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A Parametric Bootstrap Version of Hedges’ Homogeneity Test 
 

    Wim Van den Noortgate Patrick Onghena 
           Katholieke Universiteit Leuven, Belgium 

 
 
Hedges’ Q-test is frequently used in meta-analyses to evaluate the homogeneity of effect sizes, but for several 
kinds of effect size measures it does not always appropriately control the Type 1 error probability. Therefore 
we propose a parametric bootstrap version, which shows Type 1 error control under a broad set of 
circumstances. This is confirmed in a small simulation study. 
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Introduction 
 
A meta-analysis cumulates the findings of 
previous research. Often fixed effects techniques 
are used to summarize the findings of several 
studies into one single result. The individual effect 
size estimates are averaged (usually with each 
effect size weighted by the size of the study or by 
the inverse of its sampling variance), to obtain an 
estimate of the overall effect size. These 
techniques of course are only appropriate if studies 
can be assumed to be sharing a common 
population effect size or if in the meta-analysis no 
inference to a broader population of effect sizes is 
aimed at (Hedges & Vevea, 1998). 
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The suitability of the fixed effects 
techniques therefore is usually statistically tested 
by means of a homogeneity test. If effect sizes are 
found heterogeneous, study characteristics are 
included in the model as covariates to investigate 
their moderating effect, resulting in a fixed effects 
regression model. Alternatively, or in addition to 
the inclusion of moderator variables, the 
heterogeneity may be explicitly modeled, by 
defining random study effects. This results in a 
random effects model or a random effects 
regression model (see Raudenbush, 1994, for more 
details). The homogeneity test thus often plays a 
crucial role in a meta-analysis, since its results are 
often used to decide if the simple fixed effects 
model is to be extended with moderator variables 
and/or random effects, and fixed effects and 
random effects meta-analytic models often give 
dissimilar results (Van den Noortgate & Onghena, 
in press).  

Probably the most frequently used 
statistical test of the homogeneity of a set of effect 
sizes is the Q-test, which was described by Hedges 
(1982) and by DerSimonian and Laird (1986) and 
therefore is often referred to as the Hedges’ or the 
DerSimonian and Laird’s homogeneity test, 
although it was proposed before by Cochran 
(1954). 

The test statistic for this test is calculated 
as  
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with k   the number of studies, ti the observed effect 
size in study i, t  the precision weighted mean of 
the observed effect sizes, with the (estimated) 
precision of study i defined as 1/

i

2
( t )σ̂ , and 

i

2
( t )σ̂  the 

estimate of 
i

2
( t )σ , the sampling variance of the 

observed effect size given the ‘true’ effect size in 
study i. 
 Under the null hypothesis of 
homogeneous effect sizes, Q follows a χ² 
distribution with k-1 degrees of freedom, given 
relatively large study sizes, and given that σ̂ ²(ti) is 
independent of ti (DerSimonian & Laird, 1986; 
Takkouche, Cadarso-Suárez, & Spiegelman, 
1999). 

Although several simulation studies 
showed the advantages of the Q-test compared to 
other kinds of homogeneity tests (e.g., Baydoun, 
1995; Sanchez-Meca & Marin-Martinez, 1997; 
Takkouche, et al., 1999), using the Q-test is not 
without problems. Besides the problem that the Q-
test, like other homogeneity tests, suffers from a 
lack of power (Harwell, 1997; Sanchez-Meca & 
Marin-Martinez, 1997; Takkouche, et al., 1999), 
the Type 1 error rate of the Q-test is not always 
under control, since the underlying assumptions 
are usually only approximately met. The degree of 
the violation of the assumptions, and therefore the 
behavior of the homogeneity test, depends on the 
kind of effect size measure that is used and on the 
conditions under which it is applied. 

 The proportion of Type 1 errors for 
instance was found inflated if the Q-test is used for 
evaluating the homogeneity of correlation 
coefficients, but close to the nominal level if the 
correlation coefficients are first transformed to 
Fisher’s z-values (Alexander, Scozzaro, & 
Borodkin, 1989; Sagie & Koslowsky, 1993; 
Spector & Levine, 1987). Gavaghan, Moore and 
McQuay (2000) found a slightly inflated number 
of Type 1 errors when using the risk difference as 
a measure of effect size. The results of the Q-test 
for Hedges’ d are found highly liberal if used to 
test the homogeneity of a sample of Hedges’ 
standardized mean differences (d), in case within 
studies the group sizes and population variances 
are unequal and the smaller group size is 
associated with the largest population variance 
(Harwell, 1997). If under both conditions scores 
are normally distributed with a common variance, 

the Q-test has been shown slightly conservative, 
especially if the study sizes are relatively small 
compared to the number of studies (Hedges & 
Olkin, 1985; Harwell, 1997).  

In the following, we present a parametric 
bootstrap version of the Q-test, intended to 
estimate more closely the reference null 
distribution of Q in case the χ²-distribution is 
inappropriate due to a violation of the underlying 
assumptions. In a small simulation study, we 
evaluate the performance of the bootstrap Q-test 
for different conditions and different effect size 
measures. 
 

Methodology 
 

A Parametric Bootstrap Version of the Q-test 
In the bootstrap, the empirical data are 

used to estimate the population distribution(s), and 
samples are simulated from the estimated 
distribution(s) in order to approximate the 
sampling distribution of a certain quantity. For the 
application of the bootstrap procedure to the Q-test 
we propose the following procedure: 
 

1. Perform a meta-analysis using 
techniques for fixed effects 
models (Hedges & Olkin, 1985), 
calculate and store the Q-statistic. 

2. Simulate new raw data that could 
have been observed under the null 
hypothesis of homogeneity (see 
below).  

3. Calculate for the simulated data of 
each study the measure of effect 
size that was used in the initial 
meta-analytic data set. 

4. Perform a meta-analysis on those 
new effect sizes, calculate and 
store the Q-statistic. 

5. Repeat step 2-4 a large number of 
times B, for instance 1000. 

6. Compare the initial Q-value with 
the empirical distribution of Q-
values from the B bootstrap 
samples. The bootstrap p-value is 
the proportion of the Q-values that 
is larger than or equal to the initial 
Q-value. 
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In step 2, new raw data are sampled from 
the estimated population distributions, holding 
constant the study sizes and the number of studies. 
A general principle for estimating the population 
distributions is that for each study the population 
distributions must show the same effect size 
(fulfilling the null hypothesis of homogeneity). 
Furthermore, the population distributions are 
estimated based on the initial data and additional 
assumptions. The estimation of the distributions 
can easily be adapted according to the measure of 
effect size that is used and to the assumptions one 
is willing to make.  

We give some examples. First, suppose 
the correlation coefficient is used as the measure 
of effect size, and data can be assumed bivariate 
normal. In this case, we can draw new raw data for 
each study from a bivariate normal distribution. 
Since the data are used only to calculate the 
correlation coefficient, means and variances of the 
distributions can be chosen freely. The population 
correlation for each bivariate normal distribution is 
set equal to the overall estimated correlation 
coefficient. One could for instance draw new data 
from bivariate normal distributions with zero 
mean, variances equal to 1 and a covariance equal 
to the estimated overall correlation coefficient.  

As another example, suppose the risk 
difference or the difference between proportions is 
used as the effect size. If for each study the 
proportions for both groups can be retrieved (as is 
often the case), we can estimate the population 
proportions under both conditions by means of a 
precision weighted mean of the observed 
proportions, assuming equal population 
proportions in each study. For the bootstrap 
samples, new data are sampled for each study 
from two Bernoulli distributions, defined by the 
estimated population proportions.  

Third, if the standardized mean difference 
is used as a measure of effect size, and raw data 
under both conditions can be assumed normally 
distributed with a common variance, for each 
study data are drawn from two normal 
distributions with the same variance, and with 
standardized mean difference that is the same for 
each study. This standardized mean difference is 
estimated by the precision-weighted average of the 
observed effect sizes. One could for instance draw 
data from N( d , 1) and N(0,1) for both groups 

respectively. Note that drawing data from normal 
distributions with other variances and means will 
not alter the results, as long as the variances are 
equal and the effect size is unchanged, since the 
raw data are used only to calculate the 
standardized mean difference.  

The situation is somewhat more 
complicated if the population variances under both 
conditions cannot be assumed equal. If in the 
studies the observed within group variance 

estimates are reported, for study i these are 2
Aiŝ  

and 2
Biŝ , one can calculate the pooled within 

group variance estimate for each study (Hedges, 
1981). Multiplying the square root of this pooled 
variance with the estimated mean standardized 
mean difference estimate, results for study i in the 
estimated study-specific unstandardized mean 
difference, Est( BiAi µµ − ). Raw data can 
subsequently be drawn from 

N(Est( BiAi µµ − ), 2
Aiŝ ) and N(0, 2

Biŝ ). 
 
A Simulation Study 

In order to evaluate the parametric bootstrap 
version of the Q-test, we compared its results with 
the results of the ordinary Q-test, by means of a 
small simulation study. Here we show the results 
of both homogeneity tests for relatively extreme 
situations, in which (as described above) the 
ordinary Q-test has been shown in previous 
research failing to keep the proportion of Type 1 
errors under control. More specifically, we 
simulated: 

 
− sets of correlation coefficients,  
− sets of risks differences, 
− sets of standardized mean differences with 

small group sizes paired with large 
population variances (called negative 
paired variances and group sizes by 
Harwell, 1997),  

− large sets of standardized mean 
differences stemming from small studies, 
and 

− sets of values ("effect sizes") sampled 
from a normal distribution, with sampling 
variances independent of the effect sizes, 
intended as a control condition (see 
below). 
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The characteristics of the simulated data sets 
are summarized in Table 1. The values are chosen 
such that the situations are comparable with those 
discussed in previous research. For each of the 
five situations, we simulated 1000 homogeneous 
as well as 1000 heterogeneous data sets, 10 000 in 
total, making possible the assessment of both the 
proportion of Type 1 and Type 2 errors. The 
bootstrap as well as the ordinary Q-test was used 
for each set to evaluate its heterogeneity. For each 
data set, we drew 1000 bootstrap samples and 
calculated Q for each sample in order to 
approximate its null distribution. Bootstrap 
samples were drawn as described above. (Table 1 
appears on following page.) 

Based on the results of previous research 
described above, we expect that the proportion of 
Type 1 errors when using the ordinary Q-test will 
be too high in the first three situations, while it 
will be lower than the nominal level in the fourth 
situation. When sampling effect sizes from a 
normal distribution (with a variance that is 
independent of the effect size), we expect that the 
proportion of Type 1 errors will be close to the 
nominal level. 

In Figure 1 (following page), histograms 
present the distributions of the p-values resulting 
from the ordinary Q-test and the bootstrap Q-test 
in case of homogeneous data. If the reference 
distribution is close to the true null distribution, 
we expect an approximately uniform distribution 
of the p-values. This means that under the null 
hypothesis, we expect that 1% of the p-values will 
be smaller than .01, 5% smaller than .05, 10 % 
smaller than .10 and so on, or otherwise stated, 
that regardless of the nominal α-level chosen, the 
nominal and the actual α-level correspond. 

As expected, the distribution of the p-values 
for the ordinary Q-test is skewed in the first four 
situations. The ordinary Q-test gives too much 
relatively small p-values when using r, when using 
risk differences, or when using d in case n and the 
within group variance are negatively paired, while 
it yields too much relatively large p-values when 
using d with a small N/k ratio. This means that for 
a homogeneous set of effect sizes, the null 
hypothesis of homogeneity is too often rejected in 
the first three situations, but less than optimal in 
the fourth situation. As an example, in Table 2 the 
proportion of Type 1 errors is presented for a 
nominal level of .05. Note that in case the 

sampling variance of the effect sizes is 
independent of the effect sizes, the distribution of 
the p-values is approximately uniform, and the 
proportion of Type 1 errors is near to the nominal 
level. 

Figure 1 and Table 2 (following page) 
furthermore reveal that the p-values of the 
bootstrap procedure are approximately uniformly 
distributed in all situations, yielding a relatively 
accurate proportion of Type 1 errors, although 
there seems to be a slightly liberal tendency. 

In Table 3, we see that both procedures are 
equally powerful when testing a set of normally 
distributed effect sizes with sampling variances 
that are independent of the effect sizes. In other 
situations, it is difficult to compare the power of 
both procedures, because for the ordinary Q-test 
the rejection rates are biased since the proportion 
of Type 1 errors is not under control. Anyway, we 
see that using the bootstrap procedure instead of 
the ordinary procedure affects the proportion of 
rejections in the same way in the homogeneous 
and the heterogeneous case. In case the Q-test is 
used for testing the homogeneity of a set of 
correlation coefficients, of a set of risk differences, 
or of a set of  standardized mean differences with 
small group sizes paired with large variances, the 
proportion of rejections is lower if the bootstrap 
version is used. In contrast, the bootstrap version 
of the Q-test rejects the null hypothesis more often 
if the homogeneity of a large set of standardized 
mean differences stemming from small studies is 
tested.  

 
Conclusion 

 
Although the Q-test is very often used in meta-
analysis to test the homogeneity of effect sizes, it 
has been shown in previous research that in 
several situations the test fails to keep the 
proportion of Type 1 errors under control. In this 
article, we therefore present a parametric bootstrap 
version of the test, which allows freeing one or 
more assumptions underlying the Q-test or the 
calculation of the effect size measures and their 
sampling distribution. The results of a small 
simulation study suggest that even in situations 
where the ordinary Q-test does not succeed 
controlling the proportion of Type 1 errors, the 
Type 1 error rate for the bootstrap version is still 
close to the nominal level.  



PARAMETRIC BOOTSTRAP OF HEDGES’ HOMOGENEITY TEST 
 
77 

 
   Table 1. Characteristics of the simulated data sets. 
 

   Population distribution 
   Homogeneous case Heterogeneous case 
 K N  80 % 20 % 
Correlation 
coefficient 

50 N= 20 Raw data 

)
150.

1
,

0
0

( 















≈ N  

Raw data 

)
145.

1
,

0
0

( 















≈ N  

Raw data 

 )
155.

1
,

0
0

( 















≈ N  

Risk 
difference 

50 nA = nB 
= n = 
50 

Data group A  
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.5, 1) 

Data group A  
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.45, 1) 

Data group A 
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.55, 1) 

Hedges’ d, 
negative 
pairing 

50 nA = 10 
nB = 20 

Data group A 
)2,6.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)2,3.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)2,1(N≈  

Data group B 
)1,0(N≈  

Hedges’ d, 
small N/k 

100 nA = nB 
= n = 5 

Data group A 
)1,5.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)1,1.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)1,8.0(N≈  

Data group B 
)1,0(N≈  

Control 
condition 

50 nA = nB 
= n = 
10 

Effect size 
)/2,5.0( nN≈  

Effect size 
)/2,3.0( nN≈  

Effect size 
)/2,8.0( nN≈  

 
 

Ordinary Q-test 
Correlation coeff. Risk Difference d, negative pairing       d, small N/k Control condition 

    
p-value p-value p-value p-value p-value 

Bootstrap procedure 
Correlation coeff. Risk Difference d, negative pairing d, small N/k  Control condition 

     

p-value p-value p-value p-value p-value 

   Figure 1. Distribution of the p-values in case of true homogeneity 
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   Table 2. Rejection rates of the null hypothesis (with a nominal α of .05) in the homogeneous case   
(proportion Type 1 errors). 
 

 Correlation 
coefficient 

Risk Difference d, negative pairing d, small N/k  Control condition 

Ordinary  .251 .091 .280 .024 .050 
Bootstrap  .076 .055 .065 .061 .052 

 
 
   Table 3. Rejection rates of the null hypothesis (with a nominal α of .05) in the heterogeneous case (power). 
 

 Correlation 
coefficient 

Risk Difference d, negative pairing d, small N/k  Control condition 

Ordinary  .720 .349 .731 .116 .247 
Bootstrap  .347 .258 .367 .302 .252 

 
 
 

Moreover, in case the assumptions of the 
ordinary Q-test are met, and the test yields 
appropriate Type 1 error rates, the bootstrap 
version seems to be equally powerful. A 
disadvantage of the bootstrap version of the test is 
that for some situations additional data are 
required, that may not always be available. E.g., 
for testing the homogeneity of a set of risk 
differences, the proportions for each of the groups 
must be available. 

Based on the encouraging results of our 
simulation study, we suggest comparing the Q-
statistic to the approximate null distribution based 
on the bootstrap, rather than to a χ²-distribution, 
whenever possible. Meanwhile however, we note 
that the power of both versions of the homogeneity 
test is low and recommend a prudent use of the 
tests in both modeling and evaluating the 
heterogeneity.  
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