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Fitting Proportional Odds Models to Educational Data 
with Complex Sampling Designs in Ordinal Logistic Regression 

 
Xing Liu Hari Koirala 

Eastern Connecticut State University, 
Willimantic, CT 

 
 
The conventional proportional odds (PO) model assumes that data are collected using simple random 
sampling by which each sampling unit has the equal probability of being selected from a population. 
However, when complex survey sampling designs are used, such as stratified sampling, clustered 
sampling or unequal selection probabilities, it is inappropriate to conduct ordinal logistic regression 
analyses without taking sampling design into account. Failing to do so may lead to biased estimates of 
parameters and incorrect corresponding variances. This study illustrates the use of PO models with 
complex survey data to predict mathematics proficiency levels using Stata and compare the results of PO 
models accommodating and not accommodating survey sampling features. 
 
Key words: Ordinal logistic regression, PO models, complex survey designs, linearization, standard 

errors, single sampling unit, Stata. 
 
 

Introduction 
Ordinal logistic regression is an extension, or a 
special case, of binary logistic regression when 
an ordinal outcome variable has more than two 
levels. The three commonly known models for 
an ordinal outcome variable include the 
proportional odds (PO) model, the continuation 
ratio (CR) model and the adjacent category (AC) 
logistic regression model, depending on 
different comparisons among the categories of 
the response variable. Compared to the other 
two  models,  the  PO  model is the most popular 
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(Agresti, 1996, 2002, 2007, 2010; Anath & 
Kleinbaum, 1997; Armstrong & Sloan, 1989; 
Hardin & Hilbe, 2007; Hilbe, 2009; Liu, 2009; 
Long, 1997; Long & Freese, 2006; McCullagh, 
1980; McCullagh & Nelder, 1989; O’Connell, 
2000, 2006; O’Connell & Liu, 2011; Powers & 
Xie, 2000). The PO model is widely 
implemented as the default for ordinal 
regression analysis in general-purpose statistical 
software packages, such as SAS, SPSS, Stata, S-
Plus and R. The PO model estimates the 
relationship between a set of predictor variables 
and an ordinal outcome variable via a logit link 
function. It is also known as the cumulative logit 
model, because it estimates the cumulative odds 
of being at or below a particular level of the 
response variable. In addition, for each predictor 
variable the estimated cumulative odds are 
assumed to be the same across all the ordinal 
categories, thus it is known as the proportional 
odds assumption. 

The conventional PO model assumes 
that data are collected using simple random 
sampling by which each sampling unit has an 
equal probability of being selected from a 
population. In addition to simple random 
sampling, researchers also use more complex 
sampling techniques, such as stratified sampling 
and multistage cluster sampling. The National 
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Center for Education Statistics (NCES) 
sponsored and conducted a series of studies, 
such as the Early Childhood Longitudinal Study-
Kindergarten (ECLS-K), National Educational 
Longitudinal Study of 1988 (NELS:88), and 
Educational Longitudinal Study of 2002 
(ELS:2002), all of which applied complex 
sampling survey designs. These designs had the 
common features of using strata, clusters and 
unequal probability of selection in data 
collection. 

Because complex survey sampling 
designs involve the use of different strata (e.g., 
geographic areas), clustered sampling techniques 
and unequal selection probabilities, it is 
inappropriate to conduct the PO model analysis 
for the ordinal response variable without taking 
the survey sampling designs into account. 
Failing to do so may lead to biased estimates of 
parameters, incorrect variance estimates and 
misleading results. Therefore, it is critical for 
researchers to understand techniques for 
analyzing data with complex sampling designs. 

Although multilevel modeling is a 
valuable tool for analyzing complex sampling 
survey data, it is mainly used for model-based 
analysis (Hahs-Vaughn, 2005; Thomas & Heck, 
2001) when data structures are nested or 
hierarchical (O’Connell & McCoach, 2008; 
Raudenbush & Bryk, 2002). When the data 
structure only has a single level, researchers 
need to identify other appropriate methods 
which take complex sampling design features 
into account. Analysis that considers these 
design features is termed the design-based 
analysis (Lee & Forthofer, 2006; Levy & 
Lemeshow, 2008), compared to the model-based 
analysis (e.g., multilevel analysis). Although 
several strategies were commonly used for 
design-based analysis of survey data, using 
specialized software to accommodate complex 
sampling designs was the most desirable choice 
(Hahs-Vaughn, 2005; Thomas & Heck, 2001). 
Among a few statistical software packages that 
can perform statistical analyses within the 
context of survey sampling designs, Stata is a 
well-known statistical package and is capable of 
performing numerous statistical analyses for 
complex survey data with its svy prefix 
command (StataCorp, 2007, 2009, 2011).  

Various methods of incorporating 
weights and design effects in statistical models, 
such as multiple regression (Hahs-Vaughn, 
2005, 2006; Thomas & Heck, 2001), and 
structural equation modeling (Hahs-Vaughn & 
Lomax, 2006; Muthen & Setorra, 1995; 
Stapleton, 2002, 2006, 2008) have been 
proposed and examples were illustrated. 
However, the use of complex sampling designs 
in ordinal logistic regression analysis is scarce. 
In addition, although researchers are 
increasingly interested in conducting secondary 
data analysis using large-scale datasets, the lack 
of analytic skills makes the task intimidating. 
Therefore, it is imperative to help educational 
researchers better understand the ordinal logistic 
regression model with complex sampling data 
and utilize it in practice. This study illustrates 
the use of ordinal logistic regression models 
with complex survey data to predict 
mathematics proficiency levels using Stata and 
compares the results of PO models 
accommodating and not accommodating survey 
sampling features, such as stratification, 
clustering and weights. This article extends 
previous research which focused on different 
types of conventional ordinal logistic regression 
models (Liu, 2009; Liu, O’Connell, & Koirala, 
2011, Liu & Koirala, 2012). 

For demonstration purposes, ordinal 
regression analyses were based on data from the 
Educational Longitudinal Study (ELS): 2002, in 
which the ordinal outcome of students’ 
mathematics proficiency was predicted from a 
set of variables in students’ effort, such as, 
students can get no bad grades if they decide not 
to, they keep studying even if material is 
difficult, and they do best to learn. 
 
Theoretical Framework: The Proportional Odds 
Model 

In binary logistic regression, the 
outcome variable is dichotomous, with 1 = 
success or experiencing an event and 0 = failure 
or not experiencing the event. This model 
estimates the log odds of the outcome or the 
probability of success from a set of predictors. 
The logistic regression model (Menard, 1995) is: 
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where logit [π(x)] is the log odds of success, and 
the odds is a ratio between the probability of 
having an event and the probability of not 
having that event. 

When the outcome variable has more 
than two levels and is ordinal, the ordinal 
logistic regression model estimates the odds and 
the probabilities of being at or below a particular 
category. The ordinal regression model can be 
expressed on the logit scale as follows (Liu, 
2009): 
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where πj(x) = π(Y≤j|x1,x2,…xp), which is the 
probability of being at or below category j, given 
a set of predictors. j =1, 2, …, J−1. αj are the cut 
points, and β1, β2,  …, βp are logit coefficients. 
This PO model estimates different cut points, 
but the effect of any predictor is assumed to be 
the same across these cut points. Therefore, for 
each predictor only one logit coefficient is 
estimated. The proportional odds assumption 
can be assessed by the Brant test (Brant, 1990), 
which provides the omnibus test for the overall 
models and the univariate test for each predictor. 
To estimate the cumulative odds of being at or 
below the jth category, this model can be 
rewritten as:   
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 (3) 

where logit is the log odds of being at or below a 
particular category relative to being beyond that 
category. By exponentiating the cumulative 
logits, we obtain the cumulative odds of being at 
or below the jth category. The PO model includes 
a series of binary logistic regression models 
where the ordinal response variable is 
dichotomized while assuming the estimated logit 
coefficients are the same across these binary 
models.  

Researchers should be aware that 
software packages may use different forms to 
express the ordinal logistic regression model and 
parameterize it differently (Liu, 2009). For 
example, unlike Stata and SPSS, which both 
follow the above equation; SAS does not negate 
the signs before logit coefficients in the 
equation. To estimate cumulative odds of being 
at or below a particular category, the SAS PROC 
LOGISTIC procedure can be used with the 
ascending option, while the descending option 
can be applied to the same procedure to estimate 
the odds of being beyond a particular category. 
 
Theoretical Framework: Variance Estimation in 
Complex Survey Sampling 

Two techniques are widely used for 
unbiased variance estimation in complex 
sampling survey designs, including linearization 
and replicated sampling methods (Lee & 
Forthofer, 2006; Levy & Lemeshow, 2008; 
Lohr, 1999). The linearization method is the 
Taylor series approximation, also known as the 
delta method (Kalton, 1983); while the 
replicated methods estimate variance of a 
parameter by generating replicated subsamples 
and examining the variability of the subsample 
estimates. The replicated methods, also referred 
to as resampling methods, include the balanced 
repeated replication (BRR), the jackknife 
repeated replication (JRR) and the bootstrap 
method (Lee & Forthofer, 2006; Levy & 
Lemeshow, 2008). This article focuses on the 
Taylor series approximation method because it 
is implemented as the default in general purpose 
software packages, such as Stata, SAS, SPSS 
(Complex Samples Add-on Module) and in 
specialized software, such as SUDAAN, and 
AM. 
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The general Taylor series linearization is 
expressed as (Lee & Forthofer, 2006; Levy & 
Lemeshow, 2008): 
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where f′ and f″ are the first and second 
derivatives of the function, f(x) at a. In statistics, 
the Taylor series linearization is used to obtain a 
linear approximation to the nonlinear function or 
statistic and then the variance of the function or 
statistic can be derived from the Taylor series 
approximation.  

Specifically, the variance estimation in 
complex survey sampling using the Taylor series 
expansion follows two steps. First, use the first-
order Taylor series to obtain a linear 
approximation of the function. Second, estimate 
the variance of the parameter including complex 
survey features, such as strata, cluster and 
weight variables. Thus, the variance estimate is a 
weighted combination of the variance across 
primary sampling units (PSUs) within a stratum 
(Lee & Forthofer, 2006). In statistical software 
packages it is necessary to specify strata, cluster 
and weights before fitting a statistical model. 

To estimate sampling variance of a 
parameter estimate in ordinal logistic regression, 
Binder (1983) developed a general formula for 
linear regression and generalized linear models 
with the complex survey data using the Taylor 
series, which is widely used and known as the 
sandwich variance estimator. In the sandwich 
form, the middle variance-covariance matrix of 
the weighted score function is multiplied at both 
the left and right sides by the inverse of the 
matrix of second derivatives with respect to the 
parameter estimate (Binder, 1983; Heeringa, 
West, & Berglund, 2010). 
 

Methodology 
Sample  

The base-year data from the Educational 
Longitudinal Study (ELS) of 2002 was used for 
the analyses. This study, conducted by the 
National Center for Education Statistics 
(NCES), longitudinally followed students from 
10th grade to their postsecondary school 

education and/or even in their work. ELS used a 
two-stage sampling design (Ingels, et al., 2004; 
2005). First, using a stratified sampling strategy, 
1,221 eligible public and private schools were 
selected from a population of approximately 
25,000 schools with 10th grade students: of the 
eligible schools (clusters), 752 agreed to 
participate in the study. Second, in each of the 
schools, approximately 25 students in 10th grade 
were randomly selected from the enrollment list.  

The outcome variable of interest was 
students’ mathematics proficiency levels in high 
school, which was an ordinal categorical 
variable with five levels (1 = capable of doing 
simple arithmetical operations on whole 
numbers; 2 = capable of doing simple operations 
with decimals, fractions, powers and root; 3 = 
capable of doing simple problem solving; 4 = 
understanding intermediate-level mathematical 
concepts and/or finding multi-step solutions to 
word problems; and 5 = capable of solving 
complex multiple-step word problems and/or 
understanding advanced mathematical material) 
(Ingels, et al., 2004, 2005). Those students who 
failed to pass through level 1 were assigned to 
level 0. Table 1 provides the frequency of six 
mathematics proficiency levels (Liu, & Koirala, 
2012). 
 
Data Analysis 

First the PO model was fitted without 
considering the complex sampling designs using 
the Stata ologit command. Stata SPost (Long & 
Freese, 2006) package was used to examine the 
fit statistics and the PO assumption. The same 
PO model was then fitted with Stata ologit with 
weights. Finally, svy, the Stata’s survey data 
command was used to fit the PO model taking 
all the elements of survey design features, such 
as strata, cluster and weight variables into 
account. Before using the svy prefix command, 
the svyset command was employed to specify 
the complex sampling design features; the svy: 
ologit command was then used to conduct the 
subsequent ordinal regression analysis. 

When a stratum contains only a single 
sampling unit, standard errors of the parameters 
are estimated to be missing. To deal with this 
issue, three singleunit() options (i.e., certainty, 
scaled and centered) were specified separately in 
the svyset command and the estimated standard  
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errors from each of the three PO models were 
examined. The Taylor series approximation 
linearization method, which is the default 
method in Stata, was used to estimate the 
sampling variance. The results of the PO models 
accommodating and ignoring complex sampling 
designs were compared. 
 

Results 
Proportional Odds Model with Three 
Explanatory Variables without Weights 

A PO model with all three predictor 
variables was fitted first. Stata ologit command 
was used for model fitting. Figures 1 and 2 show 
the results for the PO model without weights 
(Unweighted).  

The log likelihood ratio chi-square test, 
LR χ2

(3) = 1102.83, p < 0.001, indicated that the 
model with three predictors provides a better fit 
than the null model with no independent 
variables. The likelihood ratio, R2

L = 0.034, 
suggested   that   the   relationship  between   the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
response variable, mathematics proficiency and 
the predictors was small. 

All logit effects of the three predictors 
on the mathematics proficiency level were 
significant. The estimated logit regression 
coefficient for getting no bad grades if deciding 
to (decide), β = 0.509, z = 20.79, p < 0.001; the 
logit coefficient for keeping studying if material 
is difficult (keeplrn), β = 0.060, z = 2.15, p = 
0.0311; and finally, for doing best to learn 
(dobest), β = 0.184, z = 6.60, p < 0.001.  

To estimate the cumulative odds of 
being at or below a certain mathematics 
proficiency level, it is only necessary to 
substitute the values of the estimated logit 
coefficients into the equation (3). For the first 
predictor, decide, logit [π(Y≤ j | X1)] = 
αj + (−.509X1). OR = e(-.509) = .601, suggesting 
that the odds of being at or below a particular 
proficiency level  decreased by a factor of 0.601 
with a one unit increase in the value of the 
predictor   variable,   getting   no   bad   grades if  

Table 1: Proficiency Categories and Frequencies (Proportions) 
for the Study Sample, ELS (2002) (N = 15,976) 

Proficiency 
Category 

Description 
Frequency 

(%) 

0 Did not reach level 1 
842 

(5.27%) 

1 
Capable of doing simple arithmetical 

operations on whole numbers 
3,882 

(24.30%) 

2 
Capable of doing simple operations with 

decimals, fractions, powers and root 
3,422 

(21.42%) 

3 Capable of doing simple problem solving 
4,521 

(28.30%) 

4 
Understanding intermediate-level 

mathematical concepts and/or finding 
multi-step solutions to word problems 

3,196 
(20.01%) 

5 
Capable of solving complex multiple-step 

word problems and/or understanding 
advanced mathematical material 

113 
(0.71%) 
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deciding to, holding others constant. In other 
words, students were more likely to be in a 
higher proficiency level with the increase of the 
frequency in the predictor, getting no bad grades 
if deciding to. The odds of being at or below a 
proficiency level for the other two predictors, 
keeplrn and dobest, were computed in the same 
way and they were 0.942 and 0.832, 
respectively. 

The odds of being beyond a category of 
mathematics  proficiency are the inverse of those 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of being at or below a category. In equation (3), 
it is necessary to reverse the sign before the logit 
coefficients and take the exponential of the 
positive coefficients. All three predictors were 
positively associated with the odds of being 
beyond a proficiency level. In terms of odds 
ratio (OR), the odds of being beyond a 
proficiency level were 1.664 times greater with 
one unit increase in the frequency of getting no 
bad grades if deciding to, 1.062 times greater 
with one unit increase in the frequency of 

Figure 1: Stata Proportional Odds Model with Three Explanatory Variables without Weights 
 
Iteration 0:   log likelihood = -16209.257 
Iteration 1:   log likelihood = -15661.066 
Iteration 2:   log likelihood = -15657.842 
Iteration 3:   log likelihood =  -15657.84 
 
Ordered logistic regression                       Number of obs   =      10590 
                                                  LR chi2(3)      =    1102.83 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -15657.84                       Pseudo R2       =     0.0340 
 
------------------------------------------------------------------------------ 
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  BYS89N_REC |    .509422   .0245069    20.79   0.000     .4613894    .5574546 
  BYS89O_REC |   .0599422   .0278188     2.15   0.031     .0054183    .1144661 
  BYS89S_REC |   .1843663   .0279157     6.60   0.000     .1296524    .2390801 
-------------+---------------------------------------------------------------- 
       /cut1 |   -1.09588   .0799419                     -1.252564   -.9391973 
       /cut2 |   1.071351   .0704831                      .9332062    1.209495 
       /cut3 |   2.071959   .0724422                      1.929974    2.213943 
       /cut4 |   3.443123   .0771284                      3.291954    3.594292 
       /cut5 |   7.107176   .1298397                      6.852695    7.361657 
------------------------------------------------------------------------------ 

 
 

Figure 2: Measures of Fit Statistics Using Stata SPost package 
. fitstat 
 
Measures of Fit for ologit of Profmath 
 
Log-Lik Intercept Only:     -16209.257   Log-Lik Full Model:         -15657.840 
D(10582):                    31315.680   LR(3):                        1102.833 
                                         Prob > LR:                       0.000 
McFadden's R2:                   0.034   McFadden's Adj R2:               0.034 
ML (Cox-Snell) R2:               0.099   Cragg-Uhler(Nagelkerke) R2:      0.104 
McKelvey & Zavoina's R2:         0.097                               
Variance of y*:                  3.643   Variance of error:               3.290 
Count R2:                        0.333   Adj Count R2:                    0.059 
AIC:                             2.959   AIC*n:                       31331.680 
BIC:                        -66754.755   BIC':                        -1075.030 
BIC used by Stata:           31389.822   AIC used by Stata:           31331.680 
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keeping studying if material is difficult, and 
1.202 times greater with a one-unit increase in 
the frequency of doing best to learn. 
 
Brant Test of the Proportional Odds Assumption 

The PO assumption of the ordinal 
logistic regression was tested using the brant 
command of the Stata SPost package (Long & 
Freese, 2006). The Brant test provides results of 
a series of underlying binary logistic regression 
models across different category comparisons, 
the univariate test for each predictor, and the 
omnibus test for the overall model. Table 2 
shows five associated binary logistic regression 
models for the full PO model where the ordinal 
response variable is dichotomized and each split 
compares Y > cat. j to Y≤ cat. j. The effects of 
all three variables were similar across these five 
binary models. Among them, the logit 
coefficient of doing best to learn was the most 
stable across these five binary logistic regression 
models. 

The Brant test was used to identify 
whether the effects of each predictor were the 
same across five splits after the visual 
examination of the above models. Table 3 
presents χ2 tests and p values for the full PO 
model and separate predictors. The omnibus 
Brant test for the full model, χ2

12 = 20.51, p = 
0.058, indicating that the proportional odds 
assumption for the full model was upheld. In 
addition, the univariate tests revealed that the 
PO assumptions were also tenable for the 
individual predictors. 
 
Proportional Odds Model with Three 
Explanatory Variables with Weights 

Next, the same PO model with weights 
was fitted. To fit this model, Stata ologit 
command with sampling weights was used. The 
probability weight, BYSTUWT, which was the 
student weights for the base year data, was 
specified in the model as [pweight = 
BYSTUWT]. Table 4 shows the result for the 
PO model with the estimation of weights.  

The PO model with sampling weights 
used the pseudolikelihood instead of the true 
likelihood in the maximum likelihood 
estimation. The Wald Chi-Square test, χ2

(3) = 
744.25, p < 0.001, indicated that the model with 
the three predictors provided a better fit than the 

null model with no independent variables. The 
pseudo R2

 = 0.035. 
Table 4 presents a comparison of PO 

model results with and without weighted 
estimation. Compared to the unweighted PO 
model; all but the first cutpoints/intercepts 
slightly increased when sampling weights were 
specified in the PO model. Regarding the logit 
coefficients, the effect of one predictor (decide) 
increased and the other two, keeplrn and dobest, 
decreased. In addition, the standard errors of all 
three predictors increased. Specifically, when 
weights were applied to the PO model the 
estimated logit regression coefficient for getting 
no bad grades if deciding to (decide) increased 
by 4.1%, and its standard error increased by 
24%, compared to those in the unweighted PO 
model; the logit coefficient for keeping studying 
if material is difficult (keeplrn) decreased by 
15.4%, and its standard error increased by 25%; 
and the logit coefficient for doing best to learn 
(dobest) decreased by 14.3%, with its standard 
error increased by 25%. 

In the unweighted PO model, the effects 
of all three predictors were significant. 
However, when weights were applied to the PO 
model, surprisingly only the first and last 
predictors were significant, and the second 
predictor (keeplrn) became insignificant, since 
the standard error was underestimated when 
weights were not applied. 
 
Proportional Odds Model for Complex Survey 
Data Using Stata svy command 

Finally, Stata’s survey data svy prefix 
command was used to fit the PO model, taking 
all the elements of survey design features, such 
as strata, cluster and weight variables into 
account. Before fitting the model, the svyset 
command needed to be employed by specifying 
the complex sampling design variables and 
weights. In this example, the design features 
were specified as: svyset PSU [pweight = 
BYSTUWT], strata (STRAT_ID). In the svyset 
command, the variable name for the primary 
sampling units or clusters in the data was PSU; 
the probability weight, pweight, was the student 
weight for the based year data (BYSTUWT), 
and the strata was START_ID. Figure 3 presents 
the result of the specified sampling design 
information. 
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Table 2: A Series (j-1=5) of Associated Binary Logistic Regression Models for the Full PO Model, 
where Each Split Compares Y > cat. j to Y≤ cat. j 

 Y > 0 Y > 1 Y > 2 Y > 3 Y > 4 
Brant Test 
P Value 

Variable Logit (b) Logit (b) Logit (b) Logit (b) Logit (b)  

Constant 1.413 -.989 -2.042 -3.639 -8.854  

decide .502 .494 .507 .533 .910 .309 

keeplrn -.017 .018 .060 .096 .296 .263 

dobest .138 .208 .173 .187 .054 .607 
 
 

Table 3: Brant Tests of the PO Assumption for Each Predictor and the Overall Model 

Variable Test P Value 

decide χ2
4 = 4.79 .309 

keeplrn χ2
4 = 5.24 .263 

dobest χ2
4 = 2.71 .607 

All (Full-model) χ2
12 = 20.51 .058 

 
 

Table 4: Comparison of the PO Models with and without Weighted Estimation 

Variable 

PO Model-Unweighted PO Model with Weights 

b (se(b)) OR P b (se(b)) OR P 

α1 -1.096   -.955   

α2 1.071   1.153   

α3 2.072   2.153   

α4 3.443   3.490   

α5 7.107   7.245   

decide 
.509** 
(.025) 

1.664 <.001 
.530** 
(.031) 

1.699 <.001 

keeplrn 
.060* 
(.028) 

1.062 .031 
.052 

(.035) 
1.054 .131 

dobest 
.184 ** 
(.028) 

1.202 <.001 
.161** 
(.035) 

1.175 <.001 

LR R2 .034   .035   

Brant Test 
(Omnibus 

Test) 
χ2

12  = 20.51   Ν/Α   

Model Fit χ2
3 = 

1102.83** 
  χ2

3 = 
744.25** 

  

*p<0.05; **p<0.01 
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The result of the svyset output also 
indicated that by default missing values for the 
standard errors would be created when a stratum 
only contained a single sampling unit (single 
unit: missing). To deal with this singleton PSU 
issue, the svyset command provides the other 
three options (StataCorp, 2007), including 
certainty, scaled and centered. The first option, 
singleunit(certainty) recognizes the single 
sampling unit in a stratum as a certainty unit 
(sampling unit chosen with 100% certainty), 
which contributes nothing to variance estimation 
across sampling units. The second option, 
singleunit(scaled) is a scaled version of the first 
one, which uses the average variance of the 
strata with multiple PSUs for the stratum with a 
single sampling unit. The third option, 
singleunit(centered) uses the grand mean across 
sampling units for variance estimation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each of these three options for the single 
unit was used separately in the svyset command 
because single sampling units resulted in 
missing standard errors in the model. Stata svy: 
ologit was then used to conduct for each survey 
ordinal logistic regression analysis. The results 
of the estimated standard errors using all 
singleunit options are shown in Table 5 and, 
because the singltunit(missing) is the default 
option, the missing values for standard error 
estimations are also provided. 

The results of the standard errors 
estimated from all PO models were nearly the 
same. Therefore, only the result with the 
singleunit(certainty) option was reported in the 
following analysis. Figure 4 and Table 6 display 
the PO model result for complex survey data 
using svy: ologit. 
 

Figure 3: Identifying the Sampling Design Variables and Weights Using the svyset Command 
. svyset PSU [pweight = BYSTUWT] , strata (STRAT_ID) 
 
      pweight: BYSTUWT 
          VCE: linearized 
  Single unit: missing 
     Strata 1: STRAT_ID 
         SU 1: PSU 
        FPC 1: <zero> 
 

 
 

Table 5: Estimated Standard Errors from the PO Models for Complex Survey Data with Four 
Singleunit() Options 

Variable b 
singleunit(missing) 

se(b) 
(certainty) 

se(b) 
(scaled) 

se(b) 
(centered) 

se(b) 

α1 -.955 . .1070 .1072 .1070 

α2 1.153 . .0967 .0968 .0967 

α3 2.153 . .1003 .1004 .1003 

α4 3.490 . .1069 .1070 .1069 

α5 7.245 . .1849 .1851 .1849 

decide .530** . .0335 .0336 .0335 

keeplrn .052 . .0332 .0333 .0332 

dobest .161** . .0396 .0397 .0396 
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In the final PO model which 
accommodated sampling designs, Stata reports 
the the adjusted Wald test for all parameters 
rather than the log likelihood ratio Chi-Square 
test for the conventional PO model. F(3, 387) = 
201.71, p < 0.001, suggested that the full model 
with three predictors was significant in 
predicting odds of being at or below a particular 
mathematics proficiency level. 

The logit effects of decide and dobest 
were significant.  For the predictor, decide, β = 
0.530, t = 15.81, p < 0.001; and for the predictor, 
dobest, β = 0.161, t = 4.06, p < 0.001. However, 
the effect of keeplrn was not significantly 
different from zero. β = 0.052, t = 1.58, p = 
0.115. 
Substituting the values of the estimated logit 
coefficients into the equation (3) resulted in logit 
[π(Y≤ j | X1, X2, X3)] = αj + (−.530X1 

−.052X2−.161X3). By exponentiating the 
negative logit coefficients (e(-β)) the odds of 
being at or below a particular proficiency level 
were obtained. Therefore, the odds of being at or 
below a particular proficiency level as opposed 
to being beyond that level for the three  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
predictors, decide, keeplrn, and dobest, were 
0.589, 0.949 and 0.930, respectively. 

When estimating the odds of being at or 
below a proficiency level, five cutpoints were 
used to differentiate adjacent categories of the 
mathematics proficiency. α1 = -0.955, which was 
the cutpoint for the cumulative logit model for Y 
≤ 0 (i.e., level 0 versus levels 1, 2, 3, 4, and 5); 
α2 was the cutpoint for the cumulative logit 
model for Y ≤ 1 (i.e., levels 0 and 1 versus 
levels 2, 3, 4, and 5); and the final α5 was used 
as the cutpoint for the logit model when Y ≤ 4.  

To estimate the odds of being beyond a 
proficiency level, equation (3) can be 
transformed to logit [π(Y > j | X1, X2, X3)] = -
αj + .530X1 +.052X2 +.161X3. Odds ratios can be 
calculated in the same way as above (see Table 
6). In terms of odds ratio, getting no bad grades 
if deciding to (OR=1.699), and doing best to 
learn (OR = 1.175) was positively associated 
with the odds of being above a particular 
mathematics proficiency level, rather than being 
at or below that level. The OR for keeping 
learning when the material is difficult was 1.054, 
which was not significant. 

Figure 4: PO Model for Complex Survey Data Using Stata svy: ologit 
. svy: ologit Profmath  BYS89N_REC BYS89O_REC BYS89S_REC 
(running ologit on estimation sample) 
 
Survey: Ordered logistic regression 
 
Number of strata   =       361                  Number of obs      =     11517 
Number of PSUs     =       750                  Population size    = 2394546.7 
                                                Design df          =       389 
                                                F(   3,    387)    =    201.71 
                                                Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
             |             Linearized 
    Profmath |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  BYS89N_REC |   .5298181    .033504    15.81   0.000     .4639466    .5956896 
  BYS89O_REC |   .0524694   .0332264     1.58   0.115    -.0128564    .1177952 
  BYS89S_REC |   .1609406   .0396372     4.06   0.000     .0830106    .2388706 
-------------+---------------------------------------------------------------- 
       /cut1 |  -.9547298   .1070331    -8.92   0.000    -1.165166   -.7442941 
       /cut2 |   1.153029   .0966561    11.93   0.000     .9629958    1.343063 
       /cut3 |   2.153402   .1003036    21.47   0.000     1.956197    2.350607 
       /cut4 |   3.489551   .1068888    32.65   0.000     3.279399    3.699703 
       /cut5 |   7.245278   .1848627    39.19   0.000     6.881823    7.608733 
------------------------------------------------------------------------------ 
Note: strata with single sampling unit treated as certainty units. 
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Comparison of Parameter and Standard Error 
Estimates from the PO model for Complex 
Survey Data and the Conventional Unweighted 
PO Model 

Table 6 provides the parameter and 
standard error estimates obtained from the PO 
model for complex sampling data using Stata 
svy: ologit and those from the unweighted PO 
model with Stata ologit. After sampling design 
variables and probability weights were applied 
to the PO model, the estimated logit coefficients 
and their standard errors were different from 
those in the unweighted PO model. The logit 
coefficient of the first predictor (decide) 
increased and those of the last two predictors 
(keeplrn and dobest) decreased. Further, the 
standard errors of all three coefficients increased 
tremendously.  

Compared to the unweighted PO model, 
the estimated logit coefficient for getting no bad 
grades if deciding to (decide) in the PO model 
for complex survey data increased by 4.1%, and 
its standard error increased by 36%; the logit 
coefficient for keeping studying if material is 
difficult (keeplrn) decreased by 15.4%, and its 
standard error increased by 17.9%; and the logit 
coeffecit for doing best to learn (dobest) 
decreased by 14.3%, with its standard error 
increased by 42.9%. 

The change of the parameter and 
linearized standard error estimates impacted 
significance tests. In the unweighted PO model, 
the effects of all three predictors were 
significant. However, when the sampling design 
variables and weights were applied to the PO 
model, only the first and last predictors were 
significant, and the second predictor (keeplrn) 
turned to be nonsignificant (p = 0.115). 
 

Conclusion 
This article explicated the use of the 
proportional odds models with complex survey 
sampling to estimate the ordinal response 
variable. Model fitting started from the 
conventional PO model without sampling 
weights, then the PO model with weights, and 
finally to the PO model for complex survey data 
with both weights and sampling design 
variables. Results of all three models were 
interpreted and compared. In addition, methods 

of dealing with a single sampling unit within 
strata were illustrated and the estimated standard 
errors from the PO models with different single 
unit options were compared. 

After sampling design variables and 
probability weights were applied to the 
conventional PO model, the estimated logit 
coefficients and their standard errors were more 
accurate than those in the unweighted PO model 
and the PO model with weights only. 
Specifically, first, compared to the unweighted 
PO model, the PO model with sampling weights 
impacts the accuracy of both parameter 
estimates and standard errors, and thus, the test 
statistics and the p-values; second, applying both 
the sampling weights and design variables to the 
PO model produced more accurate standard 
errors than the PO model with weights only, 
although these two models had the same 
parameter estimates.  

This article demonstrated that ignoring 
weights, clusters and strata leads to biased 
parameter estimates and erroneous standard 
errors in ordinal logistic regression analysis. It 
extends the work by Hahs-Vaughn (2005, 2006), 
and Thomas and Heck (2001), which focused on 
the survey data analysis in multiple regression. 
Theories and mathematical details on how to 
estimate unbiased parameters and standard 
errors for complex survey data are well 
documented in literature and are beyond the 
scope of this article. Interested readers should 
refer to Binder (1983), Heeringa, West and 
Berglund (2010), Levy and Lemeshow (2008) 
and Lohr (1999) for details. 

The logit coefficients in the PO model 
for complex survey data can be interpreted in the 
same way as those in the standard PO model. 
However, these two models may have different 
parameter estimates and standard errors, or even 
different levels of statistical significance (p-
value). For example, the effect of one predictor 
in the above example became nonsignificant 
when weights and sampling design variables 
were applied to the conventional PO model. 

In large-scale survey data, it is common 
to encounter a single sampling unit in a stratum, 
which results in the missing values of estimated 
standard errors in model fitting. This study 
suggests that any of the three single unit options, 
including certainty, scaled and centered, could  
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be used in the PO model to estimate standard 
errors. 

This article focused on the Taylor series 
approximation method for variance estimation. 
For future research, other variance estimation 
methods, such as the balanced repeated 
replication (BRR), the jackknife repeated 
replication (JRR) and the bootstrap method 
should be examined for ordinal logistic 
regression analysis. In addition, other general 
purpose statistical software packages, such as 
SPSS and SAS, may use different procedures or 
parameterizations in fitting PO models with 
complex survey data, which warrants further 
investigation. It is hoped that researchers will 
use the most appropriate models to analyze 
ordinal categorical dependent variables when 
data are collected using complex sampling 
designs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes 
Previous versions of this paper were presented at 
the Modern Modeling Methods Conference in 
Storrs, CT (May, 2012), the Northeastern 
Educational Research Association Annual 
Conference in Rocky Hill, CT (Oct., 2012), and 
2013 Annual Meeting of American Educational 
Research Association (AERA), San Francisco, 
CA (April, 2013). 
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