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The normality assumption behind ANOVA and other parametric methods implies that 
response variables are measured on continuous scales. A simulation approach is used to 
explore the impact of continuity violation on the performance of statistical methods 
commonly used by applied researchers to compare locations across several groups. 
 
Keywords: Continuity violation, ANOVA, Brown-Forsythe, Welch, Kruskal-Wallis 
 

Introduction 

One of the standard research procedures to explore the effects of the violation of 
an assumption underlying a statistical method is to perform an experimental study 
using Monte Carlo simulation. The one-way ANOVA for comparing locations 
across three or more groups and alternative test procedures such as the Brown-
Forsythe test, Welch test, and Kruskal-Wallis test have been subject to similar 
research since the 1970s (e.g., Glass et al., 1972; Bevan et al., 1974; Keselman et 
al., 1977), and continue to be studied today (e.g., Lantz, 2013; Cribbie et al., 
2012; Cribbie et al., 2007). Some workers conclud the one-way ANOVA is 
relatively robust against violations of the homoscedasticity assumption as well as 
against violations of the normality assumption. However, textbooks in statistics 
(e.g., Lomax and Hahs-Vaughn, 2007; Ryan, 2007) often recommend the Brown-
Forsythe and Welch tests when the data are characterised by apparent 
heteroscedasticity, particularly at unequal sample sizes, or the Kruskal-Wallis test 
when the data are clearly not mound-shaped. 

Most research regarding the normality assumption on which the ANOVA 
relies focuses on continuous distributions that differ from the normal in terms of 
shape, skewness, or kurtosis (e.g., Ito, 1980; Khan and Rayner, 2003). The fact 
that the underlying distribution is assumed to be normal does not, however, imply 
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only a mound shape, zero skewness, and zero excess kurtosis; it also requires that 
the data be continuous by nature. In applied research, data subject to statistical 
analyses have often been collected using discrete scales. Assume, for example, 
that the subjects participating in a psychological experiment perform a certain 
task four times, and that the number of successful trials is recorded for each 
subject. In this case, an arbitrarily chosen subject will have zero, one, two, three, 
or four successful trials. Although means and standard deviations can be used to 
describe the locations of different groups of subjects in cases like this, the one-
way ANOVA and parametric alternatives like the Brown-Forsythe test and the 
Welch test are, at least technically, invalidated as methodologies to compare 
means across groups. This is because the dependent variable is assumed to be 
continuous even though it actually is discretely distributed, with only a small 
number of possible values.  

The impact of the relative violation of the continuity assumption emerges 
more strikingly when there are fewer possible values that the variable can take. 
Krieg (1999) derived equations for calculating the bias induced by coarse 
measurement scales, and showed that the bias is reduced as the number of scale 
points increases. Hence, one would assume that statistical comparisons of 
locations across groups should be relatively unproblematic even if data are 
discrete as long as the number of possible variable values is large. In contrast, it 
might be a problem when the number of possible variable values is small, or when 
the violation of continuity is more severe. However, explicit analyses on the 
violation of continuity are scarce in the literature, and most of the research in this 
area seems to be related to the scale coarseness issue (Symonds, 1924) rather than 
to continuity violation. Scale coarseness refers to the fact that Likert-type and 
similar ordinal-level scales are collapsed into discrete scale points to simplify the 
data collection process, even though the underlying constructs are assumed to be 
continuous. When respondents are faced with a scale that does not have a 
sufficient number of response options, information loss will occur. Continuity 
violation and scale coarseness are obviously related phenomena, but scale 
coarseness (see Symonds, 1924) is an issue primarily related to data collection, 
whereas violation of continuity (see Bevan et al., 1974) is an issue strictly related 
to data analysis. 

Although there seems to be little research on how continuity violation 
affects the statistical methods commonly used to compare locations across groups, 
nevertheless some results can be found in the literature. Bevan et al. (1974) 
considered the appropriateness of ANOVA techniques when the response variable 
was discretely distributed and able to take three, five, or seven different values. 
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Their results suggested that the ANOVA was relatively robust to continuity 
violations with respect to Type I errors. However, Bevan et al. (1974) did not 
examine how power or alternative methods were affected by continuity violation. 
Gregoire and Driver (1987) tested the performance of selected parametric 
(including the F test) and nonparametric tests of location on the basis of sampling 
results from simulated Likert-type data and concluded that there was no clear-cut 
superiority for either type of test. It should be noted that their aim was to compare 
the methods rather than to explore the impact of scale discreteness. Rasmussen 
(1988) extended (and corrected) the analysis by Gregoire and Driver (1987), and 
demonstrated that the Type I and Type II error rates were not seriously 
compromised by the use of discrete data. 

The impact of continuity violation on the significance and power of 
statistical methods commonly used to compare locations across several groups is 
explored in the one-way ANOVA layout and its robust alternatives, the Brown-
Forsythe test, the Welch test, and the non-parametric Kruskal-Wallis test. The 
one-way ANOVA is based on the idea that the true means in groups are more 
likely to be equal if the variation between the groups is small compared to the 
variation within the groups. The Brown-Forsythe and Welch tests are considered 
robust compared with ANOVA, because their definitions of variation within 
groups are based on the relationships between the different sample sizes in the 
different groups, as opposed to a simple pooled variance estimate, which means 
that they become less sensitive to heteroscedasticity (see, e.g., Tomarken & Serlin, 
1986). The Kruskal-Wallis test is considered robust because it is based on ranks 
rather than actual values, which means that the underlying distribution does not 
matter so long as the observed values can be ranked. 

Methodology 

By definition, there is no discrete equivalent with only a few steps to the normal 
distribution, because a normally distributed random variable is unrestricted 
upward as well as downward, and can therefore take extreme values. Hence, it is 
technically impossible to make an exact evaluation of the impact of continuity 
violation on statistical methods that rest on the normality assumption. The best 
approximation compares results from a mound-shaped discrete distribution where 
the number of steps can be varied with results where the normality assumption 
holds, means and variances being equal. The binomial distribution is one such 
mound-shaped discrete distribution that exists for any number of steps, and it 
approaches the normal distribution when the number of steps becomes large 
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(Aczel and Sounderpandian, 2009). For example, Figure 1 displays the probability 
density function for the normal distribution with μ = 2 and σ2 = 1 and for the 
probability distribution for the binomial distribution with five possible outcomes, 
μ = 2 and σ2 = 1. Therefore, the binomial distribution is used in this study as an 
approximation of a continuity-violated normal distribution. 
 

 

 
Figure 1. A binomial 
distribution and its 
corresponding normal 
distribution 
 

 
 

An experimental design with three populations and four different 
combinations of small (defined as 5 observations) and large (defined as 25 
observations) sample sizes was used. Discrete scales based on binomial 
distributions with two, three, four, five, and seven steps were used in each case. 
For each combination, the proportion of significant ANOVA, Brown-Forsythe, 
Welch, and Kruskal-Wallis (adjusted for ties) tests was compared to the 
proportion of significant tests when data was simulated from normal distributions 
with identical means and variances. 

For each combination of sample sizes, test procedure, and number of steps, 
five different effect sizes were used. Table 1 shows the manner in which the 
values for the parameter p in the binomial distributions were varied for different 
values of n to achieve a suitable range of effect sizes (see Cohen, 1992), ranging 
from no effect (f = 0.00) to a very large effect (f = 0.65). For any individual 
combination of values of p and n, the distribution mean and variance could easily 
be calculated in order to obtain the corresponding normal distribution, because the 
mean is defined as np and the variance as np(1-p) for the binomial distribution 
(Aczel and Sounderpandian, 2009). For example, with five steps (n = 4) and f = 
0.25, p1 = 0.424, p2 = 0.500, and p3 = 0.576 because the mean and the variance 
then become 2.12 and 1.22 for group 1, 2.50 and 1.25 for group 2, and 2.88 and 
1.22 for group 3, respectively, corresponding to the medium effect size f = 0.25. 
Hence, the simulated impact of continuity violation in this case is based on a 
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comparison between the normal distributed random variables X1 ~ N(2.12, 1.22), 
X2 ~ N(2.50, 1.25), and X3 ~ N(2.88, 1.22) and the binomial distributed random 
variables Y1 ~ B(4, 0.424), Y2 ~ B(4, 0.500), and Y3 ~ B(4, 0.576). 
 
Table 1. Values for the parameter p in the binomial distributions 
 
 

  
Effect size (Cohen's f) 

Steps Group 0.000 0.100 0.250 0.400 0.650 
       2 1 0.500 0.439 0.351 0.273 0.166 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.561 0.649 0.727 0.834 
                     3 1 0.500 0.457 0.394 0.334 0.245 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.543 0.607 0.667 0.756 
                     4 1 0.500 0.465 0.413 0.346 0.285 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.535 0.587 0.654 0.715 
                     5 1 0.500 0.469 0.424 0.380 0.311 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.531 0.576 0.620 0.689 
                     7 1 0.500 0.475 0.438 0.401 0.343 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.525 0.562 0.599 0.657 
               
 

For each combination of distribution (normal and binomial), sample sizes 
(25/25/25, 5/5/5, 5/5/25, and 5/25/25), test procedure (ANOVA, Brown-Forsythe, 
Welch, and Kruskal-Wallis), number of steps (two, three, four, five, and seven), 
and size of effect (no, small, medium, large, and very large), 50,000 hypothesis 
tests based on simulated random numbers were conducted, where the null 
hypothesis, corresponding to no difference between the locations of the 
populations, was challenged at an alpha level of 0.05 in all cases. Hence, 
40,000,000 tests of simulated data were performed in the study. All simulations 
and analytical procedures were conducted using Microsoft Excel 2010. 
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Results 

Table 2 displays the number of significant tests where the discrete scale has two 
steps. For a better understanding of the reliability of the statistics presented in this 
section, it should be noted that the standard error of a sample proportion at a 
sample size of 50,000 is about 0.002 when the proportion is 0.5, and it decreases 
to about 0.001 when the proportion is 0.05 or 0.95. When one distribution is 
characterised by a significantly larger proportion of significant tests than the other 
for a given combination of effect size, sample sizes, and test method, this is 
indicated with an asterisk (*). 
 
Table 2: Proportion of significant tests, mean value 0.5 (two steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.052 0.051 0.052 0.050 0.051 0.051 0.052 0.05 

 5,5,5 0.058* 0.052 0.057* 0.041 0.000 0.039* 0.059* 0.045 

 5,5,25 0.052 0.051 0.046 0.047 0.000 0.052* 0.052* 0.044 
  5,25,25 0.052 0.051 0.070* 0.053 0.011 0.056* 0.044 0.047 
0.1 25,25,25 0.112* 0.107 0.112* 0.106 0.110* 0.104 0.112* 0.102 

 5,5,5 0.071* 0.061 0.069* 0.049 0.000 0.046* 0.071* 0.052 

 5,5,25 0.074* 0.070 0.061 0.062 0.001 0.067* 0.074* 0.060 
  5,25,25 0.077* 0.072 0.092* 0.074 0.020 0.075* 0.068 0.066 
0.25 25,25,25 0.468 0.466 0.468 0.465 0.463 0.466 0.468* 0.446 

 5,5,5 0.131* 0.111 0.128* 0.091 0.000 0.088* 0.132* 0.098 

 5,5,25 0.201 0.196 0.145 0.151* 0.009 0.152* 0.201* 0.170 
  5,25,25 0.235* 0.223 0.215 0.215 0.079 0.199* 0.218* 0.207 
0.4 25,25,25 0.858 0.879* 0.858 0.878* 0.855 0.889* 0.858 0.870* 

 5,5,5 0.248* 0.214 0.244* 0.180 0.000 0.177* 0.251* 0.190 

 5,5,25 0.447 0.455 0.308 0.321* 0.041 0.327* 0.445* 0.400 
  5,25,25 0.508 0.506 0.453 0.481* 0.218 0.459* 0.491 0.484 
0.65 25,25,25 0.999 1.000 0.999 1.000 0.978 1.000* 0.999 1.000 

 5,5,5 0.525 0.519 0.521* 0.456 0.000 0.500* 0.535* 0.488 

 5,5,25 0.855 0.907* 0.648 0.694* 0.147 0.760* 0.850 0.868* 
  5,25,25 0.894 0.921* 0.845 0.910* 0.422 0.910* 0.889 0.919* 

 
As a scale with two steps has the greatest degree of continuity violation, one 

would expect the most differences between the discrete binomial and continuous 
normal cases. When all sample sizes are small, the ANOVA becomes more 
powerful as a result of scale discreteness (i.e. the probability of avoiding a Type II 
error is often higher when data are discrete than when they are continuous), but at 
the cost of an elevated probability of a Type I error. For some combinations of 
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effect sizes and unequal sample sizes, the ANOVA becomes more powerful due 
to scale discreteness without an elevated probability of a Type I error. When all 
sample sizes are large, it becomes less powerful when the effect size is large, but 
more powerful when the effect size is small. 

The Brown-Forsythe test becomes more powerful due to scale discreteness 
when all sample sizes are small and, for small and medium effect sizes, when 
exactly one sample size is small, but in both cases at the cost of an elevated 
probability of a Type I error. When exactly one sample size is large, it becomes 
less powerful for medium and larger effect sizes. 

The Welch test algorithm does not work satisfactorily for coinciding 
dichotomous distributions when at least one sample size is small, which is the 
reason for the very low numbers for the discrete scale in those cases. Note, 
however, that for large sample sizes, it becomes more powerful when the effect 
size is small, but less powerful when the effect size is large. 

The Kruskal-Wallis test becomes more powerful as a result of scale 
discreteness when at most one sample size is large, but in both cases at the cost of 
an elevated probability of a Type I error. For small and medium effect sizes, it 
becomes more powerful when exactly one sample size is small. For large sample 
sizes, however, it becomes more powerful at small and medium effect sizes but 
less powerful at large effect sizes. 

Finally, note that there are no significant differences in performance 
between the four methods when they are used to analyse data on a discrete scale 
with two steps as long as the sample sizes are large; the only exception is that the 
Welch test performs less well when the effect size is very large.  

Table 3 displays the number of significant tests where the discrete scale has 
three steps. Here, the ANOVA shows no significant difference in performance 
due to scale discreteness, with the exception that it becomes more powerful when 
all sample sizes are small and the effect size is large. The Brown-Forsythe test 
exhibits elevated power when at least one sample size is small, but again, at the 
cost of an elevated probability of a Type I error. The Welch test displays the 
opposite reaction: it becomes less powerful when at least one sample size is small, 
but with a reduced probability of a Type I error. The Kruskal-Wallis test behaves 
erratically for some sample size combinations, and becomes less powerful at some 
effect sizes but more powerful at others. However, there is no significant change 
in the probability of a Type I error for any combination of sample sizes. Finally, 
note that there are no significant differences in performance between the four 
methods when they are used to analyse data on a discrete scale with three steps as 
long as the sample sizes are large. 
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Table 3: Proportion of significant tests, mean value 1.0 (three steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.051 0.05 0.051 0.049 0.052* 0.049 0.049 0.048 

 5,5,5 0.054 0.052 0.049* 0.041 0.033 0.041* 0.044 0.046 

 5,5,25 0.050 0.050 0.053* 0.047 0.037 0.054* 0.046 0.044 
  5,25,25 0.050 0.051 0.056* 0.053 0.044 0.057* 0.046 0.046 
0.1 25,25,25 0.108 0.108 0.108 0.107 0.108 0.105 0.104 0.103 

 5,5,5 0.060 0.062 0.055* 0.050 0.038 0.049* 0.049 0.054* 

 5,5,25 0.069 0.071 0.067* 0.062 0.049 0.067* 0.062 0.062 
  5,25,25 0.073 0.074 0.080* 0.074 0.063 0.075* 0.069 0.068 
0.25 25,25,25 0.461 0.46 0.460 0.459 0.457 0.455 0.453* 0.437 

 5,5,5 0.113 0.110 0.106* 0.091 0.076 0.088* 0.094 0.096 

 5,5,25 0.194 0.190 0.158* 0.149 0.127 0.152* 0.174* 0.168 
  5,25,25 0.226 0.224 0.221* 0.212 0.189 0.197* 0.214* 0.207 
0.4 25,25,25 0.865 0.875 0.864 0.874 0.859 0.877* 0.859 0.861 

 5,5,5 0.222* 0.211 0.209* 0.178 0.156 0.172* 0.191 0.186 

 5,5,25 0.438 0.435 0.333* 0.324 0.294 0.319* 0.402* 0.385 
  5,25,25 0.509 0.508 0.474 0.469 0.434 0.444* 0.491* 0.479 
0.65 25,25,25 0.999 1.000 0.999 1.000 0.999 1.000 0.999 0.999 

 5,5,5 0.496 0.501 0.474* 0.446 0.336 0.442* 0.444 0.458* 

 5,5,25 0.848 0.873* 0.686 0.706* 0.614 0.711* 0.812 0.827* 
  5,25,25 0.905 0.918* 0.852 0.886* 0.791 0.880* 0.894 0.905 
 
 

Table 4 displays the number of significant tests where the discrete scale has 
four steps. In this case, the ANOVA shows no significant difference in 
performance due to scale discreteness, except that it becomes powerful when at 
most one sample size is large and the effect size is very large. The Brown-
Forsythe test becomes more powerful when all sample sizes are small, but less 
powerful at unequal sample sizes when the effect size is very large. The Welch 
test performs somewhat erratically, as it exhibits reduced power when sample 
sizes are unequal, but increased power when all sample sizes are small and the 
effect size is medium or large. The Kruskal-Wallis test also behaves erratically: it 
becomes too conservative when all sample sizes are small, which reduces power. 
In contrast, it becomes more powerful at the medium effect size when all sample 
sizes are large and at unequal sample sizes when the effect size is medium or 
large. As in the previous cases, note that there are no significant differences in 
performance between the four methods when they are used to analyse data on a 
discrete scale with four steps as long as the sample sizes are large. 
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Table 4: Proportion of significant tests, mean value 1.5 (four steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.050 0.052 0.049 0.052 0.050 0.051 0.048 0.049 

 5,5,5 0.049 0.052 0.044 0.042 0.040 0.040 0.040 0.045* 

 5,5,25 0.050 0.050 0.051* 0.047 0.053 0.054 0.045 0.044 
  5,25,25 0.050 0.052 0.055 0.054 0.054 0.056 0.047 0.048 
0.1 25,25,25 0.111 0.110 0.110 0.109 0.110 0.107 0.107 0.105 

 5,5,5 0.059 0.062 0.053* 0.049 0.047 0.047 0.049 0.054* 

 5,5,25 0.072 0.071 0.065 0.062 0.066 0.068 0.063 0.061 
  5,25,25 0.075 0.074 0.079 0.076 0.072 0.076* 0.070 0.070 
0.25 25,25,25 0.459 0.457 0.458 0.456 0.455 0.451 0.449* 0.434 

 5,5,5 0.109 0.111 0.100* 0.091 0.092* 0.087 0.093 0.098* 

 5,5,25 0.191 0.189 0.151 0.149 0.132 0.150* 0.169 0.165 
  5,25,25 0.227 0.224 0.215 0.21 0.181 0.194* 0.213* 0.204 
0.4 25,25,25 0.933 0.939 0.933 0.938 0.930 0.940 0.928 0.930 

 5,5,5 0.264 0.257 0.244* 0.222 0.221* 0.210 0.228 0.228 

 5,5,25 0.530 0.525 0.403 0.40 0.352 0.389* 0.479* 0.470 
  5,25,25 0.618 0.615 0.563 0.565 0.512 0.540* 0.596* 0.584 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999 

 5,5,5 0.492 0.504* 0.465* 0.452 0.425 0.435* 0.441 0.458* 

 5,5,25 0.852 0.864* 0.703 0.714* 0.651 0.707* 0.808 0.816 

 5,25,25 0.913 0.918 0.862 0.879* 0.835 0.872* 0.900 0.903 
 
 

Table 5 displays the number of significant tests where the discrete scale has 
five steps. The ANOVA displays a similar pattern as with four steps; there is no 
significant difference in performance due to scale discreteness, except that it 
becomes powerful when exactly one sample size is large and the effect size is 
very large. The Brown-Forsythe test also shows a similar pattern (as in the 
previous case), becoming more powerful when all sample sizes are small and the 
effect size is at least medium, but less powerful at unequal sample sizes when the 
effect size is very large. The performance of the Welch test, however, behaves 
somewhat differently when the number of steps is increased from four to five. It 
becomes more conservative when at least one sample size is small, which reduces 
its power when the effect size is small. The effect disappears when the effect size 
is medium or large, but returns when it is very large. The Kruskal-Wallis test 
continues to behave erratically along the same pattern as with four steps. Finally, 
under a medium effect size, the Kruskal-Wallis test has significantly less power 
than the other three methods even if all sample sizes are large. 
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Table 5: Proportion of significant tests, mean value 2.0 (five steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.050 0.050 0.050 0.049 0.049 0.049 0.047 0.047 

 5,5,5 0.050 0.052 0.044 0.042 0.037 0.041* 0.041 0.045* 

 5,5,25 0.050 0.050 0.049 0.047 0.047 0.053* 0.044 0.044 
  5,25,25 0.049 0.049 0.053 0.053 0.053 0.057* 0.046 0.047 
0.1 25,25,25 0.111 0.110 0.111 0.110 0.110 0.108 0.107 0.105 

 5,5,5 0.059 0.062 0.052 0.050 0.045 0.048* 0.049 0.054* 

 5,5,25 0.071 0.073 0.064 0.064 0.064 0.071* 0.062 0.064 
  5,25,25 0.076 0.078 0.079 0.080 0.074 0.080* 0.071 0.072 
0.25 25,25,25 0.463 0.462 0.463 0.461 0.458 0.456 0.450* 0.441 

 5,5,5 0.110 0.108 0.099* 0.090 0.086 0.086 0.092 0.096* 

 5,5,25 0.192 0.188 0.153 0.148 0.151 0.148 0.170* 0.165 
  5,25,25 0.230 0.227 0.218 0.213 0.201 0.196 0.215* 0.207 
0.4 25,25,25 0.864 0.869 0.864 0.869 0.860 0.867 0.854 0.852 

 5,5,5 0.216 0.216 0.197* 0.183 0.173 0.174 0.185 0.189 

 5,5,25 0.433 0.431 0.332 0.331 0.317 0.318 0.389 0.384 
  5,25,25 0.515 0.511 0.466 0.468 0.437 0.436 0.491* 0.479 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

 5,5,5 0.493 0.500 0.464* 0.448 0.415 0.428* 0.443 0.452* 

 5,5,25 0.846 0.858* 0.706 0.718* 0.664 0.702* 0.803 0.811 
  5,25,25 0.912 0.918 0.861 0.875* 0.843 0.869* 0.899 0.902 
 
 

Table 6 displays the number of significant tests where the discrete scale has 
seven steps. The ANOVA now becomes more conservative when at most one 
sample size is large, and it has reduced power at the medium effect size when all 
sample sizes are small. Both the Brown-Forsythe test and the Welch test lose 
power at very large effect sizes when sample sizes are unequal, but become more 
powerful at the large effect size when all sample sizes are small. The Kruskal-
Wallis test becomes too conservative and loses power when all sample sizes are 
small. It is also characterised by significantly less power than the other three 
methods when the effect size is small or medium. 
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Table 6: Proportion of significant tests, mean value 3.0 (seven steps) 
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.051 0.051 0.051 0.051 0.051 0.051 0.049 0.049 

 5,5,5 0.048 0.052* 0.041 0.042 0.040 0.040 0.040 0.046* 

 5,5,25 0.049 0.052* 0.047 0.048 0.051 0.054 0.043 0.045 
  5,25,25 0.050 0.05 0.054 0.053 0.057 0.057 0.047 0.046 
0.1 25,25,25 0.108 0.109 0.108 0.108 0.108 0.106 0.103 0.102 

 5,5,5 0.059 0.058 0.050 0.047 0.048 0.046 0.048 0.051* 

 5,5,25 0.072 0.069 0.063* 0.060 0.068 0.067 0.063 0.061 
  5,25,25 0.076 0.076 0.077 0.075 0.076 0.075 0.071 0.068 
0.25 25,25,25 0.457 0.459 0.456 0.458 0.451 0.452 0.440 0.436 

 5,5,5 0.108 0.114* 0.094 0.094 0.088 0.088 0.091 0.099* 

 5,5,25 0.188 0.188 0.152 0.149 0.152 0.148 0.166 0.166 
  5,25,25 0.226 0.223 0.213 0.21 0.198 0.196 0.211 0.205 
0.4 25,25,25 0.869 0.870 0.869 0.869 0.863 0.866 0.856 0.853 

 5,5,5 0.215 0.213 0.191* 0.181 0.177* 0.170 0.184 0.187 

 5,5,25 0.427 0.429 0.331 0.326 0.315 0.317 0.380 0.379 
  5,25,25 0.519 0.514 0.472 0.465 0.442 0.437 0.49 0.482 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

 5,5,5 0.491 0.499 0.453 0.447 0.420 0.416 0.437 0.449* 

 5,5,25 0.842 0.852 0.708 0.718 0.673 0.693* 0.794 0.806* 

 5,25,25 0.913 0.921 0.860 0.873* 0.848 0.867* 0.896 0.902 
 
 

Table 7 provides a qualitative summary of the simulation results. Note that 
cases where continuity violation has no or negligible impact on the probability of 
a Type I error (α ) or power (1 – β ) are not explicitly discussed. For the ANOVA, 
scale discreteness is considered to have a marked impact on power because the 
number of differences between the normal distribution and the binomial 
distribution that can be seen when the discrete scale has only two steps seems to 
decrease when the number of steps increases. Sample sizes are also considered to 
have a marked impact on power, because power is reduced in several cases where 
sample sizes are unequal, but not when they are equal. However, continuity 
violation was not found to have a marked impact on the probability of a Type I 
error in any of the examined aspects, which is in line with previous research 
(Bevan et al., 1974). 
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Table 7: Impact of continuity violation – summary of simulation results 
 
 
  ANOVA Brown-Forsythe Welch Kruskal-Wallis 
Explanatory 
variable α 1–β α 1–β α 1–β α 1–β 

Scale 
discreteness 

Negligible 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Effect size n/a Negligible 
impact n/a Negligible 

impact n/a Marked 
impact n/a Negligible 

impact 

Sample sizes Negligible 
impact 

Marked 
impact 

Negligible 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

 
 

For the Brown-Forsythe test, scale discreteness is considered to have a 
marked impact on the probability of a Type I error because the significant 
differences between the normal and binomial distributions that can be seen when 
the discrete scale has only a few steps and at least one sample size is small seem 
to decrease when the number of steps increases. Furthermore, scale discreteness is 
considered to have a marked impact on power because the number of differences 
between the normal and binomial distributions that can be seen when the discrete 
scale has only two steps seems to decrease when the number of steps increases. 
Sample sizes are also considered to have a marked impact on power because 
power is increased in several cases where at least one sample size is small. 

For the Welch test, scale discreteness is considered to have a marked impact 
on the probability of a Type I error because the significant differences that can be 
seen between the normal and binomial distributions when the discrete scale has 
only at a few steps seem to decrease when the number of steps increase. Sample 
sizes are also considered to have a marked impact on the probability of a Type I 
error because this probability is consistently different in several cases where at 
least one sample size is small, but not when all sample sizes are large. 
Furthermore, scale discreteness is considered to have a marked impact on power 
because the number of differences between the normal distribution and the 
binomial distribution that can be seen when the discrete scale has only two steps 
seems to decrease when the number of steps increases. Effect size is also 
considered to have a marked impact on power, particularly in combination with 
scale discreteness, because the number of observable differences between the 
normal and binomial distributions tends to decrease faster at the medium and 
large effect sizes than at the small and very large effect sizes. In addition, sample 
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sizes are also considered to have a marked impact on power because the presence 
of unequal sample sizes seems to reduce power in general. 

Finally, for the Kruskal-Wallis test, scale discreteness is considered to have 
a marked impact on the probability of a Type I error because the significant 
differences that can be seen between the normal and binomial distributions when 
the discrete scale has only a few steps, and all sample sizes are small, seem to be 
reversed when the number of steps increases. Sample sizes are also considered to 
have a marked impact on the probability of a Type I error because this probability 
is consistently different when all sample sizes are small, but not otherwise. 
Furthermore, scale discreteness is considered to have a marked impact on power 
because the number of differences between the normal and binomial distributions 
that can be seen when the discrete scale has only two steps seems to decrease 
when the number of steps increases, although the major difference occurs between 
two and three steps. Sample sizes are also considered to have a marked impact on 
power because power is changed in several cases where at least one sample size is 
small. 

Conclusion 

Violation of continuity affects the performance of four statistical methods that are 
commonly used to compare locations across several groups. A dichotomous scale 
changes the probability of a Type I error for methods in all cases when all sample 
sizes are small and in many other cases when at least one sample size is small. 
However, the effect seems to decline as the number of scale points is increased, 
which is in line with theory (Krieg, 1999) and with similar published simulation 
results (e.g., Bevan et al., 1974). The probability of a Type II error also seems to 
decline as the number of scale points is increased, although the pattern is different 
for different methods and sample size combinations. 

This should not be seen as an argument in favour of a larger number of steps 
when, for example, Likert-type and similar discrete scales are used. Even a small 
number of steps may be too many for the respondent if comprehensible 
instructions and labelling of response alternatives are not included to enable the 
respondent to conceptualize and respond in spatial terms (Cox, 1980). Often, and 
for a variety of reasons, scales with only a few steps must be used during data 
collection processes, and the results in this study can help determine a suitable 
statistical procedure to compare locations across groups in such situations. 

In summary, ANOVA seems to be the most robust alternative of the four 
procedures when scales are discrete, as the violation of continuity has relatively 
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little impact on its performance. The Brown-Forsythe test can become more 
powerful when scales are discrete and at least one sample size is small, but at the 
cost of an elevated probability of a Type I error. When all sample sizes are large 
and scales with at least three steps are used, neither the ANOVA nor the Brown-
Forsythe test displays any significant sensitivity to continuity violation at any 
effect size level. Hence, these two tests can be used to make reliable analyses of 
discrete data in such situations. The Welch test can become less powerful when 
scales are discrete, in some cases even at large sample sizes. The Kruskal-Wallis 
test responds erratically to scale discreteness, particularly at unequal sample sizes, 
and has significantly less power than the other three methods when sample sizes 
are large. 

Even though the impact of continuity violation on ANOVA and the three 
alternative methods examined here seem to be relatively small in most realistic 
situations (the most obvious exception is when the Welch test is used to analyse 
dichotomous data), applied researchers should consider the above results when 
using these statistical methods to analyse data collected with discrete scales. The 
main implications of this study can be summarised as follows: 

 
• Collect data using continuous scales, if reasonable. 

• Be aware that power can be reduced when discrete scales are used. 
The reduction in power becomes less pronounced when the number 
of scale points is increased, but in some situations, it remains 
significant for scales with up to seven points. 

• Be aware that the actual probability of a Type I error may be affected 
when dichotomous scales are used if at least one sample size is small. 

• Do not use the Welch test with dichotomous data. 
 

Future research in this area should further explore the effects of data 
discreteness by combining continuity violation with, for example, 
heteroscedasticity. In general, the effects of concurrent violations can produce 
anomalous effects not observed in separate violations (see, e.g., Zimmerman, 
1998). Other types of parametric methods should also be tested for their 
robustness against continuity violation. 
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