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Analyzing Group by Time Effects in Longitudinal 
Two-Group Randomized Trial Designs With Missing Data 

 
                   James Algina              H. J. Keselman                 A. R. Othman 
                 University of Florida    University of Manitoba     Universiti Sains Malaysia  
 
 
We investigated bias, sampling variability, Type I error and power of nine approaches for testing the group by 
time interaction in a repeated measures design under three types of missing data mechanisms. One procedure 
due to Overall, Ahn, Shivakumar, and Kalburgi (1999) performed reasonably well over a range of conditions. 
 
Key words: Missing data, random coefficients model, pattern mixture model 
 
 

Introduction 
 
Consider a design in which N participants are 
randomly assigned to 2K =  treatments. The 
researcher plans to observe each participant J 
times on the dependent variable, with the first 
observation prior to initiating a treatment and the 
remaining 1J −  observations following initiation of 
a treatment. 

This design has been referred to as a 
longitudinal two-group randomized trial design 
(Delucchi & Bostrom, 1999), randomized parallel-
groups design (Overall, Ghasser, Shobaki & Fiore, 
1996), or split-plot repeated measures design 
(Littell, Milligan, Stroup, & Wolfinger, 1996; 
Maxwell & Delaney, 1990). The effect of primary 
interest, typically, is whether there are differential 
rates of change over time, that is, whether there is 
a group by time interaction. 
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Let ijkY  denote a random variable 

underlying the score, in treatment k  ( )1,2k = , for 

participant i  ( )1, , ki n= L , on occasion j 

( )1, ,j J= L . A possible model for the subject-
specific regression of the dependent variable on 
time of measurement is 

 
ik ik ikβ ε= +y X  

 
where ( )1 , ,ik i k iJkY Y′ =y L , ikβ  is an unobservable r-
dimensional random vector, ikε  is a J-dimensional 
random vector,  
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and 1 , , Jt tL  indexes time of measurement. We 

assume ( )2~ 0,i k JNε σ I .  
In this paper we focus on situations in 

which it is reasonable to assume that the subject-
specific regressions are well described by a linear 
trend. Therefore  
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and ( )0 1ik ik ikβ β β′ = . The between-subjects model 
for ikβ  is 
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              (1) 

 
where 0z =  for the first treatment and 1 for the 
second treatment. More compactly ikβ γ= +W u . 
We assume that ( )~ ,Nu 0 D .  

In many studies, participants may not be 
observed on all occasions. In general, the correct 
method of analysis depends on the missing data 
mechanism. Using an incorrect method can result 
in inconsistent estimates of the parameters. Little 
(1995) reviewed two different classes of methods 
for use in longitudinal designs. The design 
considered in this paper is a special case of the 
longitudinal design considered by Little. Little 
presented his review in the context of monotone 
missing data patterns, a context we adopt here. 
That is, we assume that if a participant is not 
observed on a particular occasion, the participant 
is not observed on any subsequent occasion. 

  
Random Coefficient Models 

Let ikJ  denote the last occasion at which 
participant i  in group k was observed and 

ikJt  the 
value of t for this time point and iky  be partitioned 

as ( ),  ,  ik obs ik miss ik′ ′ ′=y y y , ikR J=  if the participant 

has complete data, and ik ikR J= , otherwise. The 
first class of methods is the random coefficient 
selection models. According to Little (1995), in 
this approach the joint distribution of iky , ikβ , and 

ikR  is factored as 
 

( )
( ) ( ) ( )

, , | ,

| , , | | , , , .
ik ik ik

ik ik ik ik ik ik

f R

f f f R

=y X W

y X W W X W y

β

β β β
 

 
In our context, the model for ( )| , ,ik ikf βy X W  is  
 

( ) ( )2| , , ~ ,ik ik JNβ γ σ+y X W W Xu I  
 
and  

( ) ( )| ~ ,ik Nβ =W u 0 D . 
 
 The model for ( )| , , ,ik ik ikf R βX W y  is the 
model for the missing data mechanism. The data 
are referred to as missing completely at random 
(MCAR) if  
 

( ) ( )| , , ,ik ik ik ikf R f Rβ =X W y  
 
(see Rubin, 1976; Little, 1995; Little & Rubin, 
1987). That is, the data are MCAR if the 
probability of a particular data point being missing 
does not depend on either iky , ikβ , X  or W . The 
missing data mechanism is called missing at 
random (MAR) if  
 

( ) ( ), , ,  | , , , , | , ,ik obs ik miss ik ik ik obs ikf R f R=X W y y X W yβ

, 
 
that is, the probability of a particular data point 
being missing does not depend on either ,missiky  or 

ikβ . Following Verbeke and Molenberghs (2000, 
p. 213), a missing data mechanism that does not 
meet either of these criteria can be referred to as 
missing not at random (MNAR). Consistent 
estimates for γ  can be obtained from the 
likelihood for ,  obs iky  and ikR . However if the data 
are MCAR or MAR (and if the parameters of the 
missing data mechanism are distinct from the 
parameters for the data), consistent estimates can 
be obtained by maximizing the likelihood 
for ,  obs iky , a process that is called ignoring the 
missing data mechanism. Thus, for the purposes of 
estimating the fixed effects, the missing data 
mechanism is ignorable if the mechanism is 
MCAR or MAR, but the missing data mechanism 
is non-ignorable if the mechanism is MNAR.  

As Hedeker and Gibbons (1997) noted 
“many instances of missing data are related to 
previous performance or other subject 
characteristics...” [See Little (1995, Section 2.2.2) 
and Schafer (1997, Ch. 2) for other examples of 
studies where MAR is a reasonable model of 
missingness]. Accordingly, MAR may very well 
be a reasonable process to presume for the missing 
data in one's study. Again, it should be noted for 
completeness, that in order to legitimately ignore 
the missing data mechanism for estimation 
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random but, as well, the parameters of the missing 
data mechanism must be independent of the 
parameters of the data model (Little, 1995; Little 
& Rubin, 1987; Schafer, 1997). This independence 
or distinctness of parameters is quite realistic in 
many contexts (See Schafer, 1997, pp. 11-15). 
When the missing data mechanism is ignorable, 
numerical results can easily be obtained with 
commercially available software, e.g., the SAS 
PROC (SAS, 1995) MIXED program (See Littell 
et al., 1996). 
 
Pattern Mixture Models 

The second class of models presented by 
Little (1995) is the class of random coefficient 
pattern-mixture models. As Little (1995, p. 1113) 
noted, “Pattern-mixture models stratify the 
population by the pattern of dropout, implying a 
model for the whole population that is a mixture 
over the patterns.” An advantage of this procedure 
is that when drop-out depends on X , W  and ikβ  
but not on iky , the missing data mechanism does 
not have to be explicitly introduced into the 
likelihood function.  

According to Little (1995) , pattern-
mixture models are based on the factorization 

 
( )
( ) ( ) ( )

, , | ,

| , , , | , | .
ik ik ik

ik ik ik ik ik ik

f R

f R f R f R

=y X W

y X W W W

β

β β
  

 
In this expression ( )| , , ,ik ik ikf Rβy X W  models the 
subject-specific regressions stratified by missing 
data pattern, ( )| ,ik ikf Rβ W  models the subject-
specific regression coefficients as a function of the 
between-subjects variables and the missing-data 
pattern, and ( )|ikf R W  models the proportions of 
each missing data pattern as functions of the 
between-subjects variables. The approach stratifies 
the sample by time and missing data pattern and 
models differences in the distributions of the 
dependent variables over these patterns.  
 Little (1995, p. 1118) presented a pattern-
mixture model in which ( )2~ ,i k JNε σ0 I , as in the 
model considered in this paper, and drop-out 
depends on W  and ikβ  but not on iky . In this case 
 
( ) ( )( )2| , , , ~ ,j

ik ik ik ik JR J Nβ γ σ= +y X W W Xu I   (2) 

and  
 
                       ( ) ( )| ~ ,ik Nβ =W u 0 D .                 (3) 

 
The notation ( )jγ  indicates that the fixed effects 
introduced in equation (1) depend on drop-out 
time. Let jkπ  denote the probability that a 
participant in treatment k  drops out after occasion 
j. The pattern-mixture model estimate of the 
treatment effect is 
 

                     ( ) ( )( ) ( )
2 10 11 1 10ˆ ˆ ˆ ˆ ˆj j j

j j
j j

π γ γ π γ+ −∑ ∑ .          (4) 

 
Little pointed out that the ( )jγ  can be estimated in 
PROC MIXED by introducing drop-out time as a 
categorical variable. The standard error can be 
computed using the delta method.  

Another alternative is to use the un-
weighted least squares (UWLS) approach 
presented by Wang-Clow, Lange, Laird, and Ware 
(1995). As Little (1995, p. 1120) noted, UWLS is 
maximum likelihood for the pattern-mixture 
model described in equations (2) and (3). In the 
UWLS approach, the estimated treatment effect is 

 

                             
1 2

1 1 1 2
1 11 2

1 1ˆ ˆ
n n
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β β
= =

−∑ ∑                (5) 

 
where 1

ˆ
ikβ  is the ordinary least squares (OLS) 

estimate of the subject-specific slope for the ith 
subject in the k th group. The standard error of the 
estimated treatment effect is the (2,2) element of  
 

                                    
µ
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where µ ( ) µ12ˆi i iσ −′= +V X X D  and 
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Wang-Clow et al. (1995) showed how to estimate 

2σ̂  and µD  using the method of moments. These 
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quantities can also be estimated by using 
maximum likelihood. 
 Pattern-mixture modeling is potentially an 
important approach to analyzing longitudinal data 
collected in the design considered in this study. 
However, the method does have one drawback. 
The results of simulation studies reported by Wu 
and Carroll (1988), Wu and Bailey (1989), and 
Wang-Clow et al. (1995) indicated that when the 
pattern-mixture model in equations (2) and (3) is 
used the maximum likelihood estimate of the 
treatment effect may be highly inefficient. For 
example, Wang-Clow et al. compared various 
estimation procedures [e.g., un-weighted least 
squares, maximum likelihood, generalized least 
squares) under a number of missing data 
mechanisms (e.g., MAR and MNAR) in a two-
group longitudinal design in which measurements 
were taken over 14 occasions. Wang-Clow et al. 
tabulated the sampling mean and standard 
deviation (sd) of the estimated treatment 
difference between mean slopes (see their Table 
II), and Type I error and power rates for the test of 
the treatment difference between mean slopes (see 
their Table III). 
 The treatment difference between mean 
slopes estimates the treatment effect. With regard 
to their Table II results, the sds for the UWLS 
method were frequently considerably larger than 
the other estimation procedures (e.g., under one of 
their MNAR cases, the UWLS sd was 41.62, while 
the values for the other estimators ranged from 
16.97 to 18.05). The MSE for the UWLS 
estimator, again under one of the MNAR 
mechanisms, was 1730.80, a value much larger 
than those reported for the other estimators (range 
= 320.51-562.47). 
 Consequently, Wang-Clow et al. in their 
summary indicated that “the unweighted estimator 
is too inefficient to merit consideration.” (p. 294). 
(Of course, this conclusion may be limited to the 
conditions of their simulation.) They drew this 
conclusion despite the fact that the pattern-mixture 
model estimator of the treatment effect was 
unbiased in all conditions. Finally, Type I error 
rates were frequently conservative (range 3.2%-
3.8%) and importantly, power to detect differences 
was considerably less than when other estimators 
were used (e.g., 15.3% vs. 10.5%-32%). 
 Hedeker and Gibbons (1997) presented an 
example illustrating application of the pattern-

mixture model approach to data collected in the 
design considered in this paper. Whereas Little’s 
(1995) presentation indicated stratifying 
participants into as many strata as there are 
missing data patterns, Hedeker and Gibbons 
argued that, when the number of participants in 
some of the strata is small, the strata containing 
these participants can be combined. In their 
example, Hedeker and Gibbons had two strata. 
One included all participants who had a 
measurement on the last measurement occasion; 
the other included all other participants. Both 
groups included participants with different missing 
data patterns. 
 The potential problem with this approach 
can be seen by contrasting it with the UWLS 
approach used by Wang-Clow et al. (1995). Recall 
that this approach is maximum likelihood for the 
pattern-mixture model described in equations (2) 
and (3). In UWLS, the OLS estimate of the 
subject-specific slope is calculated for each 
participant. The un-weighted average of these 
slopes is then computed for each treatment group 
and the estimated treatment effect is the difference 
between these averages. The same estimate would 
be obtained if participants were stratified into as 
many strata as there are missing data patterns and 
ML were applied. This follows because the ML 
estimate of the expected value of ikβ  within 
stratum j and treatment group k is 
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where ˆ

ikβ is the OLS estimate of ikβ . When there 
are as many strata as missing data patterns, within 
a stratum and treatment group ˆ

iV  is a constant 

over i  and ˆ
kjB is the un-weighted average of the 

OLS estimates. Then, the estimated treatment 
effect is the second element of 
 

2 2 1 1
ˆ ˆˆ ˆj j j j

j j

B Bπ π−∑ ∑ , 

 
which is equivalent to equations (4) and (5). On 
the other hand, when the strata are combined as 
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suggested by Hedeker and Gibbons, the ˆ
iV  are not 

constant over i  and the ML estimate of the 
expected value of ikβ  within a stratum and 
treatment is a weighted average of the least 
squares estimates of the subject-specific slopes for 
that group. Then, if the expected values of the 
within-subject regression parameters vary over the 
missing data patterns that were combined into the 
missing-data groups, the Hedeker-Gibbons’ 
approach, with two strata, to the pattern-mixture 
model is likely to yield inconsistent estimators 
even when the missing data conform to the 
missing data mechanism assumed by the model in 
equations (2) and (3).   
 The Hedeker and Gibbons (1997) model is 
 
                          0 1ijk ik ik j ijkY tβ β ε= + +                  (7)  

            ( )0 00 01 02 2 03 2 0ik iz z z z uβ λ λ λ λ= + + + × +    (8) 

             ( )1 10 11 12 2 13 2 1ik iz z z z uβ λ λ λ λ= + + + × +     (9) 
 
where 2z  is 0 for participants with complete data 
and 1 otherwise. Using the gamma coefficients 
defined in equation (1), this model can also be 
written explicitly as a pattern-mixture model 
 

                 
( ) ( ) ( )

( ) ( )
2 2 2

2

00 01 10

12 1 0

z z z
ijk j

z
j j j j ijk

Y z t

z t u t u

= + +

+ × + + +

γ γ γ

γ ε
       (10) 

 
where, as in equation (2), the superscript indicates 
the group (drop-out or completer) which the 
parameter describes. Using this notation ( )0

12γ  is the 
treatment effect for the completers (i.e., the Time 
×  Treatment interaction for the completers) and 

( )1
12γ  is the treatment effect for the dropouts. 

Further, 11λ̂  estimates ( )0
12γ  and 13λ̂  estimates 

( ) ( )1 0
12 12γ γ−  (the difference in the Time ×  Treatment 

interaction for the drop-outs and completers). 
Therefore the estimated treatment effect is 

( )11 11 13
ˆ ˆ ˆˆ ˆc dπ λ π λ λ+ +  where ˆcπ  and ˆdπ  are the 

estimated proportion of participants who 
completed and dropped out, respectively. The 
estimated sampling variance is  
 

( ) ( )
2

2 2 13
11 11 13

1 2

ˆˆ ˆˆ ˆ ˆˆ ˆ c d
c dV V

n n
π π λ

π λ π λ λ
×

+ × + +
+

 

where  
 

( ) ( ) ( ) ( )11 13 11 13 11 13
ˆ ˆ ˆ ˆ ˆ ˆ2 ,V V V Cλ λ λ λ λ λ+ = + + , 

 
( )V i  denotes a sampling variance and ( ),C i i  

denotes a sampling covariance. 
 
Alternative Methods 
 A number of other analytic methods, that 
use information about the pattern of missing data, 
have been suggested in the literature and one of 
our goals in this paper is to review alternative 
methods for analyzing effects in longitudinal 
designs in which data are missing; the second goal 
is to report the results of a simulation study which 
compares the methods. 
 Wu and Bailey (1989) presented an 
alternative method, which they called the linear 
minimum variance unbiased estimator. Later 
Wang-Clow et al. (1995) referred to the method as 
the ANCOVA method and we use the latter term 
in this paper. Provided participants are randomly 
assigned to groups and it is reasonable to assume 
that the subject-specific regressions of the 
dependent variable on time of measurement are 
well-described by the simple linear regression 
model, the test of the treatment effect focuses on 
the average slope (i.e., the population average) in 
each treatment. Specifically, to test for a treatment 
effect one tests whether the average slopes are 
equal for the treatment groups. Wu and Bailey 
proposed the following procedure: 
 
 1. Use OLS to estimate the slope for each 
participant in each treatment group. 
 
 2. Using the estimated slopes as the 
dependent variable, conduct an ANCOVA with 
treatment group as the between-subjects factor of 
interest. Wu and Bailey discussed including two 
types of covariates. The first is the time point after 
which the participant dropped out and the second 
comprises the pretreatment score on the variable 
of interest and other pretreatment measures that 
may be available. In this paper we investigate the 
model without the second type of covariate, as did 
Wu and Bailey and Wang-Clow et. al (1995). 
However, we also investigate a related procedure 
due to Overall, Ahn, Shivakumar, and Kalburgi 
(1999) that includes the pretest as the covariate. 
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 Wu and Bailey showed that the error 
variance in this model will vary over dropout 
times and presented a weighted least squares 
procedure for estimation and hypothesis testing. 
The test for the treatment effect (i.e., the group ×  
time interaction) is the test of the treatment factor 
in the ANCOVA. In calculating the weights, Wu 
and Bailey assumed  
 

( )~ ,ik k kNβ B D . 
 
Wu and Bailey presented method of moment 
estimators for kD  and 2σ . Alternatively, 
maximum likelihood estimates for kD  and 2σ can 
be obtained by using PROC MIXED: 
 
proc mixed method=ml; 
class id group; 
model score=time group 
group*time/solution; 
random intercept time/type=un 
subject=id group=group; 
 
The following are definitions of the variables used 
in the code: 
 

• id-a categorical variable identifying 
the participant  

 
• group-a categorical variable 

identifying the treatment group  
 

In the random statement the code group=group 
specifies that the covariance matrix for the 
intercept and slope varies across treatment groups. 

The procedure described by Wu and 
Bailey (1989) is fairly complicated to implement 
because of the necessity of estimating the weights 
and inserting them in a weighted least squares 
procedure. However, we show that a related 
procedure can be easily implemented in PROC 
MIXED. Wu and Bailey proposed using the 
following model to compare treatment groups: 

 

1 10 11
ˆ

ikik k J iktβ λ λ δ= + + . 
 

They compare the groups by using 
 

10 11
ˆ ˆ

k ktλ λ+ , 

where kt  is the average of 
ikJt  for the k th group. If 

the model 
 

( )1 10 11 12
ˆ

ikik J k ikt t zβ λ λ λ δ= + − + +   (11) 

 
is estimated, then  
 

( ) ( )12 102 101 11 2 1
ˆ ˆ ˆ ˆ t tλ λ λ λ= − + − . 

 
 An alternative to equation (11) is 
 

( )1 10 11 12 1ikik J k it t z uβ λ λ λ= + − + + . (12) 

 
Readers familiar with multilevel models will 
recognize this model as a level-2 model for the 
slope in the level-1 equation 
 

0 1ijk ik ik j ijkY tβ β ε= + + .    (13) 
  
We also formulate a level-2 model for the 
intercept:  
 

( )0 00 01 02 0ikik J k it t z uβ λ λ λ= + − + + .   (14) 

 
The approach presented by Wu and Bailey 

(1989) does not include an equation for the 
intercept. Nevertheless, we include it because 
Bryk and Raudenbush (1992) have noted that 
omitting variables in one level-2 model can impact 
estimates in a second equation because of the 
correlated error terms for the level-2 models. By 
including ( )

ikJ kt t−  in equations (12) and (14), the 

model conditions on the missing data pattern and 
the model can be formulated as a pattern-mixture 
model. 

PROC MIXED can estimate the model 
represented by equations (12) to (14). The PROC 
MIXED program we suggest using is:  

 
proc mixed method=ml; 
class id group; 
model score=lobsc group time 
time*lobsc time*group/solution; 
random intercept time/type=un 
subject=id group=group; 
 



ALGINA, KESELMAN, & OTHMAN 56 

The variable lobsc is ( )
ikJ kt t− . The inclusion of 

lobsc and time*lobsc is intended to improve 
estimation and testing when drop-out depends on 
W  and ikβ  as in Little’s (1995) pattern-mixture 
model presented in equations (2) and (3). If the 
data are MCAR or MAR valid estimates can be 
obtained with these terms excluded.   

Overall et al. (1999) investigated an 
analysis similar to the pre-post score analysis 
advocated by Delucchi and Bostrom (1999), 
namely an endpoint analysis involving a simple 
change score from baseline to the last available 
measurement (p. 206). Their endpoint analysis is a 
two-stage procedure. At stage-one they obtained a 
simple change score from baseline to last available 
measurement and apply these change scores in an 
ANCOVA, again using pretest score on Y 
( )1i kY and the number of available measurements 

for participant i  ( )ikJ as covariates: 

( )1 0 1 2 3 1ijk i k ik i k ikY Y J z Yλ λ λ λ δ− = + + + + . 
 Overall et al. (1999) employed pretest 
scores and number of available measurements as 
covariates because Overall et al., (1996) had 
shown that these covariates were necessary to 
control the Type I error rate in conditions where 
participants who drop out early show less change 
from the pretest than do later dropouts and 
completers.  

Overall et al. (1999, pp. 205-209) also 
investigated an ANCOVA approach implemented 
by using PROC MIXED, though their approach 
differs from Wu and Bailey (1989). They included 
the pretest score on Y and the number of available 
measurements for participant i  as covariates in 
order to have the same type of covariate control 
that they had in their change score analysis. Their 
model is 

 
0 1ijk ik ik j ijkY tβ β ε= + +  

0 00 01 02 03 1 0ik ik i k iJ z Y uβ λ λ λ λ= + + + +  

1 10 12 1ik iz uβ λ λ= + + . 
 
Substituting the right hand sides of the equations 
for the intercept and slope into the equation for the 
observed data 
 

00 01 02 03 1

10 12 0 1

ijk ik i k

j j i i j ijk

Y J z Y

t z t u u t

= + + +

+ + × + + × +

λ λ λ λ

λ λ ε
, 

 
we see that pretest scores appear in the model both 
as dependent variable scores and as independent 
variable scores. As Overall et al. (1999, pp. 213-
214) and Ahn, Tonidandel, and Overall (2000, 
pp.278-279) pointed out, use of this model has not 
been without controversy. A less controversial 
alternative is to include the pretest as a covariate, 
but to exclude pretest score from the dependent 
variable. However, simulations conducted by 
Overall et al. indicated that the more controversial 
procedure worked adequately for testing the group 
× time interaction. 
 Moreover, Ahn et al. compared the more 
controversial and less controversial procedure and 
showed that both had similar Type I error rates for 
testing the group × time interaction, but the 
procedure developed by Overall and his colleagues 
had better power. PROC MIXED code for the 
Overall et al. model is 
 
proc mixed method=ml; 
class id group; 
model score=nrm t1 group time 
time*group/solution; 
random intercept time/type=un 
subject=id; 
 
The variable nrm is the number of measurements 
available for a participant. The variable t1 is the 
pretest score. There are three major differences 
between our code and theirs. First the time of last 
observation (nrm) is not centered. Second t1 is 
included in their model but not in ours. Third, the 
time by nrm interaction is excluded in their model.  

Finally, Overall et al. (1999) investigated 
a two-stage ANCOVA procedure. They again used 
the pretest score on Y and the number of available 
measurements for participant i  as covariates. Like 
the Wu and Bailey (1989) approach, Overall et al. 
used OLS in stage 1 to estimate the subject-
specific regression coefficients. The slopes were 
multiplied by 

ikJt  and then used in a second stage 
ANCOVA model: 

 

1 10 11 12 13 1ikj ik ik i k ikt J z Yβ λ λ λ λ δ= + + + +
)

. 
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 Thus, the previously described analyses 
can be used to analyze the important group by 
time interaction effect in longitudinal designs in 
which data are missing. In this report we compare 
these methods because prior research either had 
not compared all the procedures just enumerated 
in one study under a common set of manipulated 
conditions, or, the comparisons were not made on 
all of the measures we assess. These measures are 
rates of Type I error and power for the test of 
equality of average slopes, bias in the difference in 
the average slopes, and the variability in 
estimating this difference. 
 

Method 
 

Nine methods of examining the group by time 
interaction effect in a between by within subjects 
repeated measures design were examined. 
Specifically, the methods (with their acronyms) 
were: 
 
(1) the PROC MIXED analysis that presumes the 
data are missing at random (PMMAR), 
(2) the un-weighted least squares (pattern-mixture) 
analysis (UWLS), 
(3) Hedeker and Gibbons’ (1997) approach to 
estimating the pattern-mixture model (HGPMM), 
(4) Overall et al.'s (1999) PROC MIXED analysis 
that uses t1 and nrm as covariates (OPMAOC), 
(5) Wu and Bailey's (1989) ANCOVA 
implemented in PROC MIXED (WBPMAOC), 
(6) the weighted least squares ANCOVA 
presented by Wang-Clow et al. (1995), where the 
weights for the weighted least squares part of the 
analysis are obtained from PROC MIXED 
(WLSAOC), 
(7) the weighted least squares ANCOVA 
presented by Wang-Clow et al. (1995), where the 
weights for the weighted least squares part of the 
analysis are obtained through the method of 
moments (See Wu & Bailey, 1998, p. 945) 
(WLSAOCMM),  
(8) Overall et al.'s (1999) two-stage ANCOVA 
(OTSAOC), and 
(9) Overall et al.'s (1999) two-stage endpoint 
ANCOVA (OEPAOC). 
 

In the UWLS method standard errors were 
calculated by using the procedure presented in 
equation (6). However, 2σ  and D were estimated 

by maximum likelihood rather than the method of 
moments.  

We investigated two factors in our study: 
number of equally spaced levels of the repeated 
measures variable (5 and 9) and missing data 
mechanism (MCAR, MAR and MNAR). Overall 
and his colleagues (See Ahn, Tonidandel & 
Overall, 2000; Overall et al., 1999; Overall et al., 
1996) examined the group by time interaction 
effect in a parallel-groups design containing a 
baseline score and eight additional repeated 
measurements; thus, for comparative purposes we 
had nine levels for one of our cases of number of 
repeated measurements. Overall and his colleagues 
designed their investigation to mirror design 
characteristics in clinical trials where a large 
number of repeated measurements would not be 
unusual. However, in behavioral science research, 
nine levels of the repeated measures variable may 
not be typical. Accordingly, we also included a 
smaller case, that is, five levels. 

To compare the procedures, we simulated 
data for a situation in which participants are 
randomly assigned to treatments. We used the 
following equation to generate data for the ith 
participant, in group k  on the jth occasion: 

 
0 1ijk i i j ijkY tβ β ε= + + . 

 
In each treatment group, data were simulated for 
100 participants. The variable jt  was coded (0, 
0.23077, 0.46154, 0.69231, 0.92308, 1.15385, 
1.38462, 1.61538, 1.84615). To get the codes for 
conditions with five time points we eliminated the 
last four codes. 
 The mean for 0iβ  was 50 in both groups, 
implying that both treatment groups had the same 
population pretest mean. For Type I error data, the 
mean for the slope was 4.5 in treatment 1 and 
treatment 2 [ 11 0γ = , where 11γ  is defined in 
equation (1)], indicating identical average rates of 
increase over time, hence, a null condition. For our 
power comparisons, the slope was 9.0 in treatment 
2 and 4.5 in treatment 1 ( 11 4.5γ = ) when there 
were nine occasions and 12.5 in treatment 2 and 
4.5 in treatment 1 ( 11 8γ = ) when there were five 
occasions. The slopes for treatment 2 were 
selected to provide similar power for both levels of 
the number of occasions factor. The errors ( ijkε ) 
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were assumed to be uncorrelated for different 
times of observation. This does not imply that the 
scores were uncorrelated over time. Allowing the 
slope and intercept to vary across participants 
implies that scores were correlated over time. The 
variance for the residuals, conditional on time, was 
240. In all cases the covariance matrix (D) for the 
intercept and slope was 
 

15.21 -12.42
-12.42 82.81

 
=  

 
D . 

 
The correlation between the slope and intercept 
was -.35, indicating that participants with higher 
pretest status increased less rapidly. We also 
replicated the entire study changing the covariance 
to 12.42 from -12.42 and retaining all other 
features of the design. Notable differences that 
emerged between the two sets of conditions will 
be highlighted in the Results section.  

Without further complications to the 
method, the ANCOVA methods can only be 
applied to participants who have at least two 
observations and was formulated for the situation 
in which the missing data occur in a monotone 
pattern. That is, once a participant drops out, 
subsequent measurements are not available. 
Therefore in our simulated data, every participant 
had an observation at the pretest and the first two 
follow-up occasions. 
 Once the data were generated, data were 
eliminated according to a MCAR, a MAR, or one 
of two MNAR missing data mechanisms. As 
indicated in our introduction, when the missing 
data mechanism is MNAR, ignoring the 
mechanism can result in inconsistent estimates of 
the unknown parameters. Accordingly, unlike 
Delucchi and Bostrom (1999), we compared 
approaches under a MCAR, a MAR, and two 
MNAR mechanisms. To select missing 
observations we used the following model 
 

( )1 2 0 3 1 4 51ijk j i i ijki j kZ Y Yθ θ β θ β θ θ−= + + + + . 

An observation was set as missing if ( )ijk ijkU Zφ<  
where ijkU  is a uniformly distributed random 

variable and φ  is the standard normal distribution. 
The missing data mechanism is MCAR if 

2 3 4 5 0θ θ θ θ= = = = , MAR if 2 3 5 0θ θ θ= = =  and 
MNAR if 2θ , 3θ , or 5θ  is not equal to zero. In one 
MNAR mechanism only 2θ  and 3θ  were not equal 
to zero (MNAR-SI). This mechanism meets the 
assumption required for the pattern-mixture model 
in equations (2) and (3) to yield consistent 
estimates. In the other MNAR mechanism, only 5θ  
was not equal to zero (MNAR-Y). The values of 

1 jθ  were selected to give cumulative missing data 
rates between 30% and 40% at the ninth occasion.  

Figure 1 shows estimated proportions of 
participants remaining in the study at each 
occasion in the non-null condition with nine time 
points under the MCAR, MAR, MNAR-SI and 
MNAR-Y mechanisms. To obtain these estimates, 
100,000 data points were generated for each 
treatment group. (For the MCAR mechanism, a 
total of 100,000 data points were generated since 
in our MCAR condition the dropout rate was the 
same in both treatments.) For our MAR condition 
the probability of dropping out at occasion j was 
positively related to the participant's score at 
occasion 1j − . For our MNAR-SI condition the 
probability of dropping out at occasion j was 
positively related to the participant's intercept and 
slope. For our MNAR-Y condition the probability 
of dropping out at occasion j was positively related 
to the score the participant would have attained at 
occasion j if the participant had not dropped out. 
Thus in all panels of Figure 1, except the top right, 
drop-out rates are higher for the treatment with the 
average slope equal to 9 (treatment 2). 

Drop out rates vary across type of missing 
data mechanism; however, because we will 
compare methods for a particular mechanism, and 
not the performance of a method across 
mechanisms, this variation in drop out rates across 
mechanisms is not problematic. Each condition 
was replicated 2,500 times. All hypotheses were 
conducted with a nominal alpha of .05. 
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Figure 1. Percent of Data that is Not Missing by Occasion and Missing Data Mechanism  

 
Results 

 
Tabled results are for conditions in which the 
correlation between the slope and intercept was 
negative. Important differences that emerged when 
the correlation between the slope and intercept 
was positive will be noted in the text. 

Type I error rates and power are reported 
in Table 1 for the MCAR and MAR conditions 
and in Table 2 for the MNAR conditions. All 
procedures exhibited adequate control of the Type 
I error rate. However, when the missing data 
mechanism was MAR and the correlation between 
the slope and intercept was positive 
WLSAOCMM, WLSAOC, and WBPMAOC had 
higher Type I error rates than those reported in 
Table 1. These error rates were .067. 068, and 
.069, respectively, when the number of time points 

was five and .076, .112, and .115 for nine time 
points. Although in some conditions, UWLS, 
HGPMM, and/or OEPAOC were competitive with 
the other procedures in terms of power, they 
generally had lower power than the other 
procedures. Excluding HGPMM, UWLS, and 
OEPAOC from consideration, under the MCAR 
and MAR conditions, power differences were 
fairly small among the remaining methods. In the 
MCAR conditions, OTSAOC and PMMAR had 
the highest power estimates; in the MAR 
conditions WBPMAOC had the best power 
estimates. The slight advantage of WBPMAOC 
relative to PMMAR may reflect the fact that 
WBPMAOC resulted in treatment effect 
estimators with a positive bias (see Table 5) when 
the data were MAR, whereas, as expected 
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theoretically, PMMAR provided a consistent 
estimator of the treatment effect.  

In the MNAR conditions the methods 
seem to separate into two groups; PMMAR, 
UWLS, OTSAOC, and OEPAOC tended to have 
lower power than the other procedures. Among 
OPMAOC, WBPMAOC, WLSAOC, and 
WLSAOCMM, WBPMAOC tended to have the 
highest power in MNAR-SI while WBPMAOC 
and OPMAOC tended to have the highest power in 
MNAR-Y. 

The slope difference ( 11γ ) can be 
estimated by all procedures except OTSAOC and 
OEPAOC. For each condition in the study, the 
slope difference was estimated by using each of 
the remaining six methods. Table 3 contains 
means and standard deviations of these estimates 
for the MCAR and MAR conditions when 11 0γ = . 
Table 4 contains the same information for the 
MNAR conditions. When 11 0γ = , none of the 
procedures had an average estimate that was 
significantly different from zero. In Tables 3 and 
4, UWLS and HGPMM tended to have larger 
standard deviations than the other procedures. The 
standard deviations for the remaining four 
procedures were similar in size. 

Table 5 contains means and standard 
deviations of these estimates for the MCAR and 
MAR conditions when 11 0γ ≠ ; Table 6 contains 
the same information for the MNAR conditions. 
Bold entries are average estimated slope 
differences that were significantly different from 
the population slope difference. The results 
suggest that all of the procedures are unbiased 
when the data were MCAR. When the data were 
MAR, only PMMAR did not show any significant 
evidence of bias. For the condition with five time 
points OPMAOC and HGPMM were not 
significantly biased. This finding probably reflects 
the larger standard error for the condition with five 
time points: For each of HGPMM and OPMAOC, 
the amount of estimated bias was similar when 
there were five and nine time points. When the 
covariance between the slope and intercept was 
positive, HGPMM exhibited more bias 
(average 11ˆ 7.680γ =  for five time points and 

11ˆ 3.967γ = for nine time points).  

In the MNAR-SI condition, missingness 
depends on the subject-specific intercepts and 
slopes and the pattern-mixture model presented in 
equations (2) and (3) is expected to result in a 
consistent estimator of the slope difference. As 
expected from theory, the UWLS procedure did 
not result in significant evidence of bias. 
HGPMM, which is also intended to be unbiased 
under MNAR-SI, was substantially biased. In fact 
HGPMM exhibited the second largest amount of 
bias, following PMMAR. WBPMAOC, 
WLSAOC, WLSAOCMM were also intended to 
be unbiased under MNAR-SI. WLSAOCMM was 
unbiased and WLSAOC exhibited a small but 
significant bias for nine time points. WBPMAOC 
was biased but its bias was much smaller than that 
for HGPMM.  

In the MNAR-Y condition missingness 
depends on the participant’s score at occasion j; 
under MNAR-Y none of the procedures were 
expected to result in consistent estimators of the 
slope difference. PMMAR exhibited substantial 
bias for both five and nine time points. The other 
procedures had fairly large bias when there were 
five time points and less bias when there were nine 
time points. When the covariance between the 
slope and intercept was positive HGPMM was 
substantially biased when there were five 
measurement occasions; the average value of 11γ̂  
was 7.12. 

The other procedures exhibited less 
evidence of bias in the positive covariance case 
than in the negative covariance case. Although 
OPMAOC did not exhibit significant evidence of 
bias when there were nine measurement occasions 
and a negative covariance, OPMAOC was 
substantially biased when the covariance between 
the slope and intercept was positive with an 
average value for 11γ̂  of 4.04. 

In both Tables 5 and 6 the standard 
deviations for UWLS and HGPMM are larger than 
for the other procedures which most likely 
accounts for their relatively poor power. The 
remaining procedures have similar standard 
deviations. 
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Table 1. Type I Error and Power Rates for MCAR and MAR Conditions. 

 
Missing Data  5-levels 9-levels 
Mechanism Method Type I Error Power Type I Error Power 

MCAR PMMAR 0.052 0.663 0.052 0.669 
 UWLS 0.052 0.612 0.052 0.419 

 HGPMM 0.053 0.631 0.054 0.577 

 OPMAOC 0.052 0.658 0.055 0.662 

 WBPMAOC 0.053 0.650 0.051 0.662 

 WLSAOC 0.052 0.647 0.050 0.654 

 WLSAOCMM 0.052 0.645 0.049 0.620 

 OTSAOC 0.052 0.711 0.050 0.669 

 OEPAOC 0.050 0.625 0.050 0.554 

      
MAR PMMAR 0.056 0.638 0.054 0.630 

 UWLS 0.054 0.564 0.051 0.371 
 HGPMM 0.047 0.555 0.048 0.473 

 OPMAOC 0.055 0.645 0.053 0.645 

 WBPMAOC 0.057 0.665 0.073 0.687 

 WLSAOC 0.057 0.658 0.067 0.670 

 WLSAOCMM 0.055 0.654 0.053 0.624 

 OTSAOC 0.050 0.642 0.045 0.585 

 OEPAOC 0.048 0.574 0.047 0.444 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation; OTSAOC- Overall et al.’s two-stage ANCOVA; OEPAOC- Overall 
et al.’s two-stage endpoint ANCOVA analysis. 
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Table 2. Type I Error and Power Rates for MNAR Conditions. 
 
Missing Data  5-levels 9-levels 
Mechanism Method Type I 

Error 
Power Type I Error Power 

MNAR-SI PMMAR 0.052 0.446 0.046 0.396 
 UWLS 0.049 0.449 0.045 0.236 

 HGPMM 0.053 0.364 0.044 0.273 

 OPMAOC 0.056 0.531 0.048 0.505 

 WBPMAOC 0.055 0.618 0.056 0.649 

 WLSAOC 0.056 0.581 0.055 0.579 

 WLSAOCMM 0.056 0.575 0.043 0.525 

 OTSAOC 0.052 0.261 0.041 0.249 

 OEPAOC 0.045 0.228 0.045 0.198 

      
MNAR-Y PMMAR 0.052 0.493 0.049 0.497 

 UWLS 0.042 0.435 0.049 0.258 

 HGPMM 0.046 0.488 0.053 0.430 

 OPMAOC 0.048 0.556 0.051 0.607 

 WBPMAOC 0.046 0.552 0.050 0.588 

 WLSAOC 0.050 0.528 0.049 0.532 

 WLSAOCMM 0.049 0.520 0.042 0.478 

 OTSAOC 0.048 0.449 0.045 0.435 

 OEPAOC 0.046 0.422 0.051 0.336 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation; OTSAOC- Overall et al.’s two-stage ANCOVA; OEPAOC- Overall 
et al.’s two-stage endpoint ANCOVA analysis. 
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Table 3. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ = ): MCAR and MAR Conditions. 
 
Missing data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 

MCAR PMMAR 0.008 3.402 -0.023 1.947 
 UWLS -0.028 3.625 -0.032 2.588 
 HGPMM -0.014 3.572 -0.029 2.150 

 OPMAOC 0.005 3.408 -0.022 1.971 

 WBPMAOC 0.006 3.417 -0.023 1.961 

 WLSAOC 0.004 3.416 -0.021 1.967 

 WLSAOCMM 0.004 3.417 -0.021 1.972 

      
MAR PMMAR 0.019 3.449 0.051 1.959 

 UWLS 0.006 3.875 0.084 3.000 
 HGPMM 0.006 3.725 0.075 2.248 

 OPMAOC 0.016 3.472 0.057 1.972 

 WBPMAOC 0.009 3.542 0.030 2.116 

 WLSAOC 0.013 3.541 0.045 2.109 

 WLSAOCMM 0.010 3.538 0.046 2.113 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. 
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Table 4. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ = ): MNAR Conditions. 
 

Missing Data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 
MNAR-SI PMMAR 0.000 3.523 0.012 1.950 

 UWLS 0.086 4.008 -0.053 3.206 
 HGPMM 0.063 3.903 0.016 2.376 

 OPMAOC 0.028 3.545 -0.003 1.993 

 WBPMAOC 0.025 3.538 0.014 2.007 

 WLSAOC 0.033 3.551 -0.013 2.037 

 WLSAOCMM 0.035 3.554 -0.012 2.042 

      
MNAR-Y PMMAR -0.043 3.520 -0.028 1.968 

 UWLS -0.008 3.860 -0.045 3.105 
 HGPMM -0.066 3.783 -0.024 2.351 

 OPMAOC -0.044 3.480 -0.022 1.956 

 WBPMAOC -0.046 3.482 -0.021 1.936 

 WLSAOC -0.042 3.499 -0.023 1.970 

 WLSAOCMM -0.040 3.497 -0.020 1.978 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. 
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Table 5. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ ≠ ): MCAR and MAR Conditions. 
 

Missing Data  5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MCAR PMMAR 8.036 3.357 4.501 1.895 

 UWLS 8.094 3.597 4.542 2.560 
 HGPMM 8.109 3.558 4.495 2.082 

 OPMAOC 8.046 3.365 4.511 1.907 

 WBPMAOC 8.026 3.381 4.503 1.899 

 WLSAOC 8.032 3.381 4.513 1.901 

 WLSAOCMM 8.033 3.382 4.514 1.902 

      
MAR PMMAR 8.006 3.544 4.489 1.969 

 UWLS 8.253 3.993 4.805 3.031 
 HGPMM 7.862 3.833 4.311 2.235 

 OPMAOC 8.137 3.567 4.618 1.986 

 WBPMAOC 8.374 3.645 4.888 2.124 

 WLSAOC 8.338 3.644 4.865 2.113 

 WLSAOCMM 8.334 3.644 4.863 2.117 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation.  Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Table 6. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ ≠ ): MNAR Conditions. 
 

Missing Data  
 

5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MNAR-SI PMMAR 6.606 3.671 3.411 2.037 

 UWLS 7.978 4.391 4.394 3.509 
 HGPMM 6.992 4.344 3.660 2.541 

 OPMAOC 7.489 3.676 4.057 2.052 

 WBPMAOC 8.318 3.733 4.809 2.082 

 WLSAOC 8.069 3.737 4.588 2.127 

 WLSAOCMM 8.066 3.739 4.582 2.136 

      

MNAR-Y PMMAR 6.893 3.437 3.964 1.997 
 UWLS 7.395 3.978 4.301 3.320 
 HGPMM 7.667 3.868 4.405 2.390 

 OPMAOC 7.477 3.452 4.455 1.996 

 WBPMAOC 7.491 3.439 4.379 1.994 

 WLSAOC 7.310 3.476 4.194 2.051 

 WLSAOCMM 7.309 3.477 4.202 2.052 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation.  Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Additional Conditions and Results 

Our results indicate that UWLS can 
be inefficient and have low power. As noted 
earlier the sampling variance of the UWLS 
estimator of the slope difference is the (2,2) 

element of 
µ

2
i

k i kn∑∑ V
 where 

µ ( ) µ12ˆi i iσ −′= +V X X D  and therefore depends 
on the relative sizes of the contributions of 

( ) 12ˆ i iσ −′X X  and µD . This being the case, in 
order to increase the generalizability of our 
results, we expanded our study by 
conducting additional simulations in which 
the X matrix used to generate the data 

 
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

 ′ =  
 

X  

rather than 
 

1 1 1 1 1 1 1 1 1
0 .23 .46 .69 .92 1.15 1.38 1.61 1.85

 ′ =  
 

X . 

These simulations were limited to 
MCAR and MNAR-SI missing data 
mechanisms. For the MAR and MNAR-Y 
missing data mechanisms in our study, it is 
not possible to change the initial X matrix 
without either increasing the rate of missing 
data or reducing the dependence of the 
missing data indicator on the variables in the 
missing data model to maintain the rates of 
missing data that occurred with the original 
X matrix. In either case, the change in the X 
matrix would be confounded with another 
feature of the data. For these simulations we 
used 1000 replications. All other features of 
the simulation were unchanged. Given that 
we only changed was the X matrix, the 
change simulates conducting a study over a 
longer time period.  

In the MCAR and MNAR-SI 
conditions with the X matrix, all procedures 
controlled the Type I error rate well. The 
same result was found with the revised X 
matrix except when the covariance between 
the slope and intercept was positive and the 
data were MNAR-SI. Then WLSAOCMM, 
WLSAOC, and WBPMAOC had higher 

Type I error rates than with the original X 
matrix. The error rates were .072, .072, and 
.076, respectively, when the number of time 
points was five and .078, .083, and .084 for 
nine time points.  

In general, with the new X matrix 
the UWLS procedure was more competitive 
in terms of sampling variability (see Tables 
7 and 8, which contain results for the 
condition with a negative correlation 
between the slope and intercept) and thus in 
power. Thus, contrary to the results in 
Wang-Clow et al. (1995), UWLS can be 
reasonably efficient in some situations. 
Apparently, the efficiency improves as the 
sampling variance of the OLS estimators of 
the within-subjects regression model 
improves, as might happen when data are 
collected over a longer time span. 

With the initial X matrix, UWLS 
was unbiased, as expected, in the MNAR-SI 
condition but HGPMM exhibited substantial 
bias when 11 0γ ≠  and therefore had less 
power. This result also occurred with the 
revised X matrix (see Table 8).  

PMMAR performed well in the 
MCAR condition in terms of bias and 
power. As expected from theory, PMMAR 
performed less well in the MNAR-SI 
condition. In particular, when 11 0γ ≠ , 
PMMAR exhibited evidence of bias and was 
not among the more powerful procedures. 
Similar results occurred with the revised X 
matrix (see Table 8). 
 With the initial X matrix, 11 0γ ≠ , 
and MNAR-SI missing data mechanisms, 
OPMAOC, tended to show evidence of bias, 
with bias ranging from 6% to 17% of the 
population slope difference. The bias was 
reduced with the revised X matrix, ranging 
from 3% to 5%. Similarly WBMAOC 
tended to show evidence of bias with the 
original X matrix, with bias ranging from 
2% to 7%. Bias was reduced with the 
revised X matrix. In the MNAR-SI 
condition WLSAOC, and WLSAOCMM 
tended to exhibit very little bias and this was 
true with the revised X matrix also (see 
Table 8). 



ALGINA, KESELMAN, & OTHMAN 68 

  
 
Table 7. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group for the revised X matrix and 11 0γ = : MCAR and MNAR-SI Conditions. 
 

Missing Data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 

MCAR PMMAR 0.017 1.486 0.075 1.386 
 UWLS 0.019 1.501 0.060 1.399 
 HGPMM 0.017 1.509 0.070 1.390 
 OPMAOC 0.023 1.488 0.069 1.387 
 WBPMAOC 0.016 1.487 0.078 1.388 
 WLSAOC 0.019 1.488 0.076 1.387 
 WLSAOCMM 0.019 1.488 0.076 1.387 
      

MNAR-SI PMMAR 0.011 1.453 -0.002 1.389 
 UWLS 0.001 1.527 -0.017 1.485 
 HGPMM -0.002 1.468 0.007 1.385 
 OPMAOC 0.010 1.476 -0.001 1.406 
 WBPMAOC 0.008 1.494 -0.011 1.418 
 WLSAOC 0.009 1.492 -0.009 1.420 
 WLSAOCMM 0.009 1.492 -0.009 1.421 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Table 8. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group for the revised X matrix and 11 0γ ≠ : MCAR and MNAR-SI Conditions. 
 

Missing Data  5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MCAR PMMAR 8.024 1.438 4.462 1.307 
 UWLS 8.017 1.457 4.468 1.342 
 HGPMM 8.013 1.468 4.464 1.320 
 OPMAOC 8.022 1.442 4.462 1.313 
 WBPMAOC 8.024 1.437 4.461 1.309 
 WLSAOC 8.024 1.439 4.461 1.309 
 WLSAOCMM 8.024 1.439 4.461 1.309 
      

MNAR-SI PMMAR 7.545 1.515 4.218 1.366 
 UWLS 7.964 1.600 4.497 1.476 
 HGPMM 6.999 1.621 3.867 1.413 
 OPMAOC 7.751 1.533 4.304 1.378 
 WBPMAOC 8.106 1.534 4.561 1.380 
 WLSAOC 8.030 1.538 4.520 1.388 
 WLSAOCMM 8.025 1.538 4.518 1.387 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Conclusion 

 
The purpose of our article  was to introduce 
and examine a number of methods of 
analysis for longitudinal designs in which 
data may be missing. Random coefficients 
selection models may be used to obtain 
estimates of parameters when data are not 
completely observed, that is when data are 
missing. As Little (1995) and others have 
noted, when random coefficients selection 
models are used, biased estimates can result 
if the data are MNAR and the missing data 
mechanism is not accounted for in the 
estimation procedure. An alternative method 
is random coefficients pattern-mixture 
modeling due to Little. 
 Little has presented a random 
coefficients pattern-mixture model that 
yields consistent estimators of the fixed 
effects when the missing data mechanism is 
MNAR-SI (i.e., the pattern of missingness is 
predictable from the random coefficients). 
Because recent evidence suggests that this 
pattern-mixture model can result in 
inefficient estimates, we presented and 
examined other methods of analysis that, 
also according to the literature, may result in 
better estimation of unknown parameters 
and which take MNAR-SI missingness into 
account in their analyses. In particular, we 
investigated methods due to Wu and Bailey 
(1988, 1989) and Wang-Clow et al. (1995). 
We also investigated several methods due to 
Overall et al. (1999) and we included the 
random coefficients selection model that 
ignores the missing data mechanism and an 
implementation of Little’s pattern-mixture 
model that is due to Hedeker and Gibbons 
(1997). 

All procedures except WBMAOC, 
WLSAOC, and WLSAOCMM controlled 
the Type I error rates well in all conditions. 
The latter three procedures had elevated 
Type I error rates in several conditions, 
although the elevation was severe only when 
there were nine time points. Even with nine 
time points, WLSAOCMM performed 
reasonably well, with a maximum Type I 
error rate of .076 for a nominal .05 test. 

WBMAOC and WLSAOC performed 
reasonably well when there were five time 
points with maximum estimated Type I error 
rates of .076 and .072 respectively.  

Although no single procedure 
dominated the other in terms of power, 
WBMAOC tended to be among the more 
powerful procedures in all conditions. This 
occurred in conditions in which WBMAOC 
controlled the Type I error rate well in 
addition to the conditions in which it did 
not. Procedures that tended to be 
competitive with WBMAOC over a range of 
conditions were OPMAOC, WLSAOC, and 
WLSAOCMM. 

All procedures produced estimators 
that were unbiased when the population 
treatment effect was null. Thus in the 
following all references to bias refer to 
conditions in which the treatment effect was 
non-null. UWLS was unbiased in MCAR 
and MNAR-SI conditions and had 
reasonably small biases in the other 
conditions. Consistent with evidence 
reported by Wu and Bailey (1989) and 
Wang-Clow et al. (1995), our results 
indicate that UWLS can be inefficient and 
have low power in some conditions. 
However, our results also indicate that 
UWLS can be competitive with the other 
procedures in terms of efficiency and power. 
The improved performance for UWLS 
occurred when the design permitted more 
accurate OLS estimates of the within-subject 
slopes. In these conditions, the standard 
errors produced by UWLS were fairly 
similar to those produced by PMMAR. 
Therefore a comparison of standard errors 
may be a useful diagnostic for determining 
when UWLS should be used.   

HGPMM can be inefficient and 
have low power in some conditions though 
it tends to be as or more efficient that 
UWLS. And like UWLS, efficiency and 
power for HGPPM improved when the 
design permitted more accurate OLS 
estimates of the within-subject slopes. 
Unlike UWLS, HGPMM produced a 
substantially biased estimate of the 
treatment effect in the MNAR-SI condition. 
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This is a serious weakness because the 
pattern-mixture model is designed to be 
unbiased in the MNAR-SI condition. It 
should be noted, however, that the bias of 
the Hedeker and Gibbons’ approach might 
improve if participants with different 
missing data patterns were combined into 
several missing data groups based on the 
similarity of the time points at which the 
data were missing. In addition if, within 
each treatment group, the expected value of 
the slope is the same for all participants with 
incomplete data, then the Hedeker and 
Gibbons’ approach should result in an 
unbiased estimator of the treatment effect.  

WBMAOC tended to have levels of 
bias similar to UWLS except with the 
original X matrix in the MNAR-SI 
condition. Then WBMAOC was slightly 
more biased. Similarly, OPMAOC also 
tended to have levels of bias similar to those 
of UWLS except in the MNAR-SI condition 
with the original X matrix. Then it tended to 
exhibit more bias than WBMAOC. 
WLSAOC and WLSAOCMM tended to 
have levels of bias similar to UWLS except 
with the original X matrix, nine 
measurement occasions, and the MNAR-Y 
missing data mechanism. Then WLSAOC 
and WLSAOCMM were more biased than 
UWLS, WBMAOC, and OPMAOC. 
PMMAR was unbiased in MCAR and MAR 
conditions, but exhibited fairly substantial 
bias in the MNAR conditions. 
 Our analyses of bias, sampling 
variability, Type I error and power indicated 
that no one procedure performed best for all 
missing data mechanisms. Clearly if one 
were to have valid information about the 
type of missing data, the information should 
be taken into account in selecting a 
procedure. Nevertheless, in our view, the 
Overall et al. (1999) ANCOVA (OPMAOC) 
performed better than the others over the 
range of conditions considered in the 
research, even though in any particular 
condition it may have been outperformed by 
one of the remaining procedures. The main 
drawback in OPMAOC was its negative bias 
in the MNAR-SI conditions; this bias made 
it less competitive in terms of power with 

other procedures, in particular with the Wu 
and Bailey (1989) procedure 
(WLSAOCMM), the Wu and Bailey 
procedure implemented with our PROC 
MIXED program (WBPMAOC), and the 
Wang-Clow et al. (1995) ANCOVA 
procedure with weights estimated using 
results from PROC MIXED (WLSAOC).  

WLSAOCMM also tended to 
perform well in terms of bias, sampling 
variability, Type I error and power over a 
range of conditions. Its main weakness was 
a somewhat elevated Type I error rate in 
some conditions. However, its maximum 
estimated Type I error rate was .078. 
WBPMAOC and WLSAOC performed well 
when there were five time points, but 
showed elevated Type I error rates in some 
conditions with nine time points. Because 
these procedures tended to be among the 
most powerful in conditions in which they 
controlled the Type I error rate, they may be 
attractive when there are relatively few time 
points.  

Of course, as is true of all empirical 
studies, the generalizability of our results is 
limited by the design of the study. The 
procedures may perform differently if 
different models for dropping out are 
adopted. Of particular interest are conditions 
in which the parameters for the missing data 
model vary across treatment groups. 
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