chain Method, pair-copula construction, vine. 
 
 

Introduction 
Multivariate data usually exhibit a complex 
pattern of dependency. Methods such as 
graphical model and Bayesian networks are 
available to investigate dependency structures in 
multivariate data. One increasingly popular 
approach for constructing high dimensional 
dependency is based on copulas. Copulas are 
multivariate distribution functions with uniform 
margins which allow representation of joint 
distribution functions as a function of marginal 
distributions and a copula (Sklar, 1959). Copulas 
are used in various fields of applied sciences, but 
are most widely used in economics, finance and 
risk management (Embrechts, et al., 2003; 
Patton, 2004; Nolte, 2008). The class of copulas 
for bivariate data is rich in comparison to the 
one for ݀−dimensional data with ݀	 ≥ 	3. Until 
recently,    Gaussian   and    t-copulas   or,   more 
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generally, elliptical copulas, have been used for 
multivariate data (Frahm, et al., 2003). The 
generalization of bivariate copulas to 
multivariate copulas of dimensions larger than 2 
is not straightforward, however there is one 
simple generalization for Archimedean copulas 
known as exchangeable Archimedean copulas 
(Frey & McNeil, 2003). It should be noted that 
not all bivariate Archimedean copulas have a 
corresponding multivariate exchangeable 
version (Nelsen, 1999).  

Approaches for constructing 
multivariate Archimedean copulas of more than 
2 have dimensions been developed by Joe 
(1997), Embrechts, et al. (2003), Whelan, 
(2004), McNeil, et al. (2006), Savu and Trede 
(2006) and McNeil (2007). Joe (1996) and 
Bedford and Cooke (2001, 2002) constructed 
flexible higher-dimensional copulas by using 
only bivariate copulas as building blocks, which 
they termed vines. Kurowicka and Cooke (2006) 
discussed Gaussian vine constructions in details. 
Aas, et al. (2007) first recognized the general 
construction principle for deriving multivariate 
copulas; they used more general bivariate 
copulas than the Gaussian copula and applied 
these construction methods to financial risk data 
using more appropriate pair-copulas such as the 
bivariate t Clayton and Gumbel copulas. 
According to recent empirical investigations of 
Berg and Aas (2007) and Fischer, et al. (2007), 
the vine constructions based on bivariate t-
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copulas provide a better fit to multivariate 
financial data.  

Estimating copula parameters is 
generally based on classical maximum 
likelihood (ML) and its variations. The most 
common approach is semi-parametric where the 
margins are fitted empirically and the 
dependence parameters are fitted by ML. The 
asymptotic properties of these semi-parametric 
estimates have been rigorously investigated by 
Genest, et al. (1995); however, confidence 
intervals for dependence parameters are difficult 
to obtain because determination of the 
asymptotic variance is not a simple task. Due to 
this, data analyses often are exclusively based on 
point estimates of copula parameters. Bayesian 
inference, or Markov chain Monte Carlo 
(MCMC) estimation of the parameters, provides 
a solution for this problem – which is not simple 
to solve in a classical ML framework.  

Using MCMC, interval estimation of 
parameters can be achieved by credible interval. 
This is due to the MCMC algorithm introduced 
by Metropolis, et al. (1953) and Hastings (1970). 
Credible intervals for parameters of a pair-
copula constriction (PCC) can simplify the PCC 
if they detect conditional and unconditional 
independency between pairs of variables. 
However, Bayesian literature on copulas is poor. 
Pitt, et al. (2006) investigated Gaussian copula 
regression, the main difficulty they encountered 
was sampling a positive definite correlation 
matrix. They solved the problem by employing a 
covariance selection prior that was introduced 
by Wong, et al. (2003).  

Dalla Valle (2007) proposed Bayesian 
inference based on MCMC for multivariate 
Gaussian and t-copulas using the inverse 
Wishart distribution as a prior for the correlation 
matrix. The study used Bayesian inference for 
pair-copula constructions (PPC’s) of Iran’s 
macroeconomic variables based on bivariate t-
copulas using a method similar to that used by 
Min and Czado (2011) for a Norwegian financial 
data set. Min and Czado’s method allows 
modeling of tail dependency between two 
chosen margins individually, while multivariate 
Gaussian and t-copulas have the same tail 
dependency structure for any two chosen 
margins. A tail dependence coefficient (see 
Embrechts, et al., 2002) accounts for extreme 

events of margins occurring simultaneously, this 
is one of the most important characteristics of 
financial data because it contains information on 
heavy-tailedness of multivariate financial data. 
PCC parameters considered are association and 
degrees of freedom (df) parameters of bivariate 
t-copulas. 
 
Copulas 

Copulas are d-dimensional multivariate 
distributions with uniformly distributed marginal 
distributions on [0, 1] and are very useful for 
modeling a dependence structure of multivariate 

data. Let '
1 2 dX ( X , X , , X )= … be a 

d−dimensional random vector with joint 
distribution function 1 2 dF( x ,x , ,x )…  and 

marginal distributions 
 

( ) ( )1 2 dF  F  F ( ) 1 2 d...,x , x , x . 

 
According to Sklar’s (1959) theorem a copula ܥ 
exists such that 
 

( ) ( ) ( ) ( )( )1 2 d 1 1 2 2 d dF x ,x , ,x C F x ,F x , ,F x… = …
(1) 

 
and the copula ݑ)ܥଵ, ,ଶݑ … ,  ௗ) is unique if theݑ
marginal distributions are continuous. (See Joe, 
1997 and Nelsen, 1999 for additional.) 

The copula ݑ)ܥଵ, ,ଶݑ … ,  ௗ) of aݑ
multivariate distribution ݔ)ܨଵ, ,ଶݔ … ,  ௗ) withݔ
margins Fଵ(ݔଵ), 	Fଶ(ݔଶ), ,...  is given (ௗݔ)ௗܨ
by 
 

 1 1 1
1 2 d 1 1 2 2 d dC( u ,u , ,u ) C( F ( u ),F ( u ), ,F ( u ))− − −… = …

 
and the copula density is given by 
 

( )( ) ( )
 

1 1 1
1 1 2 2 d d

1 2 d 1 1
1 1 1 d d d

f ( F ( u ),F ( u ), ,F ( u ))c( u ,u , ,u )
f F u  f ( F u )

− − −

− −

…… =
…

 
whereܨ௜ି ଵ(ݑ௜) is the inverse of the margins ܨ௜(ݔ௜) for ݅ = 1,2, … , ݀. Using (1), the 
multivariate density ݂(ݔଵ, ,ଶݔ … ,  ௗ) is a productݔ
of the corresponding copula density with 
marginal densities ௜݂(ݔ௜) , ݅ = 1,2, … , ݀ and is 
given by 
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( )
( ) ( ) ( )( ) ( ) ( ) ( )

1 2 d

1 1 2 2 d d 1 1 2 2 d d

f x ,x , ,x

c F x ,F x , ,F x . f x f x  f x

… =

… …
 

 
thus separating the dependence structure from 
the marginal structure. 
 
PCC’s for Multivariate Distributions 

Pair-copula constriction (PCC) 
modeling structure is based on a decomposition 
of a multivariate density into a cascade of 
bivariate copulae. In other words, a vine 
associated with ݊ variables is a nested set of 
trees where the edges of the tree, ݆, are the nodes 
of the tree ݆ + 1; 	݆	 = 	1, … , ݊ − 2, and each tree 
has the maximum number of edges. A regular 
vine on ݊ variables is a vine in which two edges 
in tree ݆ are joined by an edge in tree ݆ + 1 only 
if these edges share a common node, ݆	 =	1, … , ݊ − 2. There are ݊(݊	 − 1)/2 edges in a 
regular vine on ݊ variables (Kurowicka& 
Cooke, 2006).  
 
Bedford and Cooke Theorem 

Bedford and Cooke (2001) presented the 
following theorem. Let ܸ	 = 	 ( ଵܶ, … , 	 ௡ܶିଵ) be a 
regular vine on n elements, where ଵܶ is a 
connected tree with nodes ଵܰ 	= {1, … , ݊} and 
edges ܧଵ; for ݅	 = 	2, … , ݊ − 1, ௜ܶ is a connected 
tree with nodes ௜ܰ 	 = ,݆)݁ ௜ିଵ. For each edgeܧ	 ݇)߳	 ௜ܶ; 	݅	 = 	1, … , ݊ − 1 with conditioned 
set {݆, ݇} and conditioning set ܦ௘, let the 
conditional copula and copula density be ܥ௝௞|஽೐  
and ௝ܿ௞|஽೐  respectively. If the marginal 
distributions ܨ௜ with densities ௜݂ ; 	݅	 = 	1, … , ݊ 
are given, then the vine-dependent distribution is 
uniquely determined and has a density given by 
 

( )

( ) ( )e e j e k

i

1 n

n

i jk|D j|D ( x ) jk|D ( x )
i 1 e( j ,k ) E

f x , , x

f x  c F ,F
= ∈

… =

∏ ∏
 

 
The density decomposition associated with 4 
random variables ܺ	 = 	 ( ଵܺ, … , ܺସ) with a joint 
density function ݂(ݔଵ, … ,  ସ) satisfying aݔ
copula-vine structure (this structure is called D-
vine,  see Kurowicka and Cooke, 2006, p. 93) as 

shown in Figure 1 with the marginal densities ଵ݂, … , ସ݂ is illustrated as: 
 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )

        

       

        

        

1234
4

i 12 1 2
i 1

23 2 3 34 3 4

13 1 2 3 2

24 2 3 4 3

14 1 2 3 4 2 3

f

f x c F x ,F x

c F x ,F x c F x ,F x

c F x | x ,F x | x

c F x | x ,F x | x

c F x | x ,x ,F x | x ,x

=

=

×

×

∏

 

 
Joe (1996, p. 125) showed that the conditional 

distribution function ( )|U|F uV v appearing in the 

PCC are partial derivatives with respect to the 
second argument of the conditional copula given 
by 
 

( ) ( ) ( )
( )

( )
| j jx ,v |V j 4 j

U|
4 j

C F x |V ,F v |V
F u

F v |V
− − −

−

∂
=

∂V v  

 
whereܥ௫,௩ೕ|௏షೕ(. , . ) is a bivariate copula 

distribution function. 
 
Data Adjustment and MCMC Estimation 

Data analyzed in this study are four 
time-series data related to the Iran’s 
macroeconomics variables: (A) oil revenue, (B) 
economic growth, (C) total consumption and (D) 
investment. These data were collected from the 
Islamic republic of Iran’s Central Bank. 

First it is necessary to remove serial 
correlation of the four time series, that is, the 
observation of each variable must be 
independent over time. Hence, the serial 
correlation in the conditional mean and the 
conditional variance are modeled by an AR(1) 
and a GARCH(1,1) model (Bollerslev, 1986), 
respectively. For time series ݅, the model for log-
return ݔ௜ is i ,t i i i ,t 1 i ,t i ,tx c x zα σ−= + + ,  

i ,tE z 0=   , 2 2 2
i ,t i ,0 i i ,t 1 i i ,t 1a bσ α ε σ− −= + + where ߝ௜,௧ିଵ = ௜,௧ߪ +  ௜,௧ (Aas, et al., 2009). Table 1ݖ

shows the analyses performed on the standard 
residuals, ݖ௜. 
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Considering a regular vine (as shown in Figure 
1), the Bayesian inference for these variables 
can be carried out. According the vine structure, 
the formula for these variables is 
 

( )A B C D AB BC CD AC|B BD|C AD|BCc u ,u ,u ,u c .c .c ..c .c .c=
 

The building pair-copulas of the PCC 
model (2) are now specified as bivariate t-
copulas; however, the methodology is generic 
and  applies  more  widely. Further it is assumed  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
that the margins of X are uniform. This is 
motivated by the standard semi-parametric 
copula estimation procedure suggested by 
Genest, et al. (1995) where approximate uniform 
margins are obtained by applying the empirical 
probability integral transformation to 
multivariate data. 

The bivariate t-copula (Embrechts, et 
al., 2003) has 2 parameters: the association 
parameter ρ ∈ (-1,1) and the df parameter ϑ ∈ 
(0,∞) and its density is given by 
 

Figure 1: Vine Structure with 4 Elements 

 
 
 
 

Table 1: Data Adjusted after Removing Serial Correlation from Data 

Data Model Distribution Error 

Oil Revenue ARMA(1,1)-GARCH(1,1) Skewed Normal 

Economic Growth GARCH(1,1) Skewed t-student 

Total Consumption ARMA(1,1)-GARCH(1,1) t-student 

Investment AR(1)-GARCH(1,1) Student 
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( )

( )

|

                      

1 2

2 2

11 2 1 2
1 2 2

1 2 1 2 1 1 1
1 2 1 2 2

2

c u ,u ,
1( ) ( )

2 2
11 [ ]

2
( t ( u )) ( t ( u ))( 1 1 )

.
( t ( u )) ( t ( u )) 2 t u .t ( u )

(1 )
(1 )

ϑ
ϑ ϑ

ϑ
ϑ ϑ ϑ ϑ

ϑ ρ
ϑ ϑ

ϑρ

ϑ ϑ
ρ

ϑ ρ

+− −

− − − − +

=
+Γ Γ

+ − Γ 
 

   
+ +   

   
+ −

+
−

 
 
wheret_ϑ^(-1) (.) is a quantile function of a t-
distribution with ϑ degrees of freedom. 

The conditional distribution function for 
x = u_1 and a scalar v = u_2 takes the form 
 

( )
( ) ( )

( )( )( )( )

|

  

1 2

1 1
1 2

1 21 2
2

h u u , ,

t u t u
t ( )

t u 1

1

ϑ ϑ
ϑ

ϑ

ρ ϑ

ρ

ϑ ρ

ϑ

− −

+
−

=

−

+ −

+

 

 
and is called the h-function for the t-copula with 
parameters ߩ and ߴ (Aas, et al. 2007). The 
parameters of the model used for this study are: 
 

       

1,2 1,2 2,3 2 ,3 3,4  3,4  1,3|2

1,3|2 2,4|3 2,4|3 1,4|2,3 1,4|2,3

( , , , , , , ,
, , ,, )

θ ρ ϑ ρ ϑ ρ ϑ ρ
ϑ ρ ϑ ρ ϑ

=
 

 
Because a Bayesian approach was followed, the 
statistical model must be completed by 
specifying the prior distributions for all model 
parameters. A uniform (−1, 1) prior is specified 
for the association parameter ߩ of a t-copula pair 
and a uniform (1, ܷ) prior for the corresponding 
df parameter ߴ because, in general, little prior 
information is available. Here the lower cut 
value 1 was chosen instead of 0 to avoid 
numerical instabilities in evaluating a quantile 
function of the bivariate t-distribution. The 
upper cut value ܷ can be chosen by the data 
analyst to assess the closeness to the bivariate 
Gaussian copula. Finally, it was assumed that 
prior distributions for ߩ and ߴ are independent 
within  each  pair and independent over all pairs. 

For estimating the MCMC parameters 
the package bivariate t distribution in 
Winbugs14 software was used (in other tree of 
the vine structure this is conducting using an h-
function). By pre-specified prior distribution for ߩ and prior distribution ܷ(1,100) for ߴ and 
80,000 a Metropolis-Hasting iteration algorithm 
MCMC estimation of the parameter can be 
obtained. The results of the Bayesian estimation 
and MlE are summarized in Table 2. 

Based on results (see Table 2 and Figure 
2) it can be concluded that the association 
parameter is unimodal and symmetric, the 
difference among mode, mean and median is 
negligible, and the degree of freedom is 
asymmetric. Based on the 95% credible interval, 
the dependency structure among variables can 
be simplified as: 
 

( )A B C D AB BC CD BD|C AD|BCc u ,u ,u ,u c .c .c .c .c=  

 
Conclusion 

Bayesian inference provides solutions for many 
difficult problems that are not simple to solve in 
a classical ML framework. This study shows 
how identifying unconditional as well as 
conditional independence in macroeconomic 
variables can simplify resulting PCC’s. Results 
show that the independence between oil revenue 
and total consumption given economic growth in 
these data is significant. 
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