
Journal of Modern Applied Statistical
Methods

Volume 12 | Issue 2 Article 3

11-1-2013

Robust Regression Estimators When There are
Tied Values
Rand R. Wilcox
University of Southern California, Los Angeles, rwilcox@usc.edu

Florence Clark
University of Southern California, Los Angeles, fclark@osot.usc.edu

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Wilcox, Rand R. and Clark, Florence (2013) "Robust Regression Estimators When There are Tied Values," Journal of Modern Applied
Statistical Methods: Vol. 12 : Iss. 2 , Article 3.
DOI: 10.22237/jmasm/1383278520

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol12/iss2/3?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 
November 2013, Vol. 12, No. 2, 20-34. 

Copyright © 2013 JMASM, Inc. 
ISSN 1538 − 9472 

 

 
 
Rand R. Wilcox is a Professor of Psychology. Email him at: rwilcox@usc.edu. Florence 
Clark is a Professor of Occupational Science and Occupational Therapy. Email her at: 
fclark@osot.usc.edu. 

 
20 

Invited Article: 
Robust Regression Estimators When There 
are Tied Values 
Rand R. Wilcox 
University of Southern California 
Los Angeles, CA 

Florence Clark 
University of Southern California 
Los Angeles, CA 

 
 
It is well known that when using the ordinary least squares regression estimator, outliers 
among the dependent variable can result in relatively poor power. Many robust regression 
estimators have been derived that address this problem, but the bulk of the results assume 
that the dependent variable is continuous. It is demonstrated that when there are tied 
values, several robust regression estimators can perform poorly in terms of controlling 
the Type I error probability, even with a large sample size. The presence of tied values 
does not necessarily mean that they perform poorly, but there is the issue of whether there 
is a robust estimator that performs reasonably well in situations where other estimators do 
not. The main result is that a modification of the Theil–Sen estimator achieves this goal. 
Results on the small-sample efficiency of the modified Theil–Sen estimator are reported 
as well. Data from the Well Elderly 2 Study, which motivated this study, are used to 
illustrate that the modified Theil–Sen estimator can make a practical difference. 
 
Keywords: Tied values, Harrell–Davis estimator, MM–estimator, Coakley–
Hettmansperger estimator, rank-based regression, Theil–Sen estimator, Well Elderly II 
Study, perceived control 
 

Introduction 

It is well known that the ordinary least squares (OLS) regression estimator is 
not robust (e.g., Hampel et al., 1987; Huber & Ronchetti, 2009; Maronna et al. 
2006; Staudte & Sheather, 1990; Wilcox, 2012a, b). One concern is that even a 
single outlier among the values associated with the dependent variable can result 
in relatively poor power. Numerous robust regression estimators have been 
derived that are aimed at dealing with this issue, a fairly comprehensive list of 
which can be found in Wilcox (2012b, Chapter 10). But the bulk of the published 
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results on robust regression estimators assume the dependent variable is 
continuous. 

Motivated by data stemming from the Well II study (Jackson et al. 2009), 
this paper examines the impact of tied values on the probability of a Type I error 
when testing hypotheses via various robust regression estimators. Many of the 
dependent variables in the Well Elderly study were the sum of Likert scales. 
Consequently, with a sample size of 460, tied values were inevitable. Moreover, 
the dependent variables were found to have outliers, suggesting that power might 
be better using a robust estimator. But given the goal of testing the hypothesis of a 
zero slope, it was unclear whether the presence of tied values might impact power 
and the probability of a Type I error.  

Preliminary simulations indicated that indeed there is a practical concern. 
Consider, for example, the Theil (1950) and Sen (1968) estimator. One of the 
dependent variables (CESD) in the Well Elderly study reflected a measure of 
depressive symptoms. It consists of the sum of twenty Likert scales with possible 
scores ranging between 0 and 60. The actual range of scores in the study was 0 to 
56. Using the so-called MAD-median rule (e.g., Wilcox, 2012b), 5.9% of the 
values were flagged as outliers, raising concerns about power despite the 
relatively large sample size. A simulation was run where observations were 
randomly sampled with replacement from the CESD scores and the independent 
variable was taken to be values randomly sampled from a standard normal 
distribution and independent of the CESD scores. The estimated Type I error 
probability, when testing at the .05 level, was .002 based on 2000 replications. A 
similar result was obtained when the dependent variable was a measure of 
perceived control. Now 7.8% of the values are declared outliers. As an additional 
check, the values for the dependent variable were generated from a beta-binomial 
distribution having probability function 
 

 ( ) ( )
( ) ( ) ( )

,
,

1 1, 1 ,
− + +

= =
+ − + +

B m y r y s
P Y y

m B m y y B r s
  (1) 

 
where B is the complete beta function and the sample space consists of the 
integers 0,…,m. For r = s = 1 as well as ( r, s ) = ( 1, 9 ), again, the actual level 
was less than .01. 

Other robust estimators were found to have a similar problem or situations 
were encountered where they could not be computed. The estimators that were 
considered included Yohai's (1987) MM-estimator, the one-step estimator derived 
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by Agostinelli and Markatou (1998), Rousseeuw's (1984) least trimmed squares 
(LTS) estimator, the Coakley and Hettmansperger (1993) M-estimator, the 
Koenker and Bassett (1978) quantile estimator and a rank-based estimator 
stemming from Jaeckel (1972). The MM-estimator and the LTS estimator were 
applied via the R package robustbase, the Agostinelli—Markatou estimator was 
applied with the R package wle, the quantile regression estimator was applied via 
the R package quantreg, the rank-based estimator was applied using the R 
package Rfit, and the Coakley–Hettmansperger and Theil—Sen estimators were 
applied via the R package WRS. A percentile bootstrap method was used to test 
the hypothesis of a zero slope, which allows heteroscedasticity and has been 
found to perform relatively well, in terms of controlling the probability of a Type 
I error, compared to other strategies that have been studied (Wilcox, 2012b). The 
MM-estimator, the Agostinelli—Markatou estimator and the Coakley—
Hettmansperger estimator routinely terminated in certain situations due to some 
computational issue. This is not to suggest that they always performed poorly, this 
is not the case. But when dealing a skewed discrete distribution (a beta-binomial 
distribution with m = 10, r = 9 and s = 1), typically a p-value could not be 
computed. The other estimators had estimated Type I errors well below the 
nominal level. The R package Rfit includes a non-bootstrap test of the hypothesis 
that the slope is zero. Again the actual level was found to be substantially less 
than the nominal level in various situations, and increasing n only made matters 
worse. So this raised the issue of whether any reasonably robust estimator can be 
found that avoids the problems just described. 

  For completeness, when dealing with discrete distributions, an alternative 
approach is to use multinomial logistic regression. This addresses an issue that is 
potentially interesting and useful. But in the Well study, for example, what was 
deemed more relevant was modeling the typical CESD score given a value for 
CAR. That is, a regression estimator that focuses on some conditional measure of 
location, given a value for the independent variable, was needed.  

 The goal in this paper is to suggest a simple modification of the Theil–Sen 
estimator that avoids the problems just indicated. Section 2 reviews the Theil–Sen 
estimator and indicates why it can be highly unsatisfactory. Then the proposed 
modification is described. Section 3 describes the hypothesis testing method that 
is used. Section 4 summarizes simulation estimates of the actual Type I error 
probability when testing at the .05 level and it reports some results on its small-
sample efficiency. Section 5 uses data from Well Elderly II study to illustrate that 
the modified Theil–Sen estimator can make a substantial practical difference. 
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The Theil–Sen Estimator and the Suggested Modification 

When the dependent variable is continuous, the Theil–Sen estimator enjoys good 
theoretical properties and it performs well in simulations in terms of power and 
Type I error probabilities when testing hypotheses about the slope (e.g., Wilcox, 
2012b). Its mean squared error and small-sample efficiency compare well to the 
OLS estimator as well as other robust estimators that have been derived (Dietz, 
1987; Wilcox, 1998). Dietz (1989) established that its asymptotic breakdown 
point is approximately .29. Roughly, about 29% of the points must be changed in 
order to make the estimate of the slope arbitrarily large or small. Other asymptotic 
properties have been studied by Wang (2005) and Peng et al. (2008). Akritas et al. 
(1995) applied it to astronomical data and Fernandes and Leblanc (2005) to 
remote sensing. Although the bulk of the results on the Theil–Sen estimator deal 
with situations where the dependent variable is continuous, an exception is the 
paper by Peng et al. (2008) that includes results when dealing a discontinuous 
error term. They show that when the distribution of the error term is discontinuous, 
the Theil–Sen estimator can be super-efficient. They establish that even in the 
continuous case, the slope estimator may or may not be asymptotically normal. 
Peng et al. also establish the strong consistency and the asymptotic distribution of 
the Theil–Sen estimator for a general error distribution. Currently, a basic 
percentile bootstrap seems best when testing hypotheses about the slope and 
intercept, which has been found to perform well even when the error term is 
heteroscedastic (e.g., Wilcox, 2012b).  

The Theil–Sen estimate of the slope is the usual sample median based on all 
of the slopes associated with any two distinct points. Consequently, practical 
concerns previously outlined are not surprising in light of results when dealing 
with inferential methods based on the sample median (Wilcox, 2012a, section 
4.10.4). Roughly, when there are tied values, the sample median is not 
asymptotically normal. Rather, as sample size increases, the cardinality of its 
sample can decrease, which in turn creates concerns about the more obvious 
methods for testing hypotheses  

Recent results on comparing quantiles (Wilcox et al., 2013) suggest a 
modification that might deal the concerns previously indicated: replace the usual 
sample median with the Harrell and Davis (1982) estimate of the median, which 
uses a weighted average of all the order statistics. 

To describe the computational details, let (Y1 , X1), …, (Yn , Xn) be a random 
sample from some unknown bivariate distribution. Assuming that   ≠j kX X  for any 
<j k , let 
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The Theil–Sen estimate of the slope, 1̂β , is taken to be the usual sample median 
based on the jkb  values. The intercept is typically estimated with 

0 1
ˆ ˆ= −y xM Mβ β  , where yM   is the usual sample median based on 1, ,… nY Y  . This 

will be called the TS estimator henceforth. 
For notational convenience, Let 1, ,…



Z Z  denote the jkb  values, where 
2( ) / 2= − n n . Let U be a random variable having a beta distribution with 

parameters ( )1= +a q  and ( )( )1 1= + −b q , 0 1< <q . Let 
 

 1− = ≤ ≤ 
  

I
i iW P U . 

 
Let ( ) ( )1 ≤…≤



Z Z   denote the 1, ,…


Z Z   values written in ascending order. The 

Harrell and Davis (1982) estimate of the qth quantile is 
 
 ( )

ˆ =∑q i iW Zθ   

 
Consequently, estimate the slope with 1 .5

ˆ =β θ  . The intercept is estimated with 

the Harrell–Davis estimate of the median based on 1 1 1, ,− … − 

n n nY X Y Xβ β  . This 
will be called the HD estimator. 

So the strategy is to avoid the problem associated with the usual sample 
median by using a quantile estimator that results in a sampling distribution that in 
general does not have tied values. Because the Harrell–Davis estimator uses all of 
the order statistics, the expectation is that in general it accomplishes this goal. For 
the situations described in the introduction, for example, no tied values were 
found among the 5000 estimates of the slope. This, in turn, offers some hope that 
good control over the probability of a Type I error can be achieved via a 
percentile bootstrap method. 

It is noted that alternative quantile estimators have been proposed that are 
also based on a weighted average of all the order statistics. In terms of its standard 
error, Sfakianakis and Verginis (2006) show that in some situations the Harrell–
Davis estimator competes well with alternative estimators that again use a 
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weighted average of all the order statistics, but there are exceptions. Additional 
comparisons of various estimators are reported by Parrish (1990), Sheather and 
Marron (1990), as well as Dielman, Lowry and Pfaffenberger (1994). Perhaps one 
of these alternative estimators offers some practical advantage for the situation at 
hand, but this is not pursued here.  

Hypothesis Testing 

As previously indicated, a percentile bootstrap method has been found to be an 
effective way of testing hypotheses based on a robust regression estimators, 
including situations where the error term is heteroscedastic (e.g., Wilcox, 2012b). 
Also, because it is unclear when the HD estimator is asymptotically normal, using 
a percentile bootstrap method for the situation at hand seems preferable compared 
to using some pivotal test statistic based on some estimate of the standard error. 
(For general theoretical results on the percentile bootstrap method that are 
relevant here, see Liu & Singh, 1997.) 

When testing 
 
 0 1: 0=H β , (2) 
 
the percentile bootstrap begins by resampling with replacement n vectors of 
observations from ( ) ( )1 1 ,, , ,… n nY YX X   yielding say ( ) ( )* * * *

1 1, , , ,… n nY X Y X . Based 

on this bootstrap sample, let *
1
β   be the resulting estimate of the slope. Repeat this 

process B times yielding *
1 ,1,...,

b Bβ . Let A be the proportion of *
1


bβ  values that are 

less than null value, 0, and let C be the number of times *
1


bβ   is equal to the null 
value. Then a (generalized) p-value when testing (2) is 
 
 ˆ2min( ˆ,1 )= −p p p , 
 

where ˆ  .5= +
A Cp
B B

 . Here, B = 599 is used. This choice appears to work well 

with robust estimators in terms of controlling the probability of a Type I error 
(e.g., Wilcox, 2012b). However, based on results in Racine and MacKinnon 
(2007), 𝐵 > 599 might provide improved power. 
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Simulation Results 

Simulations were used to study the small-sample properties of the HD estimator. 
When comparing the small-sample efficiency of estimators, 4000 replications 
were used with n = 20. When estimating the actual probability of a Type I error, 
2000 replications were used with sample sizes 20 and 60. Some additional 
simulations were run with n = 200 as a partial check on the R functions that were 
used to apply the methods. 

To ensure tied values, values for Y were generated from one of four discrete 
distributions. The first two were beta-binomial distributions. Here m = 10 is used 
in which case the possible values for Y are the integers 0, 1, …, 10. The idea is to 
consider a situation where the number of tied values is relatively large. The values 
for r and s were taken to be (r,s) = (1,9), which is a skewed distribution with 
mean 1, and r = s = 3, which is a symmetric distribution with mean 5. The third 
distribution was a discretized version of the normal distribution. More precisely, n 
observations were generated from a standard normal distribution, say 1,… nV V , 
and Yi is taken to be 2Vi  rounded to the nearest integer. (Among the 4,000 
replications, the observed values for Y ranged between -9 and 10.) This process 
for generating observations will be labeled SN. For the final distribution, 
observations were generated as done in SN but with a standard normal replace by 
a contaminated normal having distribution 
 

 ( ) ( ).9Φ .1Φ
10
 = +  
 

yH y y , 

 
where ( )Φ y  is a is a standard normal distribution. The contaminated normal has 
mean zero and variance 10.9. It is heavy-tailed, roughly meaning that it tends to 
generate more outliers than the normal distribution. This process will be labeled 
CN. 

Estimated Type I error probabilities are shown in Table 1 for n = 20 and 60 
when testing at the α = .05 level. In Table 1, B(r,s,m) indicates that Y has a beta- 
binomial distribution. The column headed by TS shows the results when using the 
Theil–Sen estimator. Notice that the estimates are substantially less than the 
nominal level when n = 20. Moreover, the estimated level actually decreases 
when n is increased to 60. In contrast, when using the HD estimator, the estimated 
level is fairly close to the nominal level among all of the situations considered, the 
estimates ranging between .044 and .057. 
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Negative implications about power seem evident when using TS. As a brief 
illustration, suppose that data are generated from the model V = .25X + ε, where X 
and ε are independent and both have a standard normal distribution. Let Y = 2V, 
rounded to the nearest integer. With n = 60, power based on TS was estimated to 
be .073. Using instead HD, power was estimated to be .40. 
 
 
Table 1. Estimated Type I error probabilities, α =.05 
 

Distribution n TS HD 

B(3,3,10) 20 0.019 0.044 

B(3,3,10) 60 0.002 0.047 

B(1,9,10) 20 0.000 0.045 

B(1,9,10) 60 0.000 0.045 

SN 20 0.011 0.044 

SN 60 0.001 0.050 

CN 20 0.012 0.057 

CN 60 0.004 0.048 
 
 
Table 2. Estimated Efficiency, n = 20 
 

Distribution TS TD 

SN 0.809 1.090 

B(3,3,10) 0.733 0.997 

B(1,9,10) 0.689 2.610 

CN 2.423 2.487 
 
 

Of course, when Y has a discrete the least squares estimator
could be used. To gain some insight into the relative merits of the HD estimator, 
its small-sample efficiency was compared to the least squares estimator and the 
TS estimator for the same situations in Table 1. Let 2

0V  be the estimated squared 
standard error of least squares estimate of the slope based on 4000 replications. 
Let 2

1V  and 2
2V  be the estimated squared standard errors for TS and HD, 

respectively. Then the efficiency associated with TS and HD was estimated with 
0 1/V V  and 0 2/V V , respectively, the ratio of the estimated standard errors. Table 2 

summarizes the results. As can be seen, the HD estimator competes very well 
with the least squares estimator. Moreover, there is no indication that TS ever 
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offers much of an advantage over HD, but HD does offer a distinct advantage 
over TS in some situations. 

A related issue is the efficiency of the HD estimator when dealing with a 
continuous error term, including situations where there is heteroscedasticity. To 
address this issue, additional simulations were run by generating data from the 
model ( )Y Xλ ε=  where ε  is some random variable having median zero and the 

function ( )Xλ   is used to model heteroscedasticity. The error term was taken to 
have one of four distributions: normal, symmetric with heavy tails, asymmetric 
with light tails and asymmetric with heavy tails. More precisely, the error term 
was taken to have a g-and-h distribution (Hoaglin, 1985) that contains the 
standard normal distribution as a special case. If Z has a standard normal 
distribution, then 
 

 ( )2exp( )-1exp , if  0= >
gZW hZ g
g

  

and 

 
2

exp , if 0
2

 
= = 

 

ZW Z h g   

 
has a g-and-h distribution where g and h are parameters that determine the first 
four moments. As is evident, g = h = 0 corresponds to a standard normal 
distribution. Table 3 indicates the skewness ( )1κ  and kurtosis ( )2κ  of the four 
distributions that were used. 
 
 
Table 3. Some properties of the g-and-h distribution 
 

g h κ1 κ2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 
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Three choices for λ  were used: ( ) 1=Xλ  (homoscedasticity), ( ) 1= +X Xλ  

and ( ) ( )1/ 1= +X Xλ . For convenience, these three choices are denoted by 

variance patterns (VP) 1, 2, and 3.  
Table 4 reports the estimated efficiency of TS and HD when X has a normal 

distribution. To provide a broader perspective, included are the estimated 
efficiencies of Yohai's (1987) MM-estimator and the least trimmed squares (LTS) 
estimator. Yohai's estimator was chosen because it has excellent theoretical 
properties. It has the highest possible breakdown point, .5, and it plays a central 
role in the robust methods discussed by Heritier et al. (2009). Both the MM-
estimator and the LTS estimator were applied via the R package robustbase. As 
can be seen, for the continuous case, there is little separating the TS, HD and MM 
estimators with TS and MM providing a slight advantage over HD. 
 
 
Table 4. Estimated efficiencies, the continuous case, X normal 
 

g h VP TS HD MM LTS 

0.000 0.000 1.000 0.861 0.930 0.967 0.708 

  2.000 0.994 0.991 1.019 0.769 

    0.300 0.997 0.966 0.999 0.776 

0.000 0.200 1.000 1.234 1.157 1.199 0.971 

  2.000 1.405 1.230 1.267 1.070 

    3.000 1.389 1.216 1.276 1.041 

0.200 0.000 1.000 0.897 1.146 0.960 0.989 

  2.000 1.019 1.009 1.051 0.815 

    3.000 0.978 0.999 1.026 0.793 

0.200 0.200 1.000 1.314 1.200 1.259 1.022 

  2.000 1.615 1.440 1.475 1.197 

    3.000 1.443 1.271 1.337 1.160 
 
 
There are situations where the differences in efficiency are more striking than 
those reported in Table 4. Also, no single estimator dominates in terms of 
efficiency: situations can be constructed where each estimator performs better 
than the others considered here. Suppose, for example, that X has a contaminated 
normal distribution and Y has a normal distribution. From basic principles, this 
situation favors OLS because as the distribution of X moves toward a heavy-tailed 
distribution, the standard error of the OLS estimator decreases. The resulting 
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efficiencies were estimated to be 0.514, 0.798, 0.844 and 0.533 for TS, HD, MM 
and LTS, respectively, with TS and LTS being the least satisfactory. Removing 
leverage points (outliers among the independent variable) using the MAD-median 
rule (e.g., Wilcox, 2012a, section 3.13.4), the estimates are 1.336, 1.727, 1.613 
and 2.1213. So now LTS performs best in contrast to all of the other situations 
previously reported. 

There is the issue of whether the MM-estimator has good efficiency for the 
discrete case. For the beta-binomial distribution with r = s = 3, the efficiency of 
the HD estimator is a bit better, but for the other discrete distributions considered 
here, the efficiency of the MM-estimator could not be estimated because the R 
function used to compute the MM-estimator routinely terminated with an error. 
For the same reason, the Type I error probability based on the hypothesis testing 
method used by the R package robustbase could not be studied. Switching to the 
bootstrap method used here only makes matters worse: bootstrap samples result in 
situations where the MM-estimator cannot be computed.  

An Illustration 

Using data from the Well Elderly II study (Jackson et al., 2009), it is illustrated 
that the choice between the TS and HD estimators can make a practical difference. 
A general goal in the Well Elderly II study was to assess the efficacy of an 
intervention strategy aimed at improving the physical and emotional health of 
older adults. A portion of the study was aimed at understanding the association 
between the cortisol awakening response (CAR), which is defined as the change 
in cortisol concentration that occurs during the first hour after waking from sleep, 
and a measure of Perceived Control (PC), which is the sum of 8 four-point Likert 
scales. So the possible PC scores range between 8 and 32. Higher PC scores 
reflect greater perceived control. (For a detailed study of this measure of 
perceived control, see Eizenman et al., 1997.) CAR is taken to be the cortisol 
level upon awakening minus the level of cortisol 30-60 minutes after awakening.) 
Approximately 8% of the PC scores are flagged as outliers using the MAD-
median rule. Extant studies (e.g., Clow et al., 2004; Chida & Steptoe, 2009) 
indicate that various forms of stress are associated with the CAR. After 
intervention, the TS estimate of the slope is -0.72 with a p-value of .34. Using 
instead HD, the estimate of the slope is -0.73 with a p-value less than .001. 
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Concluding Remarks 

In summary, when dealing with tied values among the dependent variable, several 
robust estimators can result in poor control over the Type I error probability and 
relatively low power, so they should be used with caution. Moreover, the 
performance of the Theil–Sen estimator can actually deteriorate as the sample size 
increases. One way of dealing with this problem is to use the HD estimator, which 
is simple modification of the Theil–Sen estimator. In some situations the HD 
estimator has better efficiency than other robust estimators, but situations are 
encountered where the reverse is true. The very presence of tied values does not 
necessarily mean that robust estimators other than HD will perform poorly. The 
only point is that when dealing with tied values, the HD estimator can be 
computed in situations where other robust estimators cannot and it can provide a 
practical advantage in terms of both Type I error probabilities and power. 

Various suggestions have been made about how to extend the Theil–Sen 
estimator to more than one independent variable (Wilcox, 2012b). One approach 
is the back-fitting algorithm, which is readily used in conjunction with the HD 
estimator. Here, the details are not of direct relevance so for brevity they are not 
provided. An R function, tshdreg, has been added to the R package WRS that 
performs the calculations. 
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