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Multivariate Analysis of Variance (MANOVA) is a popular statistical tool in the social 
sciences, allowing for the comparison of mean vectors across groups. MANOVA rests on 
three primary assumptions regarding the population: (a) multivariate normality, (b) 
equality of group population covariance matrices and (c) independence of errors. When 
these assumptions are violated, MANOVA does not perform well with respect to Type I 
error and power. There are several alternative test statistics that can be considered 
including robust statistics and the use of the structural equation modeling (SEM) 
framework. This simulation study focused on comparing the performance of the P test 
statistics with fifteen other test statistics across seven manipulated factors. These statistics 
were evaluated across 12,076 different conditions in terms of Type I error and power. 
Results suggest that when assumptions were met, the standard MANOVA test functioned 
well. However, when assumptions were violated, it performed poorly, whereas several of 
the alternatives performed better. Discussion focuses on advice for selecting alternatives 
in practice. This study’s focus on all these in one simulation and the 3 group case should 
be helpful to the practitioner making methodological sections. 
 
Keywords: MANOVA, robust statistics, structural equation modeling, 
nonparametric, mean comparisons, Monte Carlo simulation 
 

Introduction 

Much research in the social sciences involves the comparison of means for two or 
more groups across multiple related outcome measures. For example, studies 
examining the impact of interventions on multiple measures of academic, social, 
communication, and emotional development are common in education and 
psychology. Parenting our Children to Excellence (PACE) (Dumas et al., 1999) is 
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such an intervention project that has been tested through randomized control trials 
evaluating an 8-week program that teaches positive parenting techniques aimed at 
increasing parenting skills and child positive behavior. In programs such as this, 
there are typically multiple correlated outcome variables (e.g., child disruptive 
behaviors, child adjustment, parenting behaviors, parenting competence), which 
can have high-stakes implications (e.g., resource allocation, curriculum 
development, policy decisions). Therefore, given that high stakes decisions may 
be based upon the results of statistical analyses, precise modeling of data is 
paramount. 

This type of research design in intervention work may revolve around 
hypotheses regarding group differences on a set of variables, rather than on 
individual variables. Multivariate hypotheses lead a researcher to a multivariate 
analysis, as it may be most appropriate for assessing group differences on the set 
of variables (Huberty & Olejnik, 2006). Specifically, multivariate analysis of 
variance (MANOVA) is well-suited for testing hypotheses about differences 
between groups (Hair, Anderson, Tatham, & Black, 1987). MANOVA can be 
viewed as a direct extension of the univariate general linear model that is most 
appropriate for examining differences between groups on several variables 
simultaneously (Hair et al., 1987; Olejnik, 2010). As Hancock, Lawrence and 
Nevitt (2001) pointed out, “MANOVA evaluates group differences on a linear 
composite of observed variables constructed so as to maximally differentiate the 
groups in multivariate space" (p. 535).  

Situations are described here in which MANOVA may be the optimal 
analysis (particularly when compared with univariate analysis of variance 
(ANOVA)). Following this discussion, particular data structures that may cause 
problems for MANOVA will be described, particularly when key assumptions are 
violated, and then several approaches for dealing with the assumption violations. 
A simulation study comparing these methods across a variety of conditions is 
reported, and conclude the discussion with recommendations for researchers using 
MANOVA in cases where the assumptions are not met.  

Despite the fact that MANOVA may be the optimal analysis for a 
multivariate problem due to its relative ease of use and interpretation, researchers 
may often employ multiple independent ANOVA models to determine if there are 
significant differences among group means on each of several outcome measures 
of interest. In the previous example with PACE, five separate ANOVAs could be 
conducted to determine if the treatment and control groups differed on the related 
outcomes. Although this approach may be familiar to many researchers, the 
simplicity of the univariate ANOVA could also lead to unwarranted conclusions 
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due to inflation of the family-wise Type I error rate and a potential decrease in 
power when the response is actually multivariate in nature. In fact, McCarroll, 
Crays, & Dunlap (1992) provided evidence that Type I error rates are inflated 
when ANOVA is used in a sequential manner. For example, the family-wise Type 
I error rate for testing the 5 outcomes in the PACE data, assuming alpha = 0.05, 
would be 0.23. It is acknowledged that by adjusting critical values for the 
univariate situation, the Type I error rate can be controlled (Ramsey, 1982). In 
fact, Ramsey illustrated that the Bonferroni procedures showed greater robustness 
in many cases compared to methods based on Hotelling’s T2 statistic, which 
requires more and stronger assumptions (e.g., multivariate normality) compared to 
Bonferroni procedures.  

Often the research question of interest concerns differences on a set of 
related or correlated outcome variables, not each variable separately. That is, the 
researcher wants to examine questions about how groups differ along a 
combination of correlated dimensions or variables, not one dimension or variable 
at a time. Univariate procedures cannot provide insight on the former, as each 
variable is examined in isolation. As a result of this inability to consider the entire 
multivariate response space, the practice of following up a significant MANOVA 
result with individual ANOVAs does not provide insight to questions regarding 
multivariate differences (e.g., Huberty & Morris, 1989). Harris (2001) suggested 
that the use of MANOVA for between-group comparisons is more appropriate in 
the context of multiple dependent variables compared to the use of many 
individual univariate tests.  

There is recognition that MANOVA may not be the best choice in all cases 
in which multiple outcome variables are of interest. The choice of the analytic 
procedure does rest on several factors including the data, research design, and 
research questions. For example, if the outcome variables are uncorrelated or have 
high positive correlations, then MANOVA may not be as effective as conducting 
separate univariate ANOVAs (Tabachnick & Fidell, 2007). In contrast, 
MANOVA can have greater power compared to the univariate methods when 
there is a moderate to strong negative correlation between the dependent variables 
(Tabachnick & Fidell, 2007). Additionally, power can depend on the relationship 
between dependent variables and the effect size (Cole, Maxwell, Arvey, & Salas, 
1994). This study focuses on situations for which MANOVA may be most 
appropriate, based on recommendations from the works cited above, and 
considers the intercorrelations and effect sizes and how they relate to power of 
several test statistics as well as violations of assumptions, in order to highlight the 
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performance of these various test statistics associated with MANOVA, under 
different conditions.  

To summarize the discussion heretofore, the decision regarding whether to 
select a univariate or multivariate comparison of between groups means must be 
made based on both statistical and substantive considerations. If the research 
questions are essentially multivariate in nature (e.g. Do the groups differ on the 
set of dependent variables?) then MANOVA is preferred to ANOVA (Stevens, 
2001). In addition, when the dependent variables are at least moderately 
correlated, MANOVA will generally yield greater power compared to the 
univariate alternatives. Conversely, if the research questions are focused on the 
individual variables (e.g. Do the groups differ on Y1? Do the groups differ on 
Y2?), and/or if the dependent variables have little or no correlation or very strong 
positive correlations among them, then use of individual ANOVAs rather than 
MANOVA may be most appropriate (Stevens, 2001). In conclusion, the 
advantages of MANOVA, beyond Type I error control, can include (a) improving 
power for identifying group differences, (b) observing differences possibly missed 
in single ANOVAs (Huberty & Morris, 1989; Tabachnick & Fidell, 2007), and (c) 
understanding the outcome variables as a system rather than isolated 
measurements (Huberty & Morris, 1989). This study was conducted to examine 
performance of the several MANOVA test statistics in the case where 
multivariate questions are of primary interest and the multivariate procedure 
would be preferred. 

Standard parametric multivariate means comparisons 
In evaluating multivariate mean differences with MANOVA in the 2 group case, 
researchers test the null hypothesis of no group mean vector differences using 
Hotelling’s T2 statistic. Please see Johnson & Wichern (2002) for additional 
information on these multivariate test statistics. Hotelling’s T2 statistic which 
takes the form: 

 ( ) ( )
1

2
1 2 1 2

1 2

1 1T Y Y S Y Y
n n

−
  ′= − + −  

  
  (1) 

Where 
 

1 =Y  Mean vector for group 1 

2 =Y  Mean vector for group 2 

1n =  Sample size for group 1 
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2n =  Sample size for group 2 

=S  Sample pooled covariance matrix; ( ) ( )1 1 2 2

1 2

1 1
2

n S n S
n n

− + −
+ −

  

1S =  Covariance matrix for group 1 

2S =  Covariance matrix fro group 2 
In this equation, the transpose ( ' ) operator is used to create sums of squared 

differences, in the context of matrices, and the inverse (-1) is used for matrix 
division. Hotelling’s 𝑇2 has been extended to accommodate the case of more than 
two groups with four different F approximation tests: Pillai’s trace, (P) Wilk’s 
lambda (Λ), Hotelling-Lawley Trace (H) and Roy’s Greatest Root (R). These test 
statistics can be expressed as follows: 
 

where
within group sum of squares and cross products matrix
between group sum of squares and cross products matrix

W
W B

W
B

  Λ =
+  

=
=

  (2) 

1( )P tr B B W − = +     (3) 
1H tr BW − =      (4) 

1maximum eigenvalue of ( )R W B W −= +   (5) 
W = Determinant of matrix ,W  where the determinant can be viewed as 
 generalized or total variance of that matrix 

Prior research regarding standard MANOVA test statistic 
performance 
Accurate use and interpretation of these multivariate test statistics is dependent 
upon the assumptions of independent errors, multivariate normality, and 
homogeneity of group covariance matrices. When these assumptions are met, the 
tests perform similarly well with respect to controlling Type I error rates and 
maintaining appropriate statistical power, particularly in studies with relatively 
large sample sizes (e.g., Blair, Higgins, Karniski & Kromrey, 1994; Hopkins & 
Clay, 1963; Johnson & Wichern, 2002; Ramsey, 1982; Stevens, 2001). Several 
works cited in this review have informed multivariate researchers on how these 
statistics perform under various conditions. However, this work has primarily 
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been focused on the 2 group case. In addition, some of this work, particularly 
Ramsey, treated the data in a univariate fashion, rather than testing multivariate 
hypotheses about group means on several dependent variables simultaneously. 
Though this may be appropriate in some cases, many times where multivariate 
data are present, the hypothesis of interest concerns group differences on the set 
of means rather than on the individual means, in which case such univariate 
treatment of the data may be inappropriate (Huberty & Olejnik, 2006).  

The work presented here focuses on the situation where researchers are 
interested in conducting multivariate means testing (rather than univariate), and is 
unique as (a) many test statistics are compared in a single simulation study, 
including a latent variable approach, and (b) the 3 group case is considered to 
ascertain whether the results from the 2 group case can generalize to the 3 group 
case, certainly a more complex but also perhaps more realistic condition. Many of 
these methods have been examined in simulation studies. However, the methods 
included here have not all been examined in a single study. Therefore, though it 
has been possible to describe how two or three of these statistics perform relative 
to one another, this study allows for the comparison of all of these methods under 
the same conditions.  

Violations in assumptions of multivariate normality and homogeneity of 
covariance are often characteristic of social science research, and standard 
parametric MANOVA has limitations under such conditions (Blair et al., 1994; 
Everitt, 1979; Finch, 2005). Investigations of Type I error rates and power have 
suggested that these multivariate tests may not perform well when there are 
violations in assumptions of multivariate normality and equality of covariance 
matrices (e.g., Hakstian, Roed & Lind, 1979; Hopkins & Clay, 1963; Olson, 
1974; Lee, 1971; Pillai & Jayachandran, 1967). Perhaps most notable is the 
performance of Hotelling T2 in studies of unequal sample sizes when the 
assumptions of multivariate normality and particularly equality of covariance 
matrices has not been met. In such cases, the T2 demonstrated diminished power 
as the degree of skewness of the response variables increased (Everitt, 1979). 
Furthermore, when the groups’ covariance matrices were not homogeneous, the 
Type I error rate of the T2 was inflated when the groups were not of equal size and 
the smaller group had the larger variances (Hakstian, Roed & Lind, 1979; 
Hopkins & Clay, 1963).  

These results for T2 are similar to those reported in studies of the 
performance of Pillai’s Trace, Wilk’s Lambda, Hotelling-Lawley’s Trace and 
Roy’s Greatest Root when there are violations in the assumption of equality of 
covariance matrices (Finch, 2005; Olson, 1974; Sheehan-Holt, 1998). In these 
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studies, when the smaller group had the larger variance the Type I error rates were 
inflated, whereas when the larger group had the larger elemental covariance 
elements, there was a reduction in power. Non-normality characterized by 
relatively severe skewness also resulted in a reduction of power (Everitt, 1979; 
Finch, 2005). Furthermore, when the assumptions were violated, Pillai’s Trace 
was relatively more robust in terms of Type I error rate control compared to 
Wilk’s Lambda and Hotelling-Lawley’s Trace but exhibited somewhat lower 
power compared to these other tests. Not one of the common MANOVA statistics 
can be clearly identified as the single best test for use in all situations (Lee, 1971; 
Pillai & Jayachandran, 1967). The comparative effectiveness of these methods 
changed relative to specific features of the data. However, taken across a broad 
sweep of real data conditions, Λ, P and H all generally perform similarly, 
particularly when standard assumptions are met (Johnson & Wichern, 2002). In 
summary, the standard test statistics used with MANOVA are deleteriously 
affected by violations of the assumptions of normality and homogeneity of 
covariance matrices, particularly when samples are of unequal sizes. 

Alternative test statistics to standard MANOVA when assumptions 
are violated 
In response to these problems associated with assumption violations, a number of 
alternative test statistics have been investigated, particularly for use in the absence 
of multivariate normality and when group covariance matrices are not equal. The 
formulas for many of the basic versions of these statistics appear in Appendix A 
for the interested reader. Table 1 provides summary information across the 
different statistical tests to assist with organizing the information.  

Brown and Forsythe (1974), James (1954), Johansen (1980), Yao (1965) 
and Nel and van der Merwe (1986) each outlined alternatives to the standard 
multivariate test statistic in the presence of unequal covariance matrices. 
Extensions of Hotelling’s T2, these parametric multivariate alternatives examine 
multiple outcomes between two groups, and have been extended for use with 
more than two groups. In the two groups case, the James ( JAF ), Johansen ( JNF ), 
Nel and van der Merwe ( NVF ), and Yao ( YF ) statistics are based on the 
multivariate analog of the univariate t-test equation for unequal variances. 

Tunequal2 = �Y�1 -Y�2�' �S1
n1

+ S2
n2
�

-1
�Y�1 -Y�2�As with the univariate version of this 

statistic, the group variances (covariance matrices in the multivariate context) are  
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Table 1. General Conclusions based on the Literature of Test Statistics Examined for 
MANOVA Under Various Assumptions Conditions 
 

  Assumptions 
Statistic Met   Not Met 
    Standard (P, 
H, L) 

Type I error rate controlled; 
Optimal power 

  Inflated Type I error for unequal covariance 
matrices and reduction of power for severely 
skewed data 

    FJA Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FJN, FNV Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FY Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FBF Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FK Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices but not 
to non-normal data. 

    TFJ, TFJN Comparable results to the 
standard test statistic. 

  For skewed and heavy tailed data, displayed 
higher power and better Type I error control than 
did FJN. 

    TFNV, TFY, 
TFBF, TFK 

Comparable results to the 
standard test statistic. 

  For skewed and heavy tailed data, displayed 
higher power than did FK. 

    Rank based 
test 

Comparable Type I error rates to 
standard test but lower power. 

  For unequal covariance matrices, displayed 
better Type I error control though rates were still 
inflated. 

    SEM Comparable Type I error and 
power rates to standard test for 
samples of 100 or greater. 

 Better Type I error control and higher power 
rates than standard tests for unequal covariance 
matrices 

        
 

Note: T2 = Hotelling’s (1931); BF = Brown&Forsythe (1974), J = James (1954); JN = Johansen (1980),K= 
Kim(1992);NV= Nel & van der Merwe (1986),Y=Yao (1965), SEM = Structural Equation Modeling (Raykov, 
2001), T with test = trimmed. 
 
not pooled. The difference between JAF  and JNF  is in the way that they determine 
the critical value for assessing statistical significance. The JAF  statistics is simply 

2
unequalT  (See Appendix A) with the critical value based on the 2χ  distribution 

adjusted by a complex term involving the traces of the covariance matrices for the 
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two groups. In contrast, the value for JNF  involves the conversion of 2
unequalT  to an 

F value, as seen in Appendix A.  
The NVF  test statistic also is a transformed version of 2

unequalT  (see Appendix 
A) and compared to a critical F value. Krishnamoorthy and Xia (2006) presented 
a modified version of the degrees of freedom for NVF  labeling their statistic the 
Modified Nel and van der Merwe test ( MNVF ). The test statistic remains the same, 
but the resulting value is compared to a critical F value with p, KXv  degrees of 
freedom, and the resulting test is affine invariant (results of the test are invariant 
under a linear transformation of the data). For a more thorough treatment of the 
calculation of KXv  the interested reader is encouraged to read Krishnamoorthy and 

Xia. Finally, among this set of statistics based upon the 2
unequalT  value is Yao’s YF , 

which incorporates a different weighting scheme involving the determinant of the 
ratio of group covariance matrices (See Appendix A). Given that these previously 
described methods share a common root, namely 2

unequalT , they are discussed as a 
set of test statistics (i.e., Family 1). An examination of Appendix A reveals that 
although these statistics share a common root, they vary in terms of how they 
weight the groups’ covariance matrices, and how degrees of freedom are 
calculated. 

Of the alternatives to the standard T2 described here, the Brown and 
Forsythe ( BFF ) and the Kim ( KF ) tests are not based on the 2

unequalT  statistic. The 

centerpiece of BFF  is BFT , which differs from the 2
unequalT  statistic in terms of how 

the group covariance matrices are weighted, as can be seen in Appendix A. 
Essentially, where 2

unequalT  weights them by the inverse of sample size, BFT  uses 
the proportion of the total sample not in a specific group as the weight. Otherwise, 

BFT  is generally similar to 2
unequalT . The BFF  statistic is then compared to the 

critical value 1, 2vBF vBFF . Kim’s ( KF ) statistic also is based on an alternative to 
2

unequalT  and is compared with the ,m vkF  critical value. The calculation for KF  can 

be found in Appendix A. In general, it differs from both 2
unequalT  and BFT  in the 

way in which the group covariance matrices are weighted and combined. A 
review of Appendix A demonstrates that KF  relies on a more complex weighting 
system to combine these covariance matrices, using as a weight the determinant 
of their ratio (in the simplest two groups case) raised to the 1/(2*number of 
predictor variables) power. To simplify further discussion, and given their 
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similarity in terms of calculation, as mentioned previously JNF , NVF , YF , and JAF  
have been organized into one family (Family 1) of statistics, and BFF  and KF  
constitute a another family of test statistics (Family 2). 

Prior research regarding alternative MANOVA test statistic 
performance 
The test statistics in Families 1 and 2 have demonstrated relative robustness to the 
presence of unequal group covariance matrices (see Algina, Oshima, & Tang, 
1991), which is reasonable given that their focus is on accounting for this 
condition by not relying on the pooled covariance matrix, S. Furthermore, the 
performance of these alternatives has proven to be superior to that of the standard 
Hotelling T2 when data are multivariate normal but covariance matrices are 
unequal, both in terms of Type I error rates and power (Holloway & Dunn, 1967). 
However, these statistics are sensitive to non-normality in the form of moderate to 
severe skewness (Algina et al., 1991). Coombs, Algina, and Oltman (1996) 
investigated the Type I error rates of five multivariate generalizations of the 
Brown-Forsythe and Nel-van der Merwe tests and found that both BFF  and NVF  
were able to maintain the nominal Type I error rate when heterogeneous group 
covariance matrices were present, but proved to be conservative when the ratio of 
total sample size to number of dependent variables was small. Christensen and 

Rencher (1997) observed increases in Type I error rates of JAF  and YF , 
particularly when the ratio of sample size to number of outcome variables was 

small. These authors recommended the use of KF  for cases in which the group 
covariance matrices were unequal. However, they acknowledged that this statistic 
was very conservative for cases in which the sample size to outcomes ratio was 

between 2 and 3. In a similar fashion, the BFF  and NVF  tests were shown to be 
conservative when the assumption of equal covariance matrices was violated and 
the sample size to outcome variables ratio was small (Coombs, Algina, and 
Olman, 1996). Additionally, Krishnamoorthy and Xia (2006) reported that MNVF  
was able to maintain the nominal Type I error rate when group covariance 
matrices were unequal, as long as the response variables were distributed as 
multivariate normal. When the latter condition was not met, their test will likely 
not be appropriate as it relies on multivariate normality. Yanagihara and Yuan 
(2005) also examined many different versions of modified tests (e.g., F statistic, 
Bartlett correction, modified Bartlett correction) showing that the modified 
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Bartlett was comparable to the F statistic in many cases. This summary of work 
represents many studies that have examined various test statistics in the 
MANOVA framework to find a balance between Type I error and statistical 
power assist in the obtainment of an accurate statistical conclusion.  

When the assumption of multivariate normality is violated these parametric 
MANOVA alternatives exhibit inflated Type I error rates, particularly with small 
sample sizes (Algina et al, 1991; Fouladi & Yockey, 2002; Wilcox, 1995). Thus, 
it appears that these alternative statistics are preferable to the standard 
multivariate test statistics when there are unequal group covariance matrices and 
the data are normally distributed. However, collectively they do not appear to be 
robust to violations of multivariate normality, yielding inflated Type I error rates.  

Robust alternative test statistics for MANOVA 
An alternative approach to the multivariate test statistics when there are violations 
of the normality assumption involves the use of trimmed means and Winsorized 
variance (Lix & Keselman, 2004). Statistical problems associated with 
nonnormality (e.g., Type I error inflation) in the univariate case can be 
ameliorated by using trimmed means and Winsorized variances in the 
construction of test statistics (e.g., Lix & Keselman, 2004; Keselman, Kowalchuk, 
& Lix, 1998; Wilcox, 1995). The use of the trimmed mean involves the removal 
of the most extreme data points of the response variable in each tail of the 
observed data distribution. The goal of such a statistic is to avoid the biasing of 
the mean estimate as a function of one or more outliers in the sample data. Wilcox 
(1995) recommended censoring 20% of the extreme observations at each tail of 
the distribution.  

The appropriate measure of variation to accompany the trimmed mean is the 
Winsorized variance (Yuen, 1974). This estimate of variance is based on the 
Winsorized mean, which is calculated by replacing some portion (e.g., top and 
bottom 20%) of the most extreme scores in the sample data distribution with the 
next most extreme scores. The calculation for the Winsorized variance for 
variable p can be seen in Appendix A. As an example of trimming, consider the 
following set of 10 height measurements in inches: 58, 60, 69, 70, 70, 71, 71, 72, 
73, 74. If the recommended 20% trimming were used, a total of 10 x 0.2, or 2, 
scores are removed. Thus the lower bound value ( LY ) is 60 and the upper bound 
value ( HY ) is 73, meaning that 58, 60, 73 and 74 are removed from each tail of the 
distribution, and thereby left out of the calculation of the trimmed mean, which in 
this case is 70.5. In contrast, the mean based on all 10 observations is 68.8. This is 
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how trimming was conducted for this study with SAS macros written by Lix and 
Keselman (2004). In other words, trimming and Winsorizing were conducted 
along each dimension individually, as described by Lix and Keselman. The 
Winsorized mean, which will be used in the calculation of the Winsorized 
variance, is based on 10 data points, with the lowest two values (58 and 60) 
replaced by 69, and the highest two values (73 and 74) replaced by 72. The value 
of wpY =  70.5, a 1.7 increase in the value used as the mean. 

Lix and Keselman (2004) demonstrated how Winsorized variances and 
covariances can be applied to multivariate statistics in order to create a 
Winsorized covariance matrix. Note that the null hypothesis being tested when 
trimmed means are used involves only the part of the population of interest for 
which the trimmed mean is appropriate. Thus, the null hypothesis applies to 
population trimmed means. Given the trimmed means and Winsorized variances 
for a set of outcome variables, robust alternatives to the test statistics described 
above can be computed. Specifically, Lix and Keselman (2004) showed that both 
T2 and 2

unequalT  can be calculated using the trimmed means and Winsorized 
covariance matrices. Likewise, the version of Hotelling’s T2 that does not use the 
pooled covariance matrix is available. See Appendix A. The robust test statistics 
will be organized into families using the same logic as described above for their 
non-trimmed versions; i.e. the trimmed versions reside under their home family (1 
or 2). 

Prior research regarding robust MANOVA test statistic performance 
A number of the MANOVA test statistic alternatives described above based on 
trimmed means and Winsorized variances have been empirically compared 
(Wilcox, 1995). Wilcox focused on the case with 4 response variables, with a 
variety of data distributions, correlations among the response variables and 
sample sizes. Results showed that when the data were normally distributed, the 
standard and robust (trimmed) statistics exhibited comparable Type I error rates. 
However, for non-normal distributions (whether skewed or heavy tailed), the 
trimmed statistics TKF  and TJNF  were found to be preferable to their non-trimmed 
counterparts KF  and JNF  in terms of power, and overall, TJNF  demonstrated 
superior control over the Type I error rate for most of the simulated conditions. 
Beyond Wilcox’s (1995) work, there is little empirical work comparing the 
performance of the robust alternatives to the other alternatives for multivariate 
mean comparisons when the group covariance matrices are not equal (Lix & 
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Keselman, 2004). It would appear, therefore, that an extensive evaluation of these 
methods under a variety of data conditions is warranted. Such work would inform 
the practitioner of which option may be optimal for use given data conditions. It 
also is noted that prior comparisons of these methods have been constrained to the 
two group case. 

Rank based nonparametric test 
Another alternative approach to dealing with violations of the standard 
MANOVA assumptions comes in the form of a rank based nonparametric test. A 
version of this test was first described by Puri and Sen (1971), and then further 
developed (Erdfelder, 1981; Katz & McSweeney, 1980). The statistic uses the 
ranks of the raw data as the dependent variables. Erdfelder’s extension of this 
work involves the conversion of the Pillai’s trace value obtained from conducting 
MANOVA using the ranks into the chi-square statistic 2 ( 1)n Pχ = −  (6), where P 
is Pillai’s trace and n is the total sample size. The resulting value is compared 
with the 2χ  distribution with ( 1)k p −  degrees of freedom, where k is the number 
of groups for the independent variable and p is the number of response variables 
as described above. Thus, to compute this rank based nonparametric test, the 
researcher would first rank each of the dependent variables, and then conduct the 
MANOVA with the software package of choice, using the ranked dependent 
variables. The resulting value of P for the independent variable would then be 
converted using the equation described above. The rank based test represents a 
third family (Family 3) of statistics considered in this study. 

Prior research regarding rank based MANOVA test statistic 
performance 
There has been some empirical evaluation of the performance of the rank based 
approach, particularly as it compares to the common parametric statistics when 
the assumptions of normality and/or homogeneity of covariance matrices were 
violated. Ittenbach, Chayer, Bruininks, Thurlow, and Beirne-Smit (1993), for 
example, compared the rank based test with the standard MANOVA test statistics 
and reported somewhat higher power rates for the rank approach. However, 
Ittenbach and colleagues employed a real dataset for which the population 
distribution and equality status of the group covariance matrices was not known. 
Finch (2005) conducted a Monte Carlo simulation study comparing the rank 
based test statistic with Pillai’s trace under a variety of conditions (e.g., normal 
and non-normal distributions, equal and unequal covariance matrices). When both 
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assumptions were met, Pillai’s Trace and the nonparametric rank test each 
maintained Type I error rates near the nominal level, but the rank test exhibited 
lower power. When the assumption of normality was violated, both statistics 
maintained the nominal Type I error rate of 0.05, regardless of the type of 
distribution (double exponential, skewed normal, uniform), and had comparable 
power rates. In the presence of unequal covariance matrices, Finch noted that the 
rank based nonparametric tests resulted in lower Type I error rates compared to 
the parametric approach, though both methods had inflated values. Furthermore, 
as with standard multivariate statistics, the Type I error inflation when there were 
violations in covariance matrices was more pronounced when group sizes were 
unequal and the smaller group had the larger variances. Thus, the rank based 
alternative represents an improvement in the case of unequal covariance matrices, 
but may not be an ideal solution. 

Structural equation models for MANOVA tests 
Raykov (2001) suggested the use of structural equation modeling (SEM) as a 
potential alternative to MANOVA for testing the equality of group mean vectors, 
particularly when the assumption of equal covariance matrices is violated. He 
argued that because in the SEM framework covariance matrices can be allowed to 
differ, this approach might prove superior to the standard MANOVA when group 
covariances are heterogeneous. This may be an important property, given the 
aforementioned evidence that other MANOVA test statistics appear to have 
difficulty in both controlling Type I error and maintaining high power in the 
heterogeneous covariance case. The basic approach in this case is based on the 
standard confirmatory factor analysis (CFA) model (see Raykov, 2001), which 
takes the form: 
 

where
observed variable
vector of latent variables with covariance matrix 
factor loading matrix
error term

x

x

ξ δ

ξ

δ

= Λ +

=
= Φ

Λ =
=

  (7) 

 
In most applications of CFA, each latent variable is associated with multiple 
observed variables. However, in this case each observed dependent variable in the 
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MANOVA context is related to its own unique latent variable, due to the 
following strictures: 
 
  and 0p pxpIΛ = Θ =   (8) 
 
Here Ip is the identity matrix and Θ is the covariance matrix for δ. In this special 
case, the covariance matrix for error is comprised of zero elements. These special 
restrictions, taken together with the CFA model imply that each latent variable is 
equal to one of the observed variables (Raykov, 2001) and that the latent variable 
covariance matrix is identical to that of the observed variables. In order to test the 
null hypothesis of equality of group mean vectors for the response variables, two 
further assumptions must be made (Raykov, 2001): 
 
(1)  ( ) ( )
(2)  ( ) 0

E E
E

ξ µ
δ

=
=

   (9) 

 
These additional restrictions to the model make the comparison of latent 

means equivalent to a comparison of observed means. The researcher can then 
test the null hypothesis of no group difference on the vector of observed 
dependent variable means by fitting two CFA models, one in which the response 
variable means are constrained to be equal across groups and the other in which 
they are allowed to vary. Then, the test of the null hypothesis of group difference 
on the responses is the difference in the 2χ  fit statistics: 2 2

Constrained Unconstrainedχ χ−  
(10). Allowing the group means to differ results in a saturated CFA model so that 
the value of 2

Constrainedχ will be 0. Therefore, the test of the null hypothesis of group 
differences across the vector of dependent variable means is equivalent to 

2 2 2 2
Constrained Unconstrained Constrained Constrained0χ χ χ χ− = − =  (11; Raykov, 2001). 

As noted above, the primary advantage of using the SEM approach to 
compare group mean vectors is that covariance matrices can be allowed to vary 
across groups (Raykov, 2001). In this way, the assumption of covariance matrix 
equality which underlies standard MANOVA and which has been shown in prior 
research to be important for other statistics for testing multivariate mean equality, 
is no longer a requirement. When the assumption of normality is violated, the 
standard 2χ  statistic used with ML estimation in SEM may not perform well (Yu 
& Muthén, 2002). Therefore, an adjusted version of this test statistic is 
appropriate when the dependent variables are not normally distributed. This 
alternative, developed by Satorra and Bentler (1994), was designed to correct for 
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multivariate kurtosis, and has been shown to be robust to departures from 
multivariate normality (Curran, West, & Finch, 1996).  

Given that the MANOVA test statistics are not as accurate as desired under 
violations of assumptions, alternative methods need to be explored to test the 
same hypotheses (Raykov, 2001) yet such evaluations have not occurred in 
sufficient number. As described above, prior simulation research examining 
alternatives to the standard MANOVA approach for testing multivariate mean 
differences (e.g., rank based and exact tests) has generally found that assumption 
violations, particularly that of homogeneity of covariance matrices, result in Type 
I error inflation similar to, if not as severe as, that reported for MANOVA (e.g., 
Finch, 2005; Ittenbach, Chayer, Bruininks, Thurlow, & Beirne-Smith, 1993). By 
contrast, very little empirical research has been conducted to evaluate the 
effectiveness of this fairly new SEM based approach for testing the null 
hypothesis of multivariate mean equality. One such effort (Finch & French, 2008) 
found that in the absence of assumption violations, the Satorra-Bentler corrected 

2χ  test and Pillai’s trace had comparable Type I error rates and power for total 
samples of 100 or more with normally distributed dependent variables. For 
smaller samples, the SEM based approach did have elevated Type I error rates 
(e.g., 0.09 for N of 30) when both assumptions of normality and homogeneity of 
covariance matrices were met. When the assumption of equal covariance matrices 
was violated and the smaller group had the larger elements, the SEM based 
approach had lower Type I error rates compared to the standard approach. When 
the larger group had the larger elements, both SEM and the standard approach had 
Type I error rates at or below the nominal level, but the SEM method had much 
higher power. Thus, it appeared that the SEM approach might be preferred. 
However, there is a need to examine the large number of viable MANOVA test 
statistics reviewed here under the same conditions to begin to inform the field as 
to which approach is preferred under different conditions. Additionally, little, if 
any prior work has examined the performance of this new SEM approach to 
MANOVA testing as well as with more than two groups. The SEM approach to 
testing hypotheses about multivariate mean differences represents a fourth family 
(Family 4) of test statistics investigated in this study. 

Goals of the study 
The first goal of this study was to review the various MANOVA test statistics to 
inform the reader of the 16 choices that are currently available for comparing 
multivariate means across groups. Table 1 provides summary information across 
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these 16 tests to aid understanding of performance from separate past evaluations. 
The second goal was to conduct a simulation study comparing the performance of 
the 16 methods across a variety of conditions designed to mirror those 
encountered in practice, in order to assess their Type I error and power rates. This 
Monte Carlo study is anticipated to provide information on performance of these 
tests to aid the researcher in selecting the test that appears to work well given the 
specific data at hand and corresponding assumptions that are or are not met. The 
literature review led to several predictions for comparing test statistics noting that 
it is impractical to make predictions for all combinations investigated. First, it was 
expected that when the data were normally distributed and group covariance 
matrices were homogeneous, all methods would have comparable Type I error 
and power rates. Second, Families 1, 2, 3 and 4 were expected to have, on average, 
lower Type I error and higher power compared to the standard MANOVA test 
statistic, when covariance matrices were heterogeneous. Third, given the 
advantages of latent variable modeling it was expected that SEM would have the 
lowest Type I error and highest power, across conditions, with the exception of 
for small sample sizes, where accurate parameter estimation would likely be a 
problem. Fourth and last, trimmed versions in Family 1 were expected to have the 
lowest Type I error and highest power in heavily skewed distribution conditions.  

A number of studies have previously conducted investigations of a few of 
these methods, but no study has simultaneously compared all of the techniques 
under a common set of conditions. In addition to all comparisons under similar 
conditions, this work adds to the literature by providing information on the use of 
SEM under these conditions and behavior of all statistics studied for the 2 and 3 
group case. The former is rarely included in such comparisons and no evaluation 
has investigated performance of all four test families in one simulation under the 
same conditions. Thus, the present work seeks to extend the literature by 
providing a full examination of methods for comparing multivariate group means 
when standard assumptions are not met. A total of seven factors were manipulated 
which allowed for the examination of 12,076 conditions to assist with meeting the 
second goal of the study. 

Methods 

This Monte Carlo study manipulated seven factors in a completely crossed design 
with 5000 replications per combination of conditions using a SAS program (SAS 
version 9.1, 2004) written by the authors. Manipulated factors included sample 
size, group size ratio, covariance matrix homogeneity/heterogeneity, distribution 
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of the dependent variables, group mean differences, correlations among the 
dependent variables, and the number of dependent variables. All of the statistical 
methods were conducted using SAS, with the exception of SEM, which was 
carried out with Mplus version 5.1 (Muthén & Muthén, 2008). A number of the 
alternative and robust methods were conducted with a macro described by Lix and 
Keselman (2004). The two outcome variables of interest were the Type I error 
rate (rejecting the null hypothesis of no multivariate mean difference when, 
actually, no differences were simulated) and power (correctly rejecting the null 
hypothesis of no multivariate mean differences). To assess which of the 
manipulated factors, or combinations of them, had a significant influence on the 
dependent variables, an ANOVA was conducted for each outcome, per 
recommendations for simulation research (Paxton, Curran, Bollen, Kirby, & Chen, 
2001). The dependent variable in each ANOVA was one of the outcomes (i.e., 
Type I error rate or power) taken across replications for each combination of 
conditions. The independent variables were the manipulated factors and their 
interactions. In addition, the ω2 effect size was calculated to describe the relative 
magnitude of the statistically significant effects. Given the scope of the simulation, 
discussion is limited only to those effects that most influenced the Type I error 
and power rates, which are defined as those effects that were both statistically 
significant (α = 0.05) and had an ω2 of 0.10 or greater. 

Statistical methods 
Because it has been demonstrated as more robust with respect to Type I error 
control when standard assumptions are violated (Olson, 1974), Pillai’s Trace (P) 
was selected for use as the standard MANOVA test statistic for this study, and 
will be referred to as such throughout the remainder of the manuscript, although it 
is acknowledged that other test statistics such as Wilks’ Lambda, are also 
frequently used in practice. However, note that with the two groups case the 
results across the standard tests will be identical, and equal to Hotelling’s T2. The 
other statistical tests included the rank based method, James (JA), Hotelling’s T2 
for unequal covariance matrices (H), Brown-Forsythe (BF), Johansen (JO), Kim 
(K), Nel van der Merwe (NV), Yao (Y), Raykov (SEM), and the trimmed 
versions of the robust methods, TJA, TH, TBF, TJO, TK, TNV, and TY. 
Consistent with the recommendation of Lix and Keselman (2004), 20% 
symmetric trimming of the data was employed. 



FINCH & FRENCH 

53 

Manipulated Factors 

Total sample size 
Seven total sample size (across groups) conditions were examined for the two 
groups case: 20, 30, 45, 60, 90, 100, and 150. For the three groups case, the 
following total sample size conditions were examined: 30, 40, 45, 50, 60, 75, 90, 
120, 150, 200, and 250. In the three groups, equal sample size condition for N=40, 
50, 200, and 250, the data were simulated so that one group had either one more 
or one fewer observations than did the others. For example, in the N=40 case, two 
of the groups were simulated with 16 individuals, whereas the other was 
simulated with 17. Similarly, in the N=250 condition, two of the groups were 
simulated with 83 individuals, whereas the other was simulated with 84. The same 
approach was used with 50 and 200. These values are in accord with previous 
simulation research with MANOVA and SEM approaches to multivariate 
comparisons, (e.g., Christensen & Rencher, 1997; Finch, 2005; Hancock, 
Lawrence & Nevitt, 2001; Hussein & Carriere, 2005; Wilcox, 1995). This range 
of values was selected to reflect conditions that applied social science researchers 
are very likely to encounter. 

Number of Groups 
Two conditions were simulated for number of groups: 2 and 3 groups. Much of 
the previous work comparing performance in the MANOVA situation has been 
conducted on 2 groups with several variables (e.g. Christensen & Rencher, 1997; 
Finch, 2005). A significant addition of this work to the literature is to evaluate the 
behavior of these tests with 3 groups. Two groups were included to aid the 
comparison to prior work. 

Group size ratio 
Three group size ratio conditions were used: (a) groups were equal, (b) group 1 
was half the size of group 2, and (c) group 1 was twice the size of group 2. In the 
three group case, for condition (b) groups 1 and 2 were half the size of group 3, 
and for condition (c) groups 1 and 2 were twice the size of group 3. Thus, for 
example, in the n=60 case, there were 30 simulees per group in condition a, 20 in 
group 1 and 40 in group 2 in condition b, and 40 in group 1 and 20 in group 2 in 
condition c. The combination of unequal group sizes with unequal group 
covariance matrices has been shown to influence both Type I error and power 
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rates (Sheehan-Holt, 1998; Stevens, 2001; Hakstian, Roed & Lind, 1979) and 
these particular ratios employed have been used in prior studies (e.g., Christensen 
& Rencher, 1997, Hakstian et al.,1979). As noted above, when the smaller group 
has the larger covariance matrix elements the Type I error rate will be inflated; 
when the larger group has the larger elements power will be diminished. 

Covariance matrix homogeneity/heterogeneity 
The group covariance elements were manipulated in three ways: (a) equal, (b) one 
group had elements 5 times as large as the others, and (c) one group had elements 
10 times as large as the others. Equality of the covariance matrices across groups 
is a vital assumption for the test statistics associated with MANOVA, and 
differences in these matrices can influence the performance of these tests (Fouladi 
& Yockey, 2002; Sheehan-Holt, 1998; Korin, 1972). Two unequal covariance 
conditions were simulated (a) the larger group had the larger elemental values and 
(b) the smaller group had the larger elemental values. 

Distribution of the dependent variables 
Normality of the dependent variables is another assumption of the standard 
statistical tests used in MANOVA. The Type I error rate of the common 
MANOVA tests may suffer from some inflation when the distribution of the 
dependent variables have large kurtosis (Olson, 1974). Therefore, in the current 
research the dependent variables were simulated under one of four distributional 
conditions: (a) normal (skewness=0, kurtosis=0), (b) beta (skewness = -0.82, 
kurtosis = 0.28), (c) lognormal (skewness = 6.18, kurtosis = 110.93), and (d) 
exponential (skewness =2, kurtosis = 6). These reflect conditions used in similar 
work (Algina et al., 1991). The non-normal data were simulated using a 
methodology described by Headrick and Sawilowsky (1999) to achieve the 
desired levels of skewness and kurtosis while maintaining the target correlations 
among the dependent variables. These distributions were selected to provide 
insights into the performance of the methods studied here under a variety of cases. 

Group means differences 
Differences in group means were simulated using values of Cohen’s (1988) d 
univariate effect sizes. This metric was selected because it allowed for a 
straightforward manipulation of this important variable and matches the 
methodology (though not the values) used in prior simulation research of 
MANOVA (Blair et al., 1994; Finch, 2005). The effect size of 0 allowed for the 
evaluation of the Type I error. The other values corresponded to group separation 
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at small (0,2), medium (0.5), and large (0.8) levels. The univariate Cohen’s d (i.e., 
meangroup1 – meangroup2 / SDpooled) effect size was selected for use in this study 
because there are generally agreed upon guidelines for its interpretation (Kim & 
Olejnik, 2004). In contrast, though there do exist multivariate effect size values, 
there is not a single such statistic that is considered the standard, nor is there any 
sort of agreement regarding what constitutes a small, medium, or large effect. 
Thus, in order to provide a useful context to researchers regarding the 
performance of the various methods described here, Cohen’s d was used. 

Correlation among the dependent variables 
The data were simulated under three conditions for correlation among the 
dependent variables, including no correlation (0.0), small (0.2) and large (0.8). 
These values were selected to represent the case where variables were orthogonal 
(0.0), where the correlation was small to moderate (0.2) and where the variables 
were highly correlated (0.8). Conditions are consistent with prior research (e.g., 
Finch, 2005; Wilcox, 1995) to aid comparability. 

Number of dependent variables 
Two levels were employed: 2 and 4 dependent variables, consistent with prior 
studies (e.g., Fouladi & Yockey, 2002; Wilcox, 1995) and representative of 
realistic numbers of response variables seen in practice (e.g., Dumas et al., 1999; 
Krull, Kirk, Prusick, & French, 2010) while maintaining a manageable set of 
simulation conditions for the current study. 

Results 

Two groups versus three groups 
Results for two and three group cases generally followed similar patterns in terms 
of how the methods compared relative to one another, with a couple of exceptions. 
Thus, to keep discussion of the results as brief as possible, only results for the 
three group condition are presented. However, prior to presenting these, note that 
the few cases where the two group condition results diverged from those for three 
group condition. In general, Type I error rates did not differ between the two 
number of groups conditions, but power was higher in the three group case 
compared to the two group case. In terms of relative comparison of the methods, 
with two groups the rank based approach had among the lowest power values. 
When three groups were present, the rank based approach had comparable power 
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to the other approaches, as is presented below. Outside of these differences, the 
results for the two group case were comparable to those for three group case, 
which are presented below. The two group case results are available from the 
authors upon request. 

The results for three group case are organized into two sections: (a) Type I 
error and power rates based on the variance homogeneity condition, and (b) Type 
I and power rates by the distribution of the response variables. In each case, a 
repeated measures ANOVA was employed to identify the significant main effects 
and interactions of the manipulated factors in terms of Type I error and power, 
where the repeated measures variable was the MANOVA test statistic. The 
ANOVA models had as the dependent variable the Type I error or power rates 
across the 5000 replications per combination of conditions. The independent 
variables were type of test statistic (within replication), correlation among the 
dependent variables, number of dependent variables, sample size ratio, variance 
ratio, sample size and in the case of power, and effect size. The assumptions of 
normality and sphericity were assessed and found to have been met. Sphericity 
was assessed using Mauchley’s test of Sphericity in conjunction with the ε 
statistic, which takes the value of 1 in the population when the covariance matrix 
satisfies sphericity (Warner, 2008). In the case of each set of repeated measures 
ANOVA results below, Mauchly’s test was not statistically significant with α = 
0.15, as recommended in Kirk (1995). In addition, across the repeated measures 
analyses described below, the value of ε ranged between 0.901 and 0.974. Finally, 
an examination of the Greenhouse-Geisser conservative F-test and MANOVA 
test results, both of which have been suggested for use when sphericity is violated, 
revealed the same main effects and interactions as significant and non-significant 
when compared with the unadjusted test. Therefore, given the general finding that 
sphericity was present, coupled with the similarity in results for the unadjusted 
and Greenhouse-Geisser adjusted test, it may be concluded that sphericity (or lack 
thereof) was not problematic in this case. 

Normality was assessed first by an examination of QQ-plots for the 
individual outcome variables, and all were found to conform reasonably closely to 
the line for the normal distribution. In addition, multivariate normality was tested 
for across repeated measurements (rejection rates for each test statistic) for each 
of the models described below using Mardia’s test (Mardia, 1970), and found 
none of them to be statistically significant. Taken together, the QQ-plot and 
Mardia’s test results satisfy the assumption of normality for repeated measures 
models as described in Warner (2008). The models were fully factorial with all 
main effects and interactions included. As mentioned previously, in order to focus 
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on only the most important of the manipulated factors, discussion will be limited 
to those significant (α = 0.05) terms in the ANOVA that had an effect size (ω2) 
greater than 0.10. This value was selected because it indicates that the main effect 
or interaction term accounted for at least 10% of the variation in rejection rates. 
By doing so, it is possible to avoid discussing a large number of statistically 
significant effects that actually accounted for a small amount of variance, which 
was a concern given the large number of replications for each combination of 
conditions. Full results tables are available by contacting the authors.  

Covariance Homogeneity: Type I error rate 
The ANOVA identified the interaction of test statistic by sample size ratio by 
covariance ratio as the highest order significant term (p < 0.01, ω2 = 0.527). The 
interaction of test statistic by number of dependent variables was also significant 
(p < 0.01, ω2 = 0.381). No other term was statistically significant with an effect 
size value greater than 0.10. 

Table 2 contains the Type I error rates by test statistic, sample size ratio, and 
covariance ratio for normally distributed data. When the groups’ covariances were 
equal, the Type I error rate for all of the statistics examined here were below 0.06, 
except for H, TH, and the rank approach across group ratio conditions, and for BF 
in the sample size ratio 2/1 condition. When the group covariances were not equal 
but the sample size ratio was equal, the Type I error rate of the P test was inflated 
above the nominal 0.05 level. Several of the alternative statistics, including the 
rank based approach, H, TH, and BF had inflated Type I error rates in the unequal 
covariance, equal sample size condition as well. In contrast, the Type I error rates 
for JA, JO, K, NV, Y, all members of Family 1 (except for K), and SEM did not 
have inflated error rates associated with inequality in group covariances when 
sample sizes were equal. To further investigate these effects, several interaction 
contrasts were employed, using Scheffé’s correction (Scheffé, 1953) to control the 
overall Type I error rate (α = 0.05) and allow for such post hoc investigations. 
Based on these contrasts, it was found that the rank and H statistics yielded 
significantly inflated Type I error rates as the degree of covariance inequality 
increased, whereas the rates of the other methods did not change significantly.  
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Table 2. Type I Error Rate by Test Statistic, Sample Size Ratio, and Group Covariance 
Ratio: Normally Distributed Data 
 

Sample 
Size Ratio   Statistic  Covariance 

ratio: 1/1 
Covariance 

ratio: 5/1 
Covariance 
ratio: 10/1 

Equal 

     
 Standard 0.050 0.060 0.064 

 Ranks 0.060 0.072 0.082 

 JA | TJA 0.043 | 0.031 0.049 | 0.033 0.052 | 0.040 

 H | TH 0.070 | 0.070 0.089 | 0.093 0.102 | 0.117 

 BF | TBF 0.053 | 0.038 0.071 | 0.046 0.072 | 0.046 

 JO | TJO 0.051 | 0.042 0.056 | 0.044 0.056 | 0.050 

 K | TK 0.047 | 0.034 0.040 | 0.027 0.035 | 0.024 

 NV | TNV 0.048 | 0.034 0.047 | 0.029 0.047 | 0.028 

 Y | TY 0.048 | 0.035 0.055 | 0.040 0.059 | 0.044 

 SEM 0.057 0.054 0.058 
          

1/2* 

     
 Standard 0.050 0.007 0.004 

 Ranks 0.061 0.023 0.019 

 JA | TJA 0.044 | 0.033 0.048 | 0.042 0.046 | 0.040 

 H | TH 0.061 | 0.061 0.031 | 0.034 0.024 | 0.018 

 BF | TBF 0.052 | 0.043 0.064 | 0.075 0.067 | 0.081 

 JO | TJO 0.051 | 0.045 0.051 | 0.041 0.046 | 0.040 

 K | TK 0.051 | 0.042 0.046 | 0.039 0.042 | 0.036 

 NV | TNV 0.047 | 0.035 0.047 | 0.042 0.044 | 0.041 

 Y | TY 0.053 | 0.046 0.048 | 0.043 0.049 | 0.039 

 SEM 0.053 0.055 0.061 
          

2/1** 

     
 Standard 0.049 0.092 0.109 

 Ranks 0.061 0.086 0.103 

 JA | TJA 0.042 | 0.033 0.047 | 0.037 0.050 | 0.041 

 H | TH 0.068 | 0.065 0.122 | 0.121 0.157 | 0.159 

 BF | TBF 0.064 | 0.052 0.069 | 0.050 0.070 | 0.049 

 JO | TJO 0.053 | 0.048 0.055 | 0.046 0.055 | 0.048 

 K | TK 0.050 | 0.041 0.041 | 0.033 0.037 | 0.029 

 NV | TNV 0.044 | 0.039 0.047 | 0.033 0.048 | 0.033 

 Y | TY 0.058 | 0.047 0.055 | 0.047 0.055 | 0.046 

 SEM 0.049 0.055 0.053 
           

*Sample size ratio of 1/2 couples larger variance with larger group size in the unequal variance condition. 
**Sample size ratio of 2/1 couples larger variance with smaller group size in the unequal variance condition. 
 

Based on interaction contrasts using Scheffé’s corrected critical value, when 
the larger group had the larger covariance (sample size ratio 1/2), the P, rank 
based statistic and H displayed significant declines in Type I error rates 
concomitant with increases in groups’ covariance matrix inequality. As the group 
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covariances became more unequal, however, TBF had a significant increase in the 
Type I error rate. As seen with an equal sample size ratio, members of Family 1 
and K generally demonstrated consistent Type I error rates, which were just 
below the nominal value of 0.05. The Scheffé corrected contrasts did not find any 
significant change in the error rates of the SEM method, though for the covariance 
ratio of 10/1 with the 1/2 sample size ratio, the rate was just above 0.06. When the 
smaller group had the larger covariance (sample size ratio 2/1), the standard, rank 
based, H, and TH approaches all showed a significant increase in the Type I error 
rate with increasing divergence in group covariance matrices. Family 1 and SEM 
maintained Type I error rates near the nominal 0.05 value, whereas K actually had 
a slight decline in the error rate as the covariance matrices became more unequal. 
Across all conditions simulated here, the trimmed versions of the test statistics 
had slightly lower Type I error rates compared to the untrimmed alternatives 
(except for TH in the covariance ratio 10/1, sample size ratio 2/1 case), though in 
most cases these differences were less than 0.01.  
 
 
Table 3. Type I Error Rate by Test Statistic and Number of Dependent Variables: 
Normally Distributed Data 

  Number of dependent variables 

Statistic 2 4 

   Standard 0.069 0.087 
Ranks 0.065 0.079 
JA | TJA 0.043 | 0.042 0.041 | 0.039 
H | TH 0.072 | 0.074 0.074 | 0.078 
BF | TBF 0.062 | 0.052 0.064 | 0.049 
JO | TJO 0.049 | 0.044 0.051 | 0.042 
K | TK 0.048 | 0.041 0.043 | 0.040 
NV | TNV 0.050 | 0.046 0.052 | 0.039 
Y | TY 0.046 | 0.046 0.053 | 0.038 
SEM 0.057 0.051 
      

 
 

Table 3 displays the Type I error rate for statistical test by number of 
dependent variables for normally distributed data. The error rates for the standard 
and rank based approaches were significantly greater for 4 variables compared to 
2 variables. The Type I error rates for the rest of the test statistics were essentially 
the same for 2 and 4 dependent variables. In addition to the standard and rank 
approaches, H, TH, and BF all had error rates in excess of 0.06; the other methods 
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had rates closer to the nominal 0.05. Because there were not significant results for 
the correlation among the dependent variables and the sample size, they are not 
discussed. 

Covariance Homogeneity: Power 
Repeated measures ANOVA was used to identify the manipulated terms that were 
significantly related to power rates across replications, using the same model used 
with Type I error rates. The interaction of the test statistic by sample size ratio by 
covariance ratio was the highest order significant term (p < 0.01, ω2 = 0.149), as 
were the main effects of effect size (p <0.01, ω2 = 0.811), correlation among the 
dependent variables (p < 0.01, ω2 = 0.360) and total sample size (p < 0.01, ω2 = 
0.781). No other terms in the ANOVA were statistically significant with an effect 
size greater than 0.10. 

Table 4 contains power by test statistic, sample size ratio and group 
covariance ratio. Power values for those conditions for which the Type I error rate 
was greater than 0.075 (from Table 2) are in bold, and should be interpreted with 
extreme caution. These values are included for completeness in results 
presentation. When the groups were of equal size, SEM, followed by the P 
statistic had the highest power rates among those for which the Type I error rates 
were not inflated (non-bolded values). For all of the methods studied here, power 
declined as the covariance matrix inequality increased when the larger group had 
the larger variance and when the smaller group had the larger variance. In 
addition, the power for the trimmed statistics was uniformly lower than that of the 
non-trimmed versions in this sample. Power for the rank based approach was 
comparable to that of the standard in the covariance 1/1 and 5/1 cases, but could 
not be interpreted for 10/1 due to Type I error inflation. 

When the group sizes were unequal but the covariance matrices were equal, 
SEM had the highest power rates, followed by the standard, and rank based 
approaches, all of which had significantly higher power than the other methods 
studied here. When the larger group had the larger covariance (sample size 1/2 
condition), power for all methods declined significantly with increases in variance 
heterogeneity, though the pattern of SEM, followed by standard and rank methods 
with highest power rates held. When the smaller group had the larger covariance 
(sample size 2/1 condition), a situation that resulted in inflated Type I error rates 
for several methods, the highest power rates among those that had Type I error 
rates lower than 0.075 belonged to SEM, followed by Family 1, K, BF, and TBF. 
For all of the methods power rates declined significantly as the degree of 
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covariance matrix inequality increased. Note that in this condition, the Type I 
error rates for the standard, rank based, and H approaches were inflated.  
 
 
Table 4. Power by Test Statistic, Sample Size Ratio, and Group Covariance Ratio: 
Normally Distributed Data 
 

Sample 
Size Ratio   Statistic  Covariance 

ratio: 1/1 
Covariance 

ratio: 5/1 
Covariance 
ratio: 10/1 

Equal 

     
 Standard 0.695 0.44 0.309 

 Ranks 0.684 0.464 0.353 

 JA | TJA 0.470 | 0.394 0.256 | 0.203 0.170 | 0.131 

 H | TH 0.530 | 0.496 0.330 | 0.309 0.248 | 0.241 

 BF | TBF 0.495 | 0.421 0.302 | 0.230 0.209 | 0.148 

 JO | TJO 0.490 | 0.432 0.268 | 0.223 0.178 | 0.145 

 K | TK 0.480 | 0.402 0.240 | 0.190 0.142 | 0.102 

 NV | TNV 0.483 | 0.405 0.253 | 0.189 0.162 | 0.112 

 Y | TY 0.481 | 0.404 0.266 | 0.210 0.177 | 0.135 

 SEM 0.738 0.489 0.357 
          

1/2* 

     
 Standard 0.764 0.538 0.413 

 Ranks 0.758 0.55 0.435 

 JA | TJA 0.537 | 0.463 0.319 | 0.267 0.222 | 0.184 

 H | TH 0.587 | 0.558 0.389 | 0.369 0.312 | 0.300 

 BF | TBF 0.558 | 0.500 0.363 | 0.300 0.261 | 0.206 

 JO | TJO 0.558 | 0.506 0.332 | 0.288 0.230 | 0.194 

 K | TK 0.551 | 0.491 0.310 | 0.259 0.201 | 0.159 

 NV | TNV 0.545 | 0.468 0.321 | 0.261 0.220 | 0.171 

 Y | TY 0.557 | 0.499 0.332 | 0.283 0.229 | 0.188 

 SEM 0.802 0.591 0.472 
          

2/1** 

     
 Standard 0.741 0.705 0.685 

 Ranks 0.734 0.721 0.69 

 JA | TJA 0.514 | 0.440 0.498 | 0.403 0.377 | 0.334 

 H | TH 0.568 | 0.537 0.536 | 0.511 0.436 | 0.367 

 BF | TBF 0.537 | 0.473 0.492 | 0.397 0.381 | 0.326 

 JO | TJO 0.535 | 0.482 0.488 | 0.401 0.379 | 0.319 

 K | TK 0.527 | 0.461 0.487 | 0.410 0.384 | 0.322 

 NV | TNV 0.525 | 0.447 0.500 | 0.389 0.380 | 0.343 

 Y | TY 0.532 | 0.467 0.519 | 0.402 0.399 | 0.338 

 SEM 0.811 0.732 0.691 
           

Note: Bold indicates when power values for these conditions were associated with Type I error rates greater 
than 0.075  
*Sample size ratio of 1/2 couples larger variance with larger group size in the unequal variance condition. 
**Sample size ratio of 2/1 couples larger variance with smaller group size in the unequal variance condition. 
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Power by effect size 
 

 
Power by sample size 

 
Power by correlation  

among dependent variables 
 
 
 
 
 
Figure 1. Three panels of power rates for 
five MANOVA statistics by effect size, 
correlation among dependent variables, 
and sample size. 
 
 
 
 

 
 

Figure 1 displays power by the main effects of effect size, correlation among 
the dependent variables and total sample size, in three panels. For clarity of 
presentation only selected testing methods were included, as they are 
representative of others studied. Specifically, JA was selected to represent Family 
1 (except H) and K, all of which had very similar rates, though BF displayed 
similar power to H under these conditions. The trimmed versions of these 
statistics had power rates that were similar to the untrimmed versions in terms of 
their pattern relative to one another and had slightly lower power values (though 
not significantly lower) than the untrimmed statistics. For all of the methods, 
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power increased significantly with increases in effect size and sample size, and 
declined with increases in the correlations among the dependent variables. These 
patterns were consistent across the methods studied here. 

Distribution: Type I error rate 
As with the covariance homogeneity data, a fully factorial repeated measures 
ANOVA was used to identify significant main effects and interactions of the 
manipulated variables that were related to the Type I error rates under differing 
distribution conditions. The highest order term that was identified as statistically 
significant with ω2  greater than 0.10 was the interaction of type of test statistic 
(method) by number of dependent variables by sample size (p < 0.01, ω2 = 0.624). 
In addition, the distribution of the dependent variables was a significant main 
effect (p = 0.034, ω2 = 0.063). Although its ω2  value did not meet the 0.10 
threshold used to identify terms for further consideration, it will be discussed 
briefly because the distribution of the response was of primary interest in this 
study. No other term was both statistically significant in the ANOVA and had ω2 
greater than 0.10. 
 
 
Table 5. Type I Error Rate by Test Statistic and Distribution of the Dependent Variables. 
 

 Distribution 

Statistic Normal Beta Lognormal Exponential 

     Standard 0.05 0.05 0.05 0.05 
Ranks 0.079 0.06 0.061 0.06 
JA | TJA 0.047 | 0.036 0.044 | 0.032 0.044 | 0.033 0.044 | 0.032 
H | TH 0.104 | 0.106 0.064 | 0.065 0.064 | 0.065 0.064 | 0.064 
BF | TBF 0.064 | 0.046 0.052 | 0.042 0.052 | 0.042 0.052 | 0.041 
JO | TJO 0.054 | 0.046 0.051 | 0.044 0.051 | 0.045 0.051 | 0.044 
K | TK 0.042 | 0.032 0.049 | 0.039 0.048 | 0.040 0.048 | 0.039 
NV | TNV 0.047 | 0.032 0.047 | 0.035 0.047 | 0.036 0.047 | 0.035 
Y | TY 0.054 | 0.044 0.052 | 0.043 0.051 | 0.043 0.051 | 0.042 
SEM 0.055 0.082 0.084 0.082 
           

 
Table 5 contains the Type I error rate for the test statistics by the distribution 

of the dependent variables. These results demonstrate that the P test statistic was 
robust to the distribution of the dependent variables, maintaining the nominal 
(0.05) Type I error rate across the four distributions. With the exception of the 
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rank based approach, BF, H, and TH in the normal case, and ranks, H/TH, and 
SEM in the nonnormal conditions, which had elevated rates, the tests displayed 
Type I error at the nominal level of 0.05.  
 
 

 
Type 1 error rate 

for Two dependent variables 

 
Type 1 error rate 

for Four dependent variables 
 
Figure 2. Two panels of Type I error rates for five MANOVA tests by sample size and 
number of dependent variables, across distribution of the dependent variables. 
 
 

Figure 2 contains two panels showing the Type I error rates for the methods 
by the number of dependent variables and the sample size, across distribution 
conditions. In order to simplify presentation of the results, only the selected 
methods described were examined, which are representative of other several 
others that performed extremely similarly. An examination of Figure 2, which has 
a reference line at the nominal α rate of 0.05, reveals that when there were 2 
dependent variables, BF and SEM consistently had elevated Type I error rates. 
The other methods largely maintained the nominal rate across sample sizes, 
although the standard statistic did have slightly rates slightly above the 0.05 line 
(though not as high as 0.06) at N=60 and 120. With 4 dependent variables the 
standard, rank, and JA methods exhibited Type I error rates near or just below the 
0.05 level, except for the standard statistic with samples of 50, 60, and 75, with 
rates slightly above the nominal rate but not breaking 0.06. In contrast, the error 
rates for SEM and BF were consistently elevated above 0.05, but declined with 
increasing sample size. SEM had the highest rates compared to any method. 
Please note again that these results combine the outcomes for all of the 
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distributions, and that SEM maintained the nominal Type I error rate when the 
data were normally distributed, though it did not for the nonnormal data. 

Distribution: Power 
The factorial repeated ANOVA for the power of the MANOVA test statistics 
when the distributions were varied identified the interaction of method by 
correlation among dependent variables by distribution by number of variables (p 
< 0.001, ω2 = 0.588) and the interaction of method by sample size by effect size 
(p < 0.001, ω2 = 0.694) as the highest order significant terms with ω2 greater than 
0.10. All other significant lower order main effects and interactions were 
subsumed in these interactions and will not be discussed further. 
 

 
Power for Large effect size 

 
Power for Small effect size 

 
Power for Medium effect size 

 
 
 
 
 
Figure 3. Three panels of power rates for 
five MANOVA tests by effect size and 
sample size. 
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Figure 3 (three panels) displays power for the representative statistics used 
previously (standard, rank based, JA, BF and SEM) by effect size and sample size. 
When interpreting these results, it is important to keep in mind that the Type I 
error rates for SEM were inflated when the data were not normally distributed, 
and therefore higher power rates with SEM must be viewed with caution. The 
following discussion will focus on power for those statistics that maintained the 
nominal Type I error rate of 0.05. Across effect size and sample size values, the 
standard and rank based approaches maintained the highest power values of those 
methods that were able to maintain the nominal Type I error rate across 
distributions. In contrast, when the effect size was large, the BF and JA methods 
had lower power compared to the other approaches for the smallest sample size 
condition. Not until N = 120 did power approach 0.8 for these methods. When the 
simulated effect size was of medium magnitude, none of the methods that 
controlled Type I error had power rates approaching 0.8 until sample sizes were 
90, and again the standard and rank approaches had higher power than JA or BF. 
In contrast, for the large effect condition the standard and rank statistics had 
markedly higher power rates across sample sizes, with values of 0.8 or greater for 
N of 60 or more. Finally, when the simulated effect size was small, the patterns 
were similar to those for larger effects, though none of the methods that controlled 
Type I error had power greater than 0.6 for any sample size, and the standard and 
rank based approaches had higher power than JA or BF.  
 

 

 
 
 
 
 
Figure 4. Power for five 
MANOVA tests by correlation (r) 
among dependent variables, 
distribution (dist) of dependent 
variables, and number of 
dependent variables (var) 
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Figure 4 includes the power rates for the significant 4-way interaction of test 
statistic by correlation among the dependent variables by distribution of the 
dependent variables by number of dependent variables. An examination of this 
figure reveals that across distributions and test statistics, power declined with 
increases in the correlation among the dependent variables. In terms of the test 
statistics that controlled Type I error, power for BF was generally the highest in 
the 2 variable case, and the standard, rank, and BF approaches displayed 
comparable power with 4 variables across distributions. With the normal 
distribution, SEM also had among the highest power values in the 4 variable 
condition, on par with standard and rank tests. And again, although SEM had the 
highest power values in most of the nonnormal conditions, it is not discussed in 
that context here due to the Type I error inflation it exhibited for the nonnormal 
distributions. JA consistently displayed among the lowest power results of the 
methods studied here. Power was consistently lower in the normal distribution 
condition compared to the other distributions studied here. Finally, note that 
power was below 0.80 across all conditions.  

Discussion 

The goals of this study were to provide a comprehensive review of the various test 
statistics available for MANOVA when standard assumptions are violated, and to 
conduct a large simulation study to compare the performance of the 16 identified 
(i.e., four families) test statistics across a variety of simulated conditions to 
evaluate Type I error and power. The results illustrate that Type I error and power 
do differ based on the selection of the test statistic for the MANOVA, dependent 
upon specific data conditions. This work is in accord with calls to make such 
comparisons. Raykov (2001), for example, encouraged comparison of the 
standard approach to testing the multivariate null hypothesis of no mean vector 
difference across groups as represented by P with an approach based upon SEM. 
This comparison was made, among several others, and extended this work to the 3 
group case. Thus, this study does provide information on performance of these 
tests to aid the researcher in selecting the test statistic(s) that appears to work well 
given the data at hand, corresponding assumptions that are satisfied, and the 
variable framework (latent vs. observed) under which the analysis is conducted. 
Seven factors were manipulated resulting in 12,076 comparison conditions to gain 
a greater understanding of the relative performance of the standard approach for 
testing the multivariate hypotheses with respect to mean differences, along with a 
number of purportedly more robust options. 
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Major Points 
Results revealed that when MANOVA assumptions are met, SEM and P are 
optimal in terms of Type I error and power rates. This result for P is consistent 
with prior research (e.g. Christensen & Rencher, 1997), though there is not a great 
deal of prior work examining many of the other alternative test statistics. 
Furthermore, both SEM and P maintained the nominal error rate in this condition, 
and SEM had the highest power rates. Even when data are not normally 
distributed, the P statistics maintain the nominal Type I error rate as do the 
Family 1 and Family 2 test statistics, thus partially supporting the first research 
hypothesis for this study. However, when the assumption of equal covariances is 
violated, but group sample sizes remains equal, the P statistic displays elevated 
Type I error rates whereas both SEM and Family 1 tests maintained the nominal 
rate. Moreover, the P statistic had severely inflated Type I error rates when the 
smaller group had the larger covariances. Again, both SEM and Family 1 test 
statistics were able to maintain the nominal error rate in this case. Family 3 
performed similarly to the standard approach in terms of both Type I error rate 
and power in the case of three groups. However, for two groups, Family 3 had 
low power, making it of questionable utility under these conditions. 

With regard to power under the unequal covariance matrix conditions, SEM, 
followed by the Family 1 tests, had the highest values compared to the other test 
statistics that were able to maintain the Type I error rate at or near the nominal 
0.05 level. This positive performance for SEM is in keeping with Raykov’s 
(2001) suggestion that this approach would be particularly useful when the group 
covariance matrices were not equivalent. When covariance matrices were unequal, 
the power rates of the standard statistic, or H, could not be fairly compared 
because their error rates were inflated, particularly when the smaller group was 
paired with the covariance matrix having the larger elemental values. H had 
inflated error rates across most conditions. In short, when the outcome variables 
followed the normal distribution, SEM was able to maintain the nominal Type I 
error rate, and yield higher rates of power than the other methods studied here. 
Furthermore, in accord with Raykov (2001), the SEM approach was optimal 
among all the methods when the group covariance matrices were not equal and 
the data were normally distributed. This result supports the expectation that by 
allowing the group covariance matrices to be independently estimated as in SEM, 
it is possible to produce accurate results even when the standard assumption of 
homogeneity of covariance matrices is not met. 

Results for procedures using trimmed estimators were similar to those that 
used the usual least squares estimators, with slightly lower Type I error and power 
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rates compared to their non-trimmed counterparts. However, these differences 
were consistently very small, and generally did not offer a substantive advantage 
over the non-trimmed test statistics. Note that power for all methods was higher in 
the nonnormal conditions (no differences among these three) than for normal data. 
At the same time, there was no concomitant inflation of the Type I error rates for 
a number of the test statistics when non-normal data were present. The lack of 
influence of non-normality may be due to the adjustments that were examined. 
For instance, Hotelling’s T2 is conservative with skewed distributions or when 
outliers are in the tails of the distribution, especially when the design is 
unbalanced (Everitt, 1979; Zwick, 1986). It may be that under these conditions 
and with adjustments such as the use of the trimmed means, the other methods 
remain conservative as well. Lix & Keselman (2004) state that using Family 1 
with the trimmed means can result in a test that is robust to the effects of both 
non-normality and covariance heterogeneity. When multivariate normality is 
violated, the performance of Hotelling’s T2, for example, can depend on the 
nature of the research design and the type of departure from normality present in 
the data. It appears this may be the case for the other tests as well. Furthermore, 
other findings have suggested it may be small sample sizes with non-normal data 
that result in liberal results or Type I error inflation (e.g., Fouladi & Yockey, 
2002; Wilcox, 1995) with these studied test statistics. Such effects with various 
combinations of conditions appear to deserve continued investigation to assist in 
sorting out when one would and would not expect a degrading of statistical power 
or inflation of Type I error. 

Given the relative success of the Family 1 tests, it may be beneficial to take 
a moment and reiterate how these differ from those of the other families. Recall 
from the earlier discussion of this issue that Family 1 are all based on 2

unequalT , 
which is an analog of the univariate t-test calculation when group variances differ. 
Thus, the variances are weighted by the inverse of the group size. For tests in 
Families 2 and 3, the weighting of group variances was based on more complex 
combinations of sample size or sample proportions. Thus, the use of a simple 
weighting of variances by the inverse sample size may be more effective than 
attempting to account for the proportion of total cases in the sample, for example. 
Furthermore, given the very similar performances of the statistics in Family 1 to 
one another, it seems that the alternative methods for calculating degrees of 
freedom that demarcate most of these may not be particularly meaningful in 
conditions similar to those simulated here. 

The results of this study partially supported the hypothesis that the SEM 
approach would have lower Type I error and higher power for all but the smallest 
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sample sizes. When the underlying data were normally distributed, this method 
would seem to be a good choice for applied researchers. SEM consistently 
maintained Type I error control, and yielded the highest power values, regardless 
of whether the group covariance matrices were equal or not. The maximum 
likelihood based SEM approach is closely associated with the familiar Wilks’ 
Lambda statistic, commonly used in MANOVA testing, when the data are 
normally distributed, with the exception that it can be used successfully when 
group variances are unequal. For nonnormal data distributions simulated here, 
SEM was not able to maintain the nominal error rate of 0.05.  

Finally, results for the trimmed methods did not differ substantially from 
their non-trimmed counterparts, other than by exhibiting slightly lower rejection 
rates. The lack of higher power in the skewed case, which was hypothesized 
might occur, could be due to the fact that the data were not simulated to contain 
true outliers, given that this was not the focus. Thus, future research should 
include cases where outliers are present. 

Practical Recommendations for Applied Researchers 
The following guideline of bullet points summarizes results; these may prove to 
be helpful to researchers working with MANOVA in situations where the 
assumptions of normality and/or equality of covariance matrices are violated. 
These points are organized based upon the type of assumption violation and 
provide the researcher with suggested test statistics to use in each situation, based 
upon the results of this simulation study. 

1) When data are normally distributed and the groups’ covariance matrices are 
equal, SEM provides optimal power and Type I error control. 

2) When the data are not normally distributed and the groups’ covariance 
matrices are equal, the P statistic maintains the nominal Type I error rate 
and has optimal power, whereas SEM yields an inflated Type I error, and 
members of Family 1 do not. 

3) When the groups’ covariance matrices are not equal and data are normally 
distributed, the P statistic will exhibit an inflated Type I error rate, whereas 
SEM, and members of the Family 1 test statistics (except for H) will 
maintain the nominal error rate. 

4) When the groups’ covariance matrices are not equal and data are normally 
distributed, SEM will have the highest power rates, and the Family 1 test 
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statistics will have lower power to find group mean differences compared to 
the P. 

5) Tests based on trimmed statistics demonstrated slightly lower Type I error 
rates and power than their non-trimmed analogs. 

Study limitations and directions for future research 
As with any simulation study, there are limitations to the current work. First, a 
limited number of covariance inequality conditions were considered in which 
values for one group were multiples of those for another. Future work should 
expand upon the current work by investigating other covariance structures. 
Second, for each distribution condition, the variables had the same distribution. In 
practice this may not be the case, and future research should simulate situations in 
which variables have different distributions from one another. Third, only three 
non-normal distributions were considered here. Further work could, for instance, 
examine heavy tailed symmetric distributions, such as the Cauchy. Finally, only 
positively correlated dependent variables were examined here. As was noted in 
the introduction, the presence of negative correlations among the responses can 
lead to increased power for MANOVA tests. Thus, future research could extend 
the current work by comparing the performance of several of these methods in the 
presence of negative dependent variable correlations. 

Conclusion 

There is little doubt that with sixteen options for test statistics for MANOVA, 
many researchers will be overwhelmed with the choice that must be made. Many 
applied researchers may even be completely unaware of the various choices that 
exist. Furthermore, many of the choices are not available as standard options in 
some commonly used statistical packages, which can hinder accurate as well as 
wide-spread use. The result of this relative lack of access is that valid hypothesis 
testing in multivariate means comparisons may not be obtained when assumptions 
underlying the hypotheses tests are not satisfied. However, the development of the 
SAS macro by Lix and Keselman (2004), as well as the increasing availability of 
easy to use and powerful software for SEM, make many of these alternatives 
more accessible than ever before. Therefore, the applied researcher is encouraged 
to carefully consider the selection of the test given data conditions and seek 
resources to assist in calculations of that statistic if need be. Developers of 
statistical software are also encouraged to continue to integrate the various 
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options of these test statistics even beyond MANOVA. Though there is likely to 
be a lag behind development of state-of-the-art methods and software to 
implement these methods, researchers are encouraged to continue to attempt the 
use of the most appropriate method or test given the data and research question at 
hand. It is anticipated that the review of test statistics and results of this study will 
assist in guiding applied researchers in selecting optimal methods for comparing 
multivariate group means. 
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Appendix A 

The below equations supplement the material in the text so the interested reader 
has the formulas at their disposal. The terms are defined below and correspond to 
terms which appear throughout the text. For addition information on the 
derivation of the statistics please see the cited sources in the text. 

Family 1 

1) The multivariate analog of the univariate t-test equation for unequal 
variances: 

( ) ( )
1

2 1 2
1 2 1 2

1 2
unequal

S ST Y Y Y Y
n n

−
 ′= − + − 
 

  

2) FJN involves the conversion of 2
unequalT  to an F value: 
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This FJN value for this statistic is then compared with an F critical value p,vJ 
degrees of freedom with vJ = p (p + 2) / 3C. 
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3) The FNV test statistic is a transformed version of 2
unequalT : 

( ) ( )
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FNV is compared to a critical F value with p, vN degrees of freedom. 

4) Yao’s FY is based on 2
unequalT : 
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Family 2 

5) The Brown and Forsythe (FBF) test statistic: 
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6) The Kim (FK) test statistic: 
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7) Winsorized variance: 
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Where 

wpY =  Winsorized mean of variable p 
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1  if i H i HZ Y Y Y−= ≥   

Otherwise i iZ Y=   

YL = Lower cut score corresponding to 20th percentile value. 

YH = Upper cut score corresponding to 80th percentile value. 

8) 2 2 and unequalT T  can be calculated using the trimmed means and Winsorized 
covariance matrices as: 

( ) ( )
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TjY =  Trimmed mean for group j 

hj = Number of group j that is kept after trimming. 

9) A version of Hotelling’s T2 that does not use the pooled covariance 
matrix: 

( ) ( )
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1 22
 1 2 1 2 1 2

1 1 2 2
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1 1R unequal T T w w T T
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Family 3 

10) Rank based nonparametric test 

Convert Pillai’s trace value using ranks into the chi-square statistic: 
2 ( 1)n Pχ = −  where P is Pillai’s trace and n is the total sample size. Compare 

the value with the 2χ  distribution with k (p – 1) degrees of freedom, where k 
is the number of groups for the independent variable and p is the number of 
response variables. 
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Family 4 

11) Structural Equation Model based test 

To test of the null hypothesis of group differences on the responses is the 
difference in the 2χ  fit statistics: 2 2

Constrained Unconstrainedχ χ− . Allowing the group 
means to differ results in a saturated CFA model so that the value of 

2
Unconstrained 0χ = . 

The test of the null hypothesis of group differences across the vector of 
dependent variable means is equivalent to 

2 2 2 2
Constrained Unconstrained Constrained Constrained0χ χ χ χ− = − = . 
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