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Normality is a distributional requirement of classical test statistics. In order for the test 
statistic to provide valid results leading to sound and reliable conclusions this 
requirement must be satisfied. In the not too distant past, it was claimed that violations of 
normality would not likely jeopardize scientific findings (See Hsu & Feldt, 1969; Lunney, 
1970). Recent revelations suggest otherwise (See e.g., Micceri, 1989; Keselman, Huberty, 
Lix et al., 1998; Erceg-Hurn, Wilcox, & Keselman, 2013; Wilcox and Keselman, 2003; 
Wilcox, 2012a, b). Unfortunately the data obtained in psychological investigations rarely, 
if ever, meet the requirement of normally distributed data (Micceri, 1989; Wilcox, 2012a, 
b). Consequently, it could be the case that the results from many of the investigations 
conducted in psychology provide invalid results. Accordingly, authors recommend that 
researchers attempt to assess the validity of assuming data are normal in form prior to 
conducting a test of significance (Erceg-Hurn, et al., 2013; Keselman, et al., 1998). 
Present evidence suggests that a popular fit-statistic, the Kolmogorov-Smirnov test does a 
poor job of evaluating whether data are normal. Our investigation based on this statistic 
and other fit-statistics provides a more favorable picture of preliminary testing for 
normality. 
 
Keywords: Assessing normality, fit statistics, g-and-h non-normal skewed and 
kurtotic data, contaminated mixed-normal distributions; outlying value(s), Likert scales  
 

Introduction 

Psychological researchers are often reminded that the validity of their statistical 
tests and the conclusions derived from these tests depends to a great extent on 
whether the derivational assumptions of the test procedures have been satisfied 
(e.g., See Keselman, Huberty, Lix et al., 1998; Wilcox, 2012a, b; Wilcox & 
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Keselman, 2003). Consequently, though not a common practice, researchers are 
still reminded about assessing derivational assumptions (See Erceg-Hurn, Wilcox, 
& Keselman, 2013; Kirk, 2013; Schoder, Himmelmann & Wilhelm, 2006; Wilcox 
& Keselman, 2003). Almost all inferential methods require that in the 
population(s) the data is (are) normally distributed (as well as other requirements 
not relevant to this paper). Violation of the normality assumption can have a 
deleterious effect on the Type I error rate of test statistics (See Wilcox, 2012a, b; 
Wilcox & Keselman, 2003). Although the Type I error rate is widely viewed as 
being relatively unaffected by non-normality, Bradley (1980) has pointed out 
conditions in which this is not true. This finding is also evident in the findings of 
recent studies and published texts (e. g., See Hempel, Ronchetti, & Rousseeuw, 
1986; Huber & Ronchetti, 2009; Maronna, Martin, & Yohai, 2006; Micceri, 1989; 
Schoder, et al., 2006; Staudte & Sheather, 1990; Wilcox, 2012a, b; Wilcox & 
Keselman, 2003).  
 Applied researchers can examine plots of their data and/or perform tests to 
assess the assumption, i. e., normality. Evaluating graphs (e.g., box-plots, stem-
and-leaf, box and whisker, QQ plots) of ones data to assess whether data are 
normally distributed can be problematic since the determination relies on a 
subjective assessment (Wilk & Gnanadesikan, 1968). Thus, this practice is 
oftentimes not typically used when assessing the shape of the distribution of data 
(See Schoder, et al., 2006). Researchers tend to prefer exact methods based on 
formal tests for normality such as the Kolmogorov-Smirnov (K-S) goodness-of-fit 
statistic (See Muller & Fetterman, 2002, Chapter 7). Furthermore, researchers 
commonly use the result from a goodness-of-fit test to determine whether the 
normality of classical test procedures is satisfied thus providing legitimacy to the 
use of a classical test statistic. Consequently, preliminary testing for normality or 
any distributional shape is quite important in the whole inferential process and has 
been discussed in various contexts (See e.g., Cardoso de Oliveira & Ferreira, 
2010; Doornik & Hansen, 2008; Sürücü, 2006). However, if the assumption of 
normality does not appear to be satisfied, researchers use this information to 
select alternative procedures such as nonparametric methods. Thus, it is important 
to know how well a preliminary test for normality, e. g., the K-S test, works in 
detecting non-normal data.  

Unfortunately, according to Schoder, Himmelman, and Wilhelm (2006) 
“The Kolmogorov-Smirnov test performs badly on data with single outliers, 10% 
outliers, and skewed data at sample sizes <100.” (p. 757) These authors 
investigated the performance of the K-S test for four types of non-normal data 
(e.g., normal distribution with a single outlier, normal distribution with 10% 
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outliers, skewed lognormal distribution with varying skewness, and an ordinal 5-
point Likert scale with varying multinomial probabilities) and varying sample size 
in a pretest-posttest design. The assessment for normality was conducted at a 5% 
significance level. Unfortunately, the results tabled by Schoder et al. do not 
support the use of the K-S test as a preliminary test to assess normality of the data.  

Because it is strongly believed that validity assumptions such as normality 
should be verified before adopting a classical test of significance that assumes the 
data in the population is normal in shape, it important to replicate the findings 
reported by Schoder, Himmelmann, and Wilhelm (2006) and extend their study in 
important ways. (For a contrary view previously noted in this journal, see 
Sawilowsky, 2002, p. 466-467). Other goodness-of-fit statistics are available (see, 
e.g., Muller & Fetterman, 2002, Chapter 7). Accordingly, a simulation study was 
conducted investigating three goodness-of-fit statistics, varying the degree of non-
normality with other distributional shapes not investigated by Schoder, 
Himmelmann, and Wilhelm (2006), using sample sizes more likely to be 
encountered in psychological and educational research. 

Method 

Specifically, in this study the following are manipulated: (1) the procedure used to 
assess shape of distribution [K-S, Cramer-von Mises (CvM), Anderson-Darling 
(A-D)] fit-statistics (available through the SAS system), (2) the shapes of 
distributions (26 cases—14 g-and-h distributions, 8 contaminated normal mixture 
models, and 4 multinomial models), (3) the sample sizes (20, 40, and 80), 
depending on distribution, and (4) the level of significance for the fit-statistics 
(i.e., .05,.10, .15 and .20)=α . 

Most statistical packages (e.g., the SAS system) provide numerous fit 
statistics. Accordingly, it is possible that other tests other than the K-S can 
adequately assess whether normality, or other distributions, exists in the data. The 
SAS system was used to implement the K-S, CvM, and A-D fit-statistics. The 
choices of non-normal distributions are modifications from Schoder, 
Himmelmann and Wilhelm (2006) and Zimmerman (1998). Schoder, et al. (2006) 
investigated a normal distribution with a single outlier, a normal distribution with 
10% outliers, skewed lognormal distributions with varying skewness, and an 
ordinal 5-point Likert scale with varying multinomial probabilities (common they 
state in dermatological investigations). Many non-normal distributions were 
investigated via g-and-h distributions (See Headrick, Kowalchuk, & Sheng, 2008; 
Hoaglin, 1983; 1985; Kowalchuk & Headrick, 2010; Tukey, 1960). These 
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distributions with their values for skewness and kurtosis are enumerated in Table 
1. A substantial number of values of g and h were chosen to cover as broad a 
spectrum of non-normal distributions that could occur in psychological and 
behavioral science experiments (e.g., See Keselman, Huberty, Lix et al., 1998; 
Micceri, 1989; Wilcox, 2012a, b). 
 
Table 1. g-and h-distributions examined in the simulation study with their corresponding 
measures of skewness and kurtosis 
 

Distribution Skewness Kurtosis 
 

  Distribution Skewness Kurtosis 
g=0,h=.05 0.00 0.82    g=.4,h=0 1.32 3.26 

g=0,h=.075 0.00 1.49    g=.6,h=0 2.26 10.27 

g=0,h=.1 0.00 2.51    g=1,h=0 6.19 110.94 

g=0,h=.125 0.00 4.16    g=.2, h=.1 1.08 5.50 

g=0,h=.15 0.00 7.17    g=.4,h=.1 2.45 20.30 

g=0,h=.2 0.00 33.22    g=.6,h=.1 4.69 89.80 

g=.2, h=0 0.61 0.68    g=.8,h=.1 9.27 603.61 

 
Table 2. Contaminated mixed-normal distributions used in the power studies of the three 
goodness-of-fit-tests for normality 
 

  Outliers 

n Distribution Distance (in standard 
Deviations) Number 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 

20 (.90)N(0,1) + (.10)N(0,25) 5 2 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 

20 (.90)N(0,1) + (.10)N(0,100) 10 2 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 

40 (.90)N(0,1) + (.10)N(0,25) 5 4 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 

40 (.90)N(0,1) + (.10)N(0,100) 10 4 

80 (.9875)N(0,1) + .(0125)N(0,25) 5 1 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 
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The SAS system was used on a Sun Fire X4600 M2 x64 server: 8 x AMD 
Opteron Model 8220 processor (2.8GHz-dual-core) to generate g- and-h data, by 
modifying standard normal variates ~ (0,1)Z N  to non-normal variates by 
specifying values of g and h in the following quantile functions: 
 

 
2

,
exp( ) 1( ) ( ) exp ,

2
 −

= =  
 

g h
gZ hZq Z q Z
g

  (1) 

 

 ,0
exp( ) 1( ) ( ) ,−

= =g
gZq Z q Z
g

  (2) 

 

 
2

0, ( )( )  exp
2

 
= =  

 
h Z

hZq Z q Z   (3) 

 

Equations (2) and (3) generate lognormal and symmetric h distributions, 
respectively. As Kowalchuk and Headrick (2010) noted “The parameter ±g  
controls the skew of a distribution in terms of both direction and magnitude. The 
parameter h controls the tail weight or elongation of a distribution and is 
positively related with kurtosis.” (p. 63). As well, Type I error rates were 
investigated when data were obtained from a normal distribution [ 0= =g h , the 
standard normal distribution (skewness and kurtosis = 0)].  

A number of different contaminated mixed-normal distributions were 
examined, such as those reported in Zimmerman (1998). Contaminated mixed-
normal distributions have one or more outlying values that deviate from the 
central mean of the distribution by some amount measured in standard deviation 
units. For example, Zimmerman examined a mixed normal distribution consisting 
of samples from (0,1)N with probability .95 and from (0,400)N  with 
probability .05. Tukey (1960) suggested that outliers are a common occurrence in 
distributions and others have indicated that skewed distributions frequently depict 
psychological data (e.g., reaction time data). Accordingly, eight contaminated 
mixed normal distributions were examined that had one, two, or four outlying 
values which were five or ten standard deviations from the mean value. These 
distributions are enumerated in Table 2.  

Finally, like Schoder, Himmelmann and Wilhelm (2006), a 5-point Likert 
scale was simulated; such data is frequently gathered in psychological (e.g., from 
clinical, personality, and social psychological investigations) and other behavioral 
science investigations. The same conditions investigated by Schoder et al. (2006) 
were investigated. Specifically,  
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1) even distribution (p=.02 for each category 0-4);  
2) symmetric distribution 

( 0 1 2 3 40.1,  0.2,  p 0.4,  0.2,  0.1)= = = = =p p p p  ;  
3) moderately skewed distribution  

( 0 1 2 3 40.5,  0.3,  0.15,  0.04,  0.01)= = = = =p p p p p  ; and  
4) heavily skewed distribution  

( 0 1 2 3 40.7,  0.2,  p 0.06,  0.03,  0.01)= = = = =p p p p  .  
 

Thus, for the 5-point Likert scale data there were 4 multinomial distributions 
that were simulated (See Table 3). 
 
Table 3. Multinomial distributions based upon Schoder, Himmelmann, and Wilhelm’s 
(2006) probabilities simulated as a five-point Likert Scale 
 

  Even Symmetric Moderately 
Skewed Heavily Skewed 

n (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) 

20 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 

40 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 

80 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 
 

The same number of sample size conditions as Schoder, Himmelmann, and 
Wilhelm (2006) were not investigated, but a reasonable range of values (i.e., n = 
20,40,80) were includled, depending on the condition investigated. Specifically,  

 
(i) for the 14 g- and h- distributions, and 2 contaminated normal 

distributions, .95N(0,1) + .05N(0, k), k=25, 100, sample sizes of 20, 
40 and 80 were chosen.  

(ii) For 2 contaminated normal distributions, .9N(0,1) + .1N(0,k), k=25, 
100, sample sizes of 20 and 40 were chosen.  

(iii) For 2 contaminated normal distributions, .975N(01) + .025N(0,k), 
k=25, 100, sample sizes of 40 and 80 were chosen. 

(iv) For 2 contaminated normal distributions, .9875N(0,1) + .0125N(0,k), 
k=25, 100, sample size of 80 was chosen.  

 
Lastly, because in preliminary testing it would be quite important to guard 

against a Type II error (falsely accepting the null hypothesis that the data are 
normal in form), we selected significance levels of .10 , .15, and .20, in addition 
to the standard .05. Each condition in the investigation was replicated 5,000 times. 
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Table 4. Power rates for the goodness-of-fit test on normality (n = 20). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0524 0.1082 0.1530 

Kolmogorov-
Smirnov 

 
g=0,h=.05 0.00 0.82 0.0726 0.1304 0.1834 

 
g=0,h=.075 0.00 1.49 0.0870 0.1540 0.2094 

 
g=0,h=.1 0.00 2.51 0.1066 0.1838 0.2392 

 
g=0,h=.125 0.00 4.16 0.1320 0.2156 0.2726 

 
g=0,h=.15 0.00 7.17 0.1626 0.2502 0.3100 

 
g=0,h=.2 0.00 33.22 0.2296 0.3194 0.3834 

 
g=.2, h=0 0.61 0.68 0.1030 0.1678 0.2286 

 
g=.4,h=0 1.32 3.26 0.2436 0.3506 0.4262 

 
g=.6,h=0 2.26 10.27 0.4450 0.5662 0.6416 

 
g=1,h=0 6.19 110.94 0.7852 0.8648 0.9008 

 
g=.2, h=.1 1.08 5.50 0.1662 0.2530 0.3100 

 
g=.4,h=.1 2.45 20.30 0.3218 0.4204 0.4842 

 
g=.6,h=.1 4.69 89.80 0.5018 0.6026 0.6642 

  g=.8,h=.1 9.27 603.61 0.6698 0.7602 0.8096 

  
 

Normal* 0.00 0.00 0.0494 0.1036 0.1490 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.0752 0.1368 0.1952 

 
g=0,h=.075 0.00 1.49 0.0970 0.1658 0.2260 

 
g=0,h=.1 0.00 2.51 0.1286 0.1996 0.2632 

 
g=0,h=.125 0.00 4.16 0.1608 0.2426 0.3038 

 
g=0,h=.15 0.00 7.17 0.1990 0.2842 0.3400 

 
g=0,h=.2 0.00 33.22 0.2756 0.3580 0.4232 

 
g=.2, h=0 0.61 0.68 0.1100 0.1814 0.2444 

 
g=.4,h=0 1.32 3.26 0.3082 0.4064 0.4872 

 
g=.6,h=0 2.26 10.27 0.5570 0.6590 0.7204 

 
g=1,h=0 6.19 110.94 0.8822 0.9268 0.9484 

 
g=.2, h=.1 1.08 5.50 0.1990 0.2826 0.3454 

 
g=.4,h=.1 2.45 20.30 0.3808 0.4730 0.5370 

 
g=.6,h=.1 4.69 89.80 0.5922 0.6728 0.7216 

  g=.8,h=.1 9.27 603.61 0.7594 0.8552 0.8626 

    Normal* 0.00 0.00 0.0494 0.1036 0.1490 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.0810 0.1456 0.2040 

 
g=0,h=.075 0.00 1.49 0.1090 0.1816 0.2378 

 
g=0,h=.1 0.00 2.51 0.1444 0.2162 0.2766 

 
g=0,h=.125 0.00 4.16 0.1784 0.2582 0.3200 

 
g=0,h=.15 0.00 7.17 0.2182 0.2992 0.3590 

 
g=0,h=.2 0.00 33.22 0.2924 0.3798 0.4386 

 
g=.2, h=0 0.61 0.68 0.1222 0.1966 0.2584 

 
g=.4,h=0 1.32 3.26 0.3388 0.4456 0.5258 

 
g=.6,h=0 2.26 10.27 0.6012 0.6988 0.7528 

 
g=1,h=0 6.19 110.94 0.9086 0.9448 0.9602 

 
g=.2, h=.1 1.08 5.50 0.2190 0.2984 0.3610 

 
g=.4,h=.1 2.45 20.30 0.4084 0.4968 0.5590 

 
g=.6,h=.1 4.69 89.80 0.6168 0.6972 0.7444 

  g=.8,h=.1 9.27 603.61 0.7876 0.8474 0.8766 
 
*Type 1 error rates 
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Table 5. Power rates for the goodness-of-fit test on normality (n = 40). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0524 0.1082 0.1530 

Kolmogorov-
Smirnov 

 
g=0,h=.05 0.00 0.82 0.0726 0.1304 0.1834 

 
g=0,h=.075 0.00 1.49 0.0870 0.1540 0.2094 

 
g=0,h=.1 0.00 2.51 0.1066 0.1838 0.2392 

 
g=0,h=.125 0.00 4.16 0.1320 0.2156 0.2726 

 
g=0,h=.15 0.00 7.17 0.1626 0.2502 0.3100 

 
g=0,h=.2 0.00 33.22 0.2296 0.3194 0.3834 

 
g=.2, h=0 0.61 0.68 0.1030 0.1678 0.2286 

 
g=.4,h=0 1.32 3.26 0.2436 0.3506 0.4262 

 
g=.6,h=0 2.26 10.27 0.4450 0.5662 0.6416 

 
g=1,h=0 6.19 110.94 0.7852 0.8648 0.9008 

 
g=.2, h=.1 1.08 5.50 0.1662 0.2530 0.3100 

 
g=.4,h=.1 2.45 20.30 0.3218 0.4204 0.4842 

 
g=.6,h=.1 4.69 89.80 0.5018 0.6026 0.6642 

  g=.8,h=.1 9.27 603.61 0.6698 0.7602 0.8096 

  
 

Normal* 0.00 0.00 0.0564 0.1068 0.1542 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.0950 0.1622 0.2212 

 
g=0,h=.075 0.00 1.49 0.1332 0.2094 0.2746 

 
g=0,h=.1 0.00 2.51 0.1860 0.2692 0.3328 

 
g=0,h=.125 0.00 4.16 0.2448 0.3314 0.3996 

 
g=0,h=.15 0.00 7.17 0.3132 0.4012 0.4722 

 
g=0,h=.2 0.00 33.22 0.4490 0.5294 0.5908 

 
g=.2, h=0 0.61 0.68 0.1936 0.2786 0.3474 

 
g=.4,h=0 1.32 3.26 0.5528 0.6618 0.7352 

 
g=.6,h=0 2.26 10.27 0.8628 0.9116 0.9360 

 
g=1,h=0 6.19 110.94 0.9948 0.9980 0.9990 

 
g=.2, h=.1 1.08 5.50 0.3286 0.4220 0.4894 

 
g=.4,h=.1 2.45 20.30 0.6394 0.7218 0.7738 

 
g=.6,h=.1 4.69 89.80 0.8728 0.9120 0.9308 

  g=.8,h=.1 9.27 603.61 0.9664 0.9798 0.9866 

    Normal* 0.00 0.00 0.0564 0.1024 0.1556 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.1036 0.1724 0.2326 

 
g=0,h=.075 0.00 1.49 0.1504 0.2278 0.2968 

 
g=0,h=.1 0.00 2.51 0.2082 0.2978 0.3612 

 
g=0,h=.125 0.00 4.16 0.2766 0.3678 0.4288 

 
g=0,h=.15 0.00 7.17 0.3460 0.4326 0.4960 

 
g=0,h=.2 0.00 33.22 0.4740 0.5620 0.6216 

 
g=.2, h=0 0.61 0.68 0.2130 0.3046 0.3750 

 
g=.4,h=0 1.32 3.26 0.6130 0.7160 0.7776 

 
g=.6,h=0 2.26 10.27 0.8946 0.9398 0.9586 

 
g=1,h=0 6.19 110.94 0.9974 0.9988 0.9998 

 
g=.2, h=.1 1.08 5.50 0.3556 0.4522 0.5194 

 
g=.4,h=.1 2.45 20.30 0.6698 0.7510 0.7956 

 
g=.6,h=.1 4.69 89.80 0.8958 0.9252 0.9444 

  g=.8,h=.1 9.27 603.61 0.9738 0.9858 0.9890 
 
*Type 1 error rates 
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Table 6. Power rates for the goodness-of-fit test on normality (n = 80). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0534 0.1082 0.1580 

Kolmogorov-
Smirnov 

 
g=0,h=.025 0.00 0.35 0.0696 0.1314 0.1828 

 
g=0,h=.05 0.00 0.82 0.0968 0.1742 0.2252 

 
g=0,h=.075 0.00 1.49 0.1446 0.2318 0.2980 

 
g=0,h=.1 0.00 2.51 0.2114 0.3172 0.3928 

 
g=0,h=.125 0.00 4.16 0.3012 0.4194 0.4934 

 
g=0,h=.15 0.00 7.17 0.3950 0.5154 0.5958 

 
g=0,h=.2 0.00 33.22 0.5904 0.6938 0.7526 

 
g=0,h=.225 0.00 154.84 0.6736 0.7624 0.8098 

 
g=.2, h=0 0.61 0.68 0.2530 0.3758 0.4494 

 
g=.4,h=0 1.32 3.26 0.7334 0.8334 0.8792 

 
g=.6,h=0 2.26 10.27 0.9692 0.9872 0.9936 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.4448 0.5604 0.6296 

 
g=.4,h=.1 2.45 20.30 0.8196 0.8870 0.9132 

  
 

g=.6,h=.1 4.69 89.80 0.9762 0.9882 0.9932 

    g=.8,h=.1 9.27 603.61 0.9982 1.0000 1.0000 

  
 

Normal* 0.00 0.00 0.0558 0.1030 0.1512 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.1194 0.1872 0.2480 

 
g=0,h=.075 0.00 1.49 0.1896 0.2740 0.3442 

 
g=0,h=.1 0.00 2.51 0.2792 0.3834 0.4538 

 
g=0,h=.125 0.00 4.16 0.3912 0.4936 0.5570 

 
g=0,h=.15 0.00 7.17 0.5004 0.5990 0.6626 

 
g=0,h=.2 0.00 33.22 0.6914 0.7654 0.8128 

 
g=.2, h=0 0.61 0.68 0.3172 0.4314 0.5108 

 
g=.4,h=0 1.32 3.26 0.8526 0.9082 0.9372 

 
g=.6,h=0 2.26 10.27 0.9950 0.9980 0.9990 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.5402 0.6346 0.6942 

 
g=.4,h=.1 2.45 20.30 0.8926 0.9302 0.9498 

 
g=.6,h=.1 4.69 89.80 0.9928 0.9968 0.9982 

  g=.8,h=.1 9.27 603.61 1.0000 1.0000 1.0000 

    Normal* 0.00 0.00 0.0548 0.1046 0.1526 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.1316 0.2112 0.2694 

 
g=0,h=.075 0.00 1.49 0.2158 0.3046 0.3804 

 
g=0,h=.1 0.00 2.51 0.3196 0.4220 0.4946 

 
g=0,h=.125 0.00 4.16 0.4328 0.5290 0.5996 

 
g=0,h=.15 0.00 7.17 0.5420 0.6396 0.7004 

 
g=0,h=.2 0.00 33.22 0.7270 0.7960 0.8358 

 
g=.2, h=0 0.61 0.68 0.3606 0.4802 0.5604 

 
g=.4,h=0 1.32 3.26 0.8982 0.9430 0.9608 

 
g=.6,h=0 2.26 10.27 0.9976 0.9996 0.9998 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.5816 0.6692 0.7234 

 
g=.4,h=.1 2.45 20.30 0.9104 0.9424 0.9608 

 
g=.6,h=.1 4.69 89.80 0.9942 0.9976 0.9986 

  g=.8,h=.1 9.27 603.61 1.0000 1.0000 1.0000 
 
*Type 1 error rates 
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Table 7. Number of times the g- and h- non-normal power values are equal to or greater 
than .80 for the fit-statistics (K-S, CvM, and A-D) 
 

  n K-S CvM A-D   

α = .05 
20 0 1 1 

 40 3 4 4 
 80 5 6 6 
   Total 8 11 11 30 

 
          

α = .10 
20 1 2 2 

 40 4 4 4 
 80 6 7 8 
   Total 11 13 14 38 

 
          

α = .15 
20 2 2 2 

 40 4 4 5 
 80 7 8 8 

   Total 13 14 15 42 

 
          

α = .20 
20 --- 2 2 

 40 --- 5 6 
 80 --- 8 8 
   Total --- 15 16 31* 

      Grand Total 
 

53 56 
             

 
Note: --- and *: PROC UNIVARIATE in SAS does not provide exact p-values for K-S at α = .20 

Results 

g- and h- Non-normal Distributions 
Table 4 presents Type I error and power rates for the K-S, CvM, and A-D fit-
statistics when sample size was 20. A number of conclusions can be drawn from 
this table. First, Type I error was controlled for each level of significance. Second, 
for the non-normal alternatives investigated, the K-S was typically the least 
powerful procedure, followed by CvM, and the A-D is typically most powerful. 
Also evident from the data is that for kurtotic data, none of the procedures 
displayed reasonable power (i.e., >.80). Although for skewed and kurtotic data the 
fit-statistics were only reasonably powerful for extreme departures from normality. 
As expected, power to detect non-normal distributions increased with more liberal 
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levels of significance; we excluded the .20=α  values from the tables since the 
values are naturally larger than those reported for the other significance levels 
examined. 

For moderate sample size case (See Table 5) the same pattern of results 
held; however, the fit-statistics had more power to detect non-normal data when 
sample size was 40. Finally, the same pattern of results occurred for our largest 
investigated sample size of 80 (See Table 6). And as expected the power to detect 
non-normal data increased with the increase in sample size. 

To summarize the findings for the g-and-h non-normal distributions 
examined in this study we provide in Table 7 a count of the number of times the 
power values were equal to or greater than .80 across the simulated conditions. 
Over the significance levels that can be used with the K-S test (i.e., 

.05,.10,  and .15)=α  the A-D procedure was most powerful to detect non-normal 
distributions, followed closely by CvM and then by K-S. Clearly the A-D is most 
sensitive of the three. Also most evident is that the power to detect non-normal 
distributions is affected by the level of significance as would be expected. Also 
evident is that contrary to the warning given by Schoder, Himmelmann, and 
Wilhelm (2006) researchers can detect non-normal distributions with sample sizes 
less than 100 (80 in our case). 

Contaminated Mixed-Normal Distributions 
The power rates for the contaminated normal distributions for the three fit-
statistics, K-S, CvM, and A-D are contained in Tables 8, 9, and 10, respectively. 
As we found for the g- and- h non-normal data, the A-D fit-statistic was most 
powerful for detecting normal data with outlying values than both the CvM and 
K-S fit-statistics. And, as expected, power increased with sample size and level of 
significance. Indeed, to a large extent the reported power values are in reasonably 
close proximity to .80 for most of the contaminated normal distributions 
examined. Furthermore, again, as expected the power values were largest when 
the level of significance was > .05. 

Likert Non-normal data 
The final type of non-normal data that we investigated was data that is obtained 
when five-point Likert scales are used in measuring the dependent variable. 
Subjects in the investigations indicate their preference, liking, attitude, etc. on five 
point type scales (e.g., very unfavorable, unfavorable, neutral, pleasant, very 
pleasant). Such responses obviously cannot be normally distributed. 
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Table 8. Power of the Kolmogorov-Smirnov goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.3238 0.4040 0.4568 

20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.4950 0.5748 0.6270 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6022 0.6526 0.6866 

20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8164 0.8566 0.8782 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.2898 0.3670 0.4240 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.4630 0.5424 0.5988 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.7050 0.7748 0.8144 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.5838 0.6462 0.6864 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8160 0.8520 0.8732 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9660 0.9768 0.9818 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.2472 0.3210 0.3804 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.4144 0.5006 0.5572 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.6754 0.7482 0.7852 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.5436 0.6052 0.6464 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.7874 0.8288 0.8546 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9606 0.9714 0.9778 

 
 
Table 9. Power of the Cramer-von Mises goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.3692 0.4362 0.4844 
20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.5582 0.6220 0.6700 
20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6386 0.6844 0.7164 
20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8534 0.8802 0.8962 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.3374 0.4000 0.4590 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.5346 0.6018 0.6428 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.7776 0.8264 0.8540 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.6250 0.6698 0.7028 
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Table 9, continued. Power of the Cramer-von Mises goodness-of-fit test on normality of 
data for contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Numb
er  α =.05  α =.10  α =.15 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8478 0.8716 0.8864 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9784 0.9836 0.9868 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.2928 0.3596 0.4150 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.4884 0.5548 0.6086 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.7534 0.8002 0.8298 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.5924 0.6366 0.6714 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.8258 0.8580 0.8768 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9736 0.9800 0.9836 

 
Table 10. Power of the Anderson-Darling goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.4024 0.4650 0.5136 

20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.5974 0.6596 0.6994 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6688 0.7100 0.7368 

20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8704 0.8922 0.9076 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.3802 0.4466 0.4944 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.5860 0.6432 0.6854 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.8174 0.8558 0.8762 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.6572 0.7000 0.7276 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8664 0.8920 0.9056 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9824 0.9866 0.9896 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.3356 0.4050 0.4576 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.5460 0.6138 0.6574 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.8036 0.8440 0.8694 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.6284 0.6726 0.7042 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.8568 0.8830 0.8990 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9792 0.9850 0.9886 
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Table 11. Power of the goodness–of-fit test on normality of data for multinomial data 
representing five-point Likert scale scores 
 

Kolmogoroc-Smirnov* 

Even 

 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.2742 0.4490 0.5630  
 

10 (.1, .2, .4, .2, .1) 0.4568 0.6164 0.7212  

20 (.2, .2, .2, .2, .2) 0.6368 0.8248 0.8918  
 

20 (.1, .2, .4, .2, .1) 0.8132 0.9390 0.9606  

40 (.2, .2, .2, .2, .2) 0.9978 1.0000 1.0000    40 (.1, .2, .4, .2, .1) 0.9998 1.0000 1.0000   

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.7629 0.9176 0.9530  
 

10 (.7, .2, .06, .03, .01) 0.9747 0.9905 0.9971  

20 (.5, .3, .15, .04, .01) 0.9970 0.9992 1.0000  
 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000  

40 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000    40 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000   

             
Cramer-von Mises 

Even 
 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.2610 0.4000 0.5348 0.6620 

 

10 (.1, .2, .4, .2, .1) 0.4520 0.5596 0.7008 0.7714 

20 (.2, .2, .2, .2, .2) 0.6710 0.9060 0.9946 1.0000 

 

20 (.1, .2, .4, .2, .1) 0.8494 0.9664 0.9986 1.0000 

40 (.2, .2, .2, .2, .2) 0.9978 1.0000 1.0000 1.0000  40 (.1, .2, .4, .2, .1) 1.0000 1.0000 1.0000 1.0000 

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.8501 0.9134 0.9734 0.9814 

 

10 (.7, .2, .06, .03, .01) 0.9825 0.9916 0.9981 0.9988 

20 (.5, .3, .15, .04, .01) 0.9998 1.0000 1.0000 1.0000 

 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

40 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000 1.0000  40 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

             
Anderson-Darlingb 

Even 
 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.3202 0.5086 0.6220 0.7250 

 

10 (.1, .2, .4, .2, .1) 0.4248 0.5820 0.6628 0.7898 

20 (.2, .2, .2, .2, .2) 0.8420 0.9888 1.0000 1.0000 

 

20 (.1, .2, .4, .2, .1) 0.8668 0.9916 1.0000 1.0000 

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.8996 0.9526 0.9738 0.9928 

 

10 (.7, .2, .06, .03, .01) 0.9897 0.9969 0.9988 0.9996 

20 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000 1.0000 

 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

 
*PROC UNIVARIATE does not allow α = .20 for the Kolmogorov-Smirnov test. 
bThe power values for non-tabled n = 40 values are all 1.000 



PRELIMINARY TESTING FOR NORMALITY: A GOOD PRACTICE? 

16 

Table 11 provides power rates for the three fit-statistics for detecting non-
normality arising from using a Likert scale for assessing the dependent variable. 
Preliminary findings indicated that power values were 100% for sample sizes 
greater than 20 in the vast majority of cases. Thus, it was decided to include a 
smaller sample size case (i.e., 10)=n  to examine power values for a relatively 
modest number of subjects. The findings are quite positive; that is, in just about 
every case examined, the power to detect non-normality is > .80. Indeed, out of 
the 106 tabled values 83 are greater in value than .80. Once again, the A-D 
statistic provides the best power values, followed by CvM, and then by K-S. 

Discussion 

Applied researchers use statistical tests to assess whether or not the effect of an 
experimental manipulation is significant. Unfortunately, the results of many of 
these investigations are suspect as they often involve the use of statistical 
procedures with questionable validity. In these cases, the reported effects may be 
misleading or, in many cases, wrong. Clearly, such erroneous decisions can have 
serious negative consequences for both the advancement of knowledge in a given 
field as well as the effective translation of research results into practice. The intent 
of this paper was to examine whether one can effectively test whether one’s data 
confirms to the validity assumption of normality—a requirement for most 
classical test statistics. Prior research suggested that one could not use the 
Kolmogorov-Smirnov goodness-of-fit test to effectively test whether data were 
normally distributed or not (See e.g., Schoder, Himmelmann, and Wilhelm, 2006).  

We looked into this negative finding by also investigating other fit statistics, 
the Cramer von Mises and Anderson-Darling tests (See Muller & Fetterman, 2002 
Chapter 7), varying the skewness and kurtosis values of numerous g-and h-
distributions, examining a number of contaminated mixed-normal distributions 
and examining results when the dependent variable was obtained from non-
normal five-point Likert data. We also manipulated sample sizes (n = 20,40,80 
and the level of significance for the test of normality .05,.10, .15 and .20).=α   

Of the three fit-statistics we found that the Anderson-Darling procedure was 
most effective in detecting non-normality being superior to both the Kolmogorov-
Smirnov and Cramer-von Mises tests. We also determined that one could 
reasonably detect non-normality with reasonable sample sizes (n = 10,20,40), 
unlike what was reported by Schoder, Himmelmann, and Wilhelm (2006). Lastly, 
and importantly, since in this context one would want to increase the power to 
detect effects and concomitantly reduce the probability of falsely accepting the 
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null hypothesis that data are normally distributed, we suggest that preliminary 
testing be performed with significance levels larger than .05, say 

.15 or .20.= =α α  
We conclude by reminding researchers that if normality is not present in the 

data current analytic practices allow researchers to test hypotheses say about 
mean equality in multiple group designs with software that does not require that 
data be normally distributed (See e. g., SAS’s Glimmix procedure). Or, 
researchers can choose to replace classical test statistics and their least squares 
estimators for the mean and variance with robust test statistics with robust 
estimators (i.e., trimmed means and Winsorized variances (See e.g., Wilcox, 
2012a, b; Wilcox & Keselman, 2003), procedures that have been found to be 
robust to non-normality [e.g., Erceg-Hurn, Wilcox, & Keselman (2013); 
Keselman, Algina, Lix, Wilcox, & Deering (2008a, b)]. 
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