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Case-Control Studies with Jointly 
Misclassified Exposure and Confounding 
Variables
Tze-San Lee 
Western Illinois University  
Macomb, IL 
 
 
The issue of 2 × 2 × 2 case-control studies is addressed when both exposure and 
confounding variables are jointly misclassified. Two scenarios are considered: the 
classification errors of exposure and confounding variables are independent or not 
independent. The bias-adjusted cell probability estimates which account for the 
misclassification bias are presented. The effect of misclassification on the measure of 
crude odds ratio either unstratified or stratified by the confounder, Mantel-Haenszel 
summary odds ratio, the confounding component in the crude odds ratio, the first and 
second order multiplicative interaction are assessed through the sensitivity analysis from 
using the data on the asthma deaths of 5-45 aged patients in New Zealand. 
 
Keywords: Asthma mortality, confounding, effect modification, Mantel-Haenszel 
summary odds ratio, multiplicative interaction. 
 

Introduction 

Misclassification is a ubiquitous problem in epidemiologic studies. A 2 × 2 case-
control study with a single exposure variable being misclassified has been 
thoroughly studied (Fleiss et al. 2003, Chapter 17; Gustafson 2004, Chapter 5; 
Kleinbaum et al. 1982, Chapter 12; Rothman et al 2008, Chapter 19). In contrast, 
the misclassification of a confounding factor has attracted less attention, although 
there are some important papers on this topic (Ahlbom & Steineck 1992; Axelson 
1978; Greenland 1980; Greenland & Robins 1985; Kupper 1984; Savitz & Baron 
1989; Walker 1985). However, few papers address the issue when the study (or 
exposure) factor and the confounding factor are simultaneously misclassified. 
Most articles focused merely on the aspect that the confounding factor is 
misclassified.  

mailto:tjl3@cdc.gov
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Although Fung & Howe (1984) considered the joint misclassification of 
polytomous exposure and confounding variables, they do not provide the bias-
adjusted estimator for the cell probability. Tzonou et al. (1986) investigates the 
effect of misclassification on the summary odds ratio in case-control studies in 
which both exposure and confounding variables are jointly misclassified. But they 
merely consider the scenario that the classification errors of the exposure and 
confounding factors are independent. Again, no bias-adjusted estimators are 
provided in their paper.  

The scenarios are addressed here in which the joint classification errors of 
the exposure and confounding factors are either independent or not independent. 
Below, necessary background materials are first reviewed. The misclassification 
probabilities are then defined. The formulas for all bias-adjusted measures of the 
effect caused by the joint misclassification of exposure and confounder are thus 
presented. A real-world data set is used as an example to illustrate how to 
calculate the misclassification probabilities by employing the counterfactual (or 
correctly classified) tables when the validation data are not available. A sensitivity 
analysis is then carried out for the admissible counterfactual tables.  

Methodology & Background 

Let D, E, and C be three dichotomous variables, in which D denotes the 
subject’s outcome (disease) variable (=1 if present, 0 otherwise), E the subject’s 
exposure variable (= 1 if exposed, 0 otherwise), and C (= 1 if present, 0 
otherwise) the extraneous (a suspected confounding) variable. Assume that a 
simple random sampling scheme is used to collect the data of size n which are 
then cross-classified into table 1 in which E* and C* are imperfect classification 
variables for E and C. 
 
 
Table 1: Observed contingency table of three dichotomous variables D × E × C 
 

   C* = 1 C* = 0 Total 

D = 1  
Cases) 
  

E* = 1 n111 n110 n11+ 

E* = 0 n101 n100 n10+ 

Total n1+1 n1+0 n1++ 

D = 0 
(Controls) 

E* = 1 n011 n010 n01+ 

E* = 0 n001 n000 n00+ 

Total n0+1 n0+0 n0++ 
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The crude cell probability estimators are given by: for fixed i  
 
 ( )ˆ /ijk ijk ip n n=   (1) 
 

where ( ) 11 10 01 00i i i i i in n n n n n++≡ = + + + , the “+” sign in the subscript 
represents summation in the usual way. 

It is assumed that Eq. 1 follows a multinomial distribution with parameters 
n(i) and ijkp . For fixed i, the variance-covariance matrix of { ˆ ijkp } is given by  

 
 4

( ) ( ) , 1 ( )
11 11 11 10 11 01 11 00

12( ) 10 10 10 01 10 00

13( ) 23( ) 01 01 01 00

14( ) 24( ) 34( ) 00 00

[ ]i jk i j k i
i i i i i i i i

i i i i i i i

i i i i i i

i i i i i

n
p q p p p p p p

p q p p p p
p q p p

p q

σ

σ
σ σ
σ σ σ

=Σ = = ⋅  
⋅ − ⋅ − ⋅ − ⋅ 

 ⋅ − ⋅ − ⋅
 

⋅ − ⋅ 
 ⋅ 

  (2) 

 
To measure the effect of the exposure E and the extraneous C, calculate 

respectively from Table 1 the following estimates for the exposure odds ratios of 
E unstratified and stratified by C: 

 
 11 00 10 01

ˆ ( ) / ( )ER n n n n+ + + += ⋅ ⋅   (3) 

 | 1 111 001 101 011
ˆ ( ) / ( )E CR n n n n= = ⋅ ⋅   (4) 

 
and 
 | 0 110 000 100 010

ˆ ( ) / ( )E CR n n n n= = ⋅ ⋅   (5) 
 

In addition, the Mantel-Haenszel summary odds ratio is given by (Mantel 
and Haenszel 1959) 
 
 1 1 1 1 1

| 111 001 1 110 000 0 101 011 1 100 010 0
ˆ ( ) ( )E MHR n n n n n n n n n n n n− − − − −

++ ++ ++ ++= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅   (6) 
 
Now let the ratios of odds ratios (Eqs. 3-6) be defined respectively by  

 
 | |

ˆ ˆ ˆ/E C E MH ER Rφ =   (7) 
 
and 
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 | 1 | 0

ˆ ˆ ˆ/hmg E C E CR Rφ = ==   (8) 
 
where “hmg” in the subscript of Eq. 8 denote the word “homogeneous”. If the 
estimated value of |Ê Cφ is greater or less than 10% of the null value of unity, the 
extraneous variable C is said to be a confounder. However, this condition is only 
sufficient, but not necessary as other conditions will be given in the section of 
Discussion. Two strata are said to be heterogeneous if the estimated value of ĥmgφ
is significantly different from the null value of unity; otherwise, it is said to be 
homogeneous.  

Let 
1 ( )st OI i

R  and 
2nd OI

R  denote respectively the 1st and 2nd order 

(multiplicative) interaction between E and C and among D, E and C (Lee 2012). 
Then the estimates of these ratios are given respectively as follows: 
 
 11 00 10 011 ( )

ˆ ( ) / ( )st i i i iOI i
R n n n n= ⋅ ⋅   (9) 

 
and 
 
 111 010 100 010 101 011 110 0002

ˆ ( ) / ( )nd OI
R n n n n n n n n= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (10) 

 
Two variables E and C are said to be have a first order multiplicative 

interaction if the estimated value of Eq. 9 is significantly different from the null 
value of unity; otherwise, there does not exist multiplicative interaction between E 
and C. Three variables D, E and C are said to be have a second-order 
multiplicative interaction if the estimated value of Eq. 10 is significantly different 
from the null value of unity; otherwise, there does not exist second-order 
multiplicative interaction among D, E and C. The extraneous variable C is said to 
be an effect modifier if either the estimated value of Eqs. 8 or 10 are significantly 
different from the null value of unity; otherwise, C is not an effect modifier. By 
the way, it is easy to show that Eq. 8 equals Eq. 10. 

In addition, let RC denote a measure of the strength of confounding by the 
extraneous variable C (Miettinen 1972), 
 
 1 1

110 101 100 010 001 000 00 10 01
ˆ ( ) / ( )CR n n n n n n n n n− −

+ + += ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅   (11) 
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E and C are jointly misclassified  
Suppose that D is not misclassified at all, but only E and C are jointly 

misclassified. There are two scenarios between E and C which have to be 
considered separately. 

 
Scenario I: The classification errors of E and C are independent. 
 

For this scenario, each cell misclassification probability is obtained as the 
product of the corresponding two row/column marginal misclassification 
probabilities. The false positive and false negative probabilities for Y = E or C are 
defined as follows:  
 
 * *

( ) ( )Pr( 0 | 1; ) and Pr( 1| 0; )Y i Y iY Y D i Y Y D iγ δ= = = = = = = =   (12) 
 
For i = 1, 0, let 
 
 ( ) 11 10 01 00[ , , , ]T

i i i i ip p p p p=   (13a) 
 ( ) 11 10 01 00ˆ ˆ ˆ ˆ ˆ[ , , , ]T

i i i i ip p p p p=   (13b) 
 

Thus, by using Eq. 12, for i = 1, 0 
 

 ( ) ( ) ( )ˆ( )i I i iE p W p=   (14) 
 
where the misclassification matrix WI(i) is given by (Barron 1977; Tzonou et al. 
1986)

 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ]

(1 )(1 ) (1 ) (1 )
(1 ) (1 )(1 ) (1 )

(1 ) (1 )(1 ) (1 )
(

I i I ijk

E i C i E i C i C i E i E i C i

E i C i E i C i E i C i E i C i

E i C i E i C i E i C i E i C i

E i C i E i

W w

γ γ γ δ γ δ δ δ
γ γ γ δ δ γ δ δ

γ γ γ δ δ γ δ δ
γ γ γ

=

≡
− − − −
− − − −

− − − −

( ) ( ) ( ) ( ) ( )1 ) (1 ) (1 )(1 )C i E i C i E i C iδ δ γ δ δ

 
 
 
 
 
 − − − − 

  (15) 

 
By conditioning on that and for Y = E or C are known, the vector of 

bias-adjusted cell probability estimator (BACP) 
( ) 11( ) 10( ) 01( ) 00( )( [ , , , ] )T

I i i I i I i I i Ip p p p p=     is then defined by 
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 1

( ) ( ) ( ) ( ) ( )ˆ ˆI i I i i I i ip W p V p−= =   (16) 
 
where the inverse VI(i) of WI(i) is given by 
 

1
2

1
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(

(1 )(1 ) (1 ) (1 )
(1 ) (1 )(1 ) (1 )
(1 ) (1 )(1 ) (1 )

I i I i

I i
E i C i C i E i E i C i E i C i

C i E i C i E i E i C i E i C i

E i C i E i C i E i C i C i E i

E

V W

δ δ γ δ γ δ γ γ
δ δ γ δ γ δ γ γ
δ δ δ γ γ δ γ γ
δ

−

−

≡

= ∆ ⋅
− − − − − −
− − − − − −
− − − − − −

) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1 ) (1 ) (1 )(1 )i C i E i C i C i E i E i C iδ δ γ δ γ γ γ

 
 
 
 
 
 − − − − − − 

 (17) 

 
where 2

( ) ( ) ( ) ( ) ( ) ( )det( ) [(1 )(1 )]I i I i E i E i C i C iW γ δ γ δ∆ ≡ = − − − − . 
In order for W to be invertible, the following constraints on its false positive 

and false negative rates for both exposure and confounding variables are imposed: 
 

 ( ) ( ) ( ) ( )1 and 1E i E i C i C iγ δ γ δ+ < + <   (18) 
 

Scenario II: The classification errors of E and C are not independent. 
 

For this scenario, there are 16 possibly cross-classified conditional 
probabilities of E* and C* as follows: for fixed j’, k’, i, k = 1, 0  
 
 * *

' '( ) Pr( , | ', '; )jk
j k i E j C k E j C k D iλ = = = = = =   (19) 

 
where ' '( ){ }jk

j k iλ , for j’, k’ = 1, 0, are required to satisfy the following 
identities: 
 

 
1

' '( ) ' '( )
, 0

1, 0 1jk jk
j k i j k i

j k
λ λ

=

= ≤ ≤∑   (20) 

 
Among the ' '( ){ }jk

j k iλ , four are correctly classified and 12 are misclassification 
probabilities. Because the misclassification can go equally from one cell to 
another three cells, it is appropriate to assume that they all equal to one another, 
that is, 10 01 00

1( ) 11( ) 11( ) 11( )i i i iθ λ λ λ≡ = = , 11 01 00
2( ) 10( ) 10( ) 10( )i i i iθ λ λ λ≡ = = , 
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11 10 00
3( ) 01( ) 01( ) 01( )i i i iθ λ λ λ≡ = = , and 11 10 01

4( ) 00( ) 00( ) 00( )i i i iθ λ λ λ≡ = = . Thus, the 
misclassification matrix is given by 
 

( )
2( ) 3( ) 4( ) 2( ) 3( ) 4( )

1( ) 1( ) 3( ) 4( ) 3( ) 4( )

1( ) 2( ) 1( ) 2( ) 4( ) 4( )

1( ) 2( ) 3( ) 1( ) 2( ) 3( )

1
1

1
1

II i
i i i i i i

i i i i i i

i i i i i i

i i i i i i

W
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

=  
− − − 

 − − −
 

− − − 
 − − − 

  (21) 

 
In addition, the inverse matrix VII(i) of WII(i) is given by 

 

1
3

1
( ) ( )

( )
1( ) 2( ) 1( ) 1( ) 1( )

2( ) 2( ) 4( ) 2( ) 2( )

3( ) 3( ) 1( ) 3( ) 3( )

4( ) 4( ) 4( ) 3( ) 4( )

1 2
1 2

1 2
1 2

II i II i

II i
i i i i i

i i i i i

i i i i i

i i i i i

V W

θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ

−

−

≡

= ∆  
− − − − − 

 − − − − −
 

− − − − − 
 − − − − − 

  (22) 

 
where 3

( ) ( ) 1( ) 2( ) 3( ) 4( )det( ) (1 )II i II i i i i iW θ θ θ θ∆ = = − − − − . For this scenario, the 
BACP estimator is given by 

 
 1

( ) ( ) ( ) ( ) ( )ˆ ˆII i II i i II i ip W p V p−= =   (23) 
 
The misclassification probabilities ( ( , )Y Yγ δ  or 1( ) 2( ) 3( ) 4( )( , , , )i i i iθ θ θ θ ) are 

said to be feasible if the misclassification matrix (WI(i) or WII(i)) is nonsingular, or 
equivalently, its determinant is nonzero. The BACP estimator (Eqs. 16 or 23) is 
said to be admissible if every component of its vector is nonnegative and their 
sum equals to the total probability one. In theory, it is possible to find the 
admissibility constraints which are required to be imposed on the 
misclassification probability. Yet, because it does not yield inequalities as neat as 
that of case-control studies with a single exposure variable (Lee 2009), it is 
therefore omitted here. Nevertheless, the admissibility constraints can be checked 
in practical applications by taking a case-by-case approach as illustrated by the 
example in the next section. 
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From Eq. 16, for j, k = 1, 0 
 
 ( )ijk i ijkn n p≡ ⋅    (24) 
 

By substituting Eqs. 16 or 23 into Eqs. 3-11, obtain the corresponding bias-
adjusted estimates | 1 | 0 |, , , ,E E C E C E MHR R R R= =

   

Eφ


, Iφ


, 
1 ( )st OI i

R


, 
2nd OI

R


, and CR


. Note 

that the crude estimators are merely a special case of the lower end of the bias-
adjusted one when its false positive and false negative rates are all zero.  

Example 
The data in Table 2 are taken from Crane et al. (1989). A case-control study was 
conducted to examine the hypothesis that fenoterol by metered dose inhaler 
increases the risk of death in patients with asthma. Cases were drawn from the 
National Asthma Mortality Survey which identified all asthma deaths in New 
Zealand from August 1981 to July 1983. Of the 271 asthma deaths identified in 
the survey, 125 occurred in patients aged 5-45 years, and these formed the case 
group. For each case, 4 controls, matched for age and ethnic group, were selected 
from asthma admissions to hospitals to which the cases themselves would have 
been admitted, had they survived. Controls were obtained for 124 out of the 125 
cases. 7 cases were subsequently excluded because they died after admission to 
hospitals. Therefore the analysis pertains to 117 cases and 468 matched controls.  

In terms of symbols, the disease, exposure and extraneous variables are 
given as follows:  

 
D = asthma death (= 1 if outpatient deaths, = 0 if hospitalized controls),  
E = use of prescribed fenoterol (= 1 if yes, = 0 if no),  
C = use of corticosteroids (= 1 if used, = 0 if not used). 

 
If the data are not misclassified, the crude estimators with its 95% 

confidence interval (CI) are obtained by using Eqs. 3-11 and A.1-A.15 in the 
appendix: ˆ 1.55ER =  (95% CI: 1.03 – 2.33), | 1

ˆ 6.45E CR = =  (95% CI: 2.56 – 16.3), 

| 0
ˆ 0.96E CR = =  (95% CI: 0.59 – 1.55), |

ˆ 1.53E MHR =  (95% CI: 1.24 – 1.87), 

|
ˆ 0.98E Cφ =  (95% CI: 0.62 – 1.55), ˆ 6.73hmgφ =  (95% CI: 2.37 – 19.1), 

1 (1)
ˆ 5.46st OI
R =  (95% CI: 2.13 – 14.0), 

1 (0)
ˆ 0.81st OI
R =  (95% CI: 0.52 – 1.27), 

2
ˆˆ

nd hmgOI
R φ=  (95% CI: same as ĥmgφ ), and ˆ 1.34CR =  (95% CI:1.03 – 2.33). 
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As was pointed out by O’Donnell et al (1989) who reviewed the data for the 
group allegedly at highest risk, some of 20 such fatal cases which were recorded 
by Crane et al might not use prescribed fenoterol as reported by the general 
practitioner. In 7 of the 18 cases, the beta-agonist in use immediately before death 
was not or might not have been fenoterol. Hence, the data used by Crane et al 
were likely to be misclassified.  

Suppose that the data are misclassified. The proposed bias-adjusted 
estimator can be used, namely, replacing nijk in Eqs. 3-11 by the values of Eq. 24 
to account for the misclassification bias. However, before calculating ijkn  in Eq. 
24, calculate the misclassification probabilities. Here, the idea of counterfactual 
thinking was employed in creating the correctly classified table to serve as a gold 
standard for calculating the misclassification probability (Epstude & Roese 2008). 
Recall that the actually observed table is the only concrete source of information. 
Therefore, the observed table is taken as a factual one. Then, the correctly 
classified table is nothing but a counterfactual (CF) table corresponding to the 
factual (observed misclassified) table. CF tables are said to be feasible (or 
admissible) if the misclassification matrix associated with the calculated 
misclassification probabilities is nonsingular, namely, its determinant is nonzero 
(or if the bias-adjusted cell probability estimators (Eqs. 16 or 23) are admissible).  

At first, the construction of 20 CF tables was tried. However, only 8 
counterfactual models for cases and controls were listed here. Even among these 8 
models, only 2 models (models 4 and 5, boldface in Table 3a) for cases under 
scenario I were admissible. For all other models either the 3rd component of the 
BACP had a negative value (CF tables 1 and 8) or the sum of the all components 
of the BACP estimator did not equal one (CF tables 2-3 and 6-7) (Table 3a, 
column 5). Even worse, none under scenario II for cases were admissible, because 
either the 3rd component of the BACP estimator had a negative value (CF tables 
1-2 and 7-8) or the sum of all four components of BACP estimator did not equal 
one (CF tables 3-6) (Table 3a, column 8). For controls, only CF tables 3-6 were 
admissible under either scenario I or II (boldface in Table 3b). 
 
 
 
 
 
 
 
 
 
 



JOINTLY MISCLASSIFIED EXPOSURE & CONFOUNDING VARIABLES 

200 

Table 2: A case-control study for the asthma deaths in New Zealand  
 
D = 1   C* = 1 C* = 0 Total 
(Cases) E* = 1 26 34 60 
  E* = 0 7 50 57 
  Total 33 84 117 

D = 0 (Controls) 
E* = 1 38 151 189 
E* = 0 66 213 279 
Total 104 364 468 

 
 
Table 3: Counterfactual tables with its false positive and false negative rates, 
determinant of the misclassification matrix under two scenarios for  
 

(a) Cases 
 

CF table 
  Scenario I Scenario II 

(n111, n110, 
n101, n100) 
 

(γE(1), δE(1), 
(1)I∆   (111) (110)

(101) (100)

( , , 

, )
I I

I I

p p
p p

 

 

 1(1) 2(1)

3(1) 4(1)

( , ,

, )

θ θ

θ θ
 

(1)II∆  (111) (110)

(101) (100)

( , ,

, )
II II

II II

p p
p p

 

 

 

γC(1), δC(1)) 

1 
(30, 38, (0.06, 0.08, 

0.53 
(0.23, 0.28, (0.02, 0.02, 

0.59 
(0.23, 0.29, 

11, 38) 0.11, 0.05) -0.005, 0.46) 0.07, 0.05) -0.02, 0.38) 

2 
(29, 37, (0.05, 0.06, 

0.62 
(0.23, 0.29, (0.02, 0.01, 

0.67 
(0.23, 0.29, 

10, 41) 0.08, 0.04) 0.01, 0.45) 0.06, 0.03) -0.001, 0.39) 

3 
(28, 36, (0.03, 0.04, 

0.73 
(0.22, 0.29, (0.01, 0.01, 

0.77 
(0.22, 0.29, 

9, 44) 0.06, 0.02) 0.03, 0.44) 0.04, 0.02) 0.02, 0.40) 

4 
(27, 35, (0.02, 0.02, 

0.86 
(0.22, 0.29, (0.006, 0.005, 

0.87 
(0.224, 0.293, 

8, 47) 0.03, 0.01) 0.05, 0.43) 0.02, 0.01) 0.039, 0.416) 

5 
(25, 33, (0.02, 0.02, 

0.85 
(0.22, 0.29, (0.007, 0.005, 

0.87 
(0.224, 0.294, 

6, 53) 0.03, 0.01) 0.04, 0.43) 0.03, 0.01) 0.035, 0.415) 

6 
(24, 32, (0.03, 0.03, 

0.72 
(0.22, 0.29, (0.01,0.01, 

0.06, 0.02) 0.73 
(0.23, 0.30, 

5, 56) 0.06, 0.02) 0.03, 0.44) 0.003, 0.40) 

7 
(23, 31, (0.05, 0.05, 

0.60 
(0.23, 0.28, (0.02,0.02, 

0.09, 0.03) 0.61 
(0.23, 0.31, 

4, 59) 0.10, 0.03) 0.006, 0.45) -0.04, 0.38) 

8 
(22, 30, (0.07, 0.07, 

0.50 
(0.23, 0.28, (0.03,0.02, 

0.13, 0.04) 0.48 
(0.24, 0.32, 

3, 62) 0.14, 0.05) -0.02, 0.46) -0.10, 0.35) 
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Table 3 Continued 
 

(b) Controls 
 

CF table 
  Scenario I Scenario II 

(n011, n010, 
n001, n000) 
 

(γE(0), δE(0), 
(0)I∆  (011) (010)

(001) (000)

( , ,

, )
I I

I I

p p
p p

 

 

 1(0) 2(0)

3(0) 4(0)

( , ,

, )

θ θ

θ θ
 

(0)II∆  (011) (010)

(001) (000)

( , ,

, )
II II

II II

p p
p p

 

 

 

γC(0), δC(0)) 

1 
(42, 155 (0.02, 0.01, 

0.84 
(0.07, 0.32, (0.02, 0.004, 

0.88 
(0.07, 0.33, 

70, 201) 0.04, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.45) 

2 
(41, 154, (0.02, 0.01, 

0.88 
(0.07, 0.32, (0.01, 0.003, 

0.91 
(0.07, 0.32, 

69, 204) 0.03, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.46) 

3 
(40, 153, (0.01, 0.01, 

0.92 
(0.08, 0.32, (0.01, 0.002, 

0.94 
(0.07, 0.32, 

68, 207) 0.02, 0.01) 0.14, 0.46) 0.005, 0.005) 0.14, 0.46) 

4 
(39, 152, (0.005,0.004, 

0.96 
(0.08, 0.32, (0.004, 0.001, 

0.97 
(0.08, 0.32, 

67, 210) 0.01, 0.003) 0.14, 0.46) 0.003, 0.002) 0.14, 0.46) 

5 
(37, 150, (0.005,0.004, 

0.96 
(0.08, 0.32, (0.004, 0.001, 

0.97 
(0.08, 0.32, 

65, 216) 0.01, 0.003) 0.14, 0.46) 0.003, 0.002) 0.14, 0.46) 

6 
(36, 149, (0.01, 0.007, 

0.92 
(0.08, 0.32, (0.01, 0.002, 

0.94 
(0.07, 0.32, 

64, 219) 0.02, 0.005) 0.14, 0.46) 0.005, 0.005) 0.14, 0.46) 

7 
(35, 148, (0.02, 0.01, 

0.88 
(0.07, 0.32, (0.01, 0.003, 

0.91 
(0.07, 0.33, 

63, 222) 0.03, 0.01) 0.13, 0.46) 0.01, 0.001) 0.13, 0.46) 

8 
(34, 147, (0.02, 0.01, 

0.84 
(0.07, 0.32, (0.02, 0.004, 

0.88 
(0.06, 0.33, 

62, 225) 0.04, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.46) 

 
 
 
Table 4: Estimated values of bias-adjusted estimators for all statistics (Eqs. 3-11) with its 
95% CI for selected admissible counterfactual tables 
 
Test (95% CI) CF table: (caseI, controlI) 

  (#4, #3) (#4, #4) (#4, #5) (#4, #6) 

ER


 
1.59 1.58 1.58 1.59 

(1.22 – 2.06) (1.22 – 2.05) (1.22 – 2.06) (1.22 – 2.06) 

 |E MHR


 
1.554 1.551 1.551 1.554 

(1.22 – 1.98) (1.22 – 1.97) (1.21 – 1.98) (1.22 – 1.97) 

 | 1E CR =



 
8.72 8.62 8.63 8.72 

(3.00 – 25.3) (2.98 – 25.0) (2.98 – 25.0) (2.99 – 25.4) 

 | 0E CR =



 
0.94 0.94 0.94 0.94 

(0.35 – 2.58) (0.35 – 2.57) (0.35 – 2.57) (0.35 – 2.58) 
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Table 4 Continued 

Test (95% CI) CF table: (caseI, controlI) 

 |E Cφ


 
0.98 0.98 0.98 0.98 

(0.23 – 4.23) (0.23 – 4.23) (0.23 – 4.23) (0.23 – 4.25) 

 hmgφ


 
9.23 9.16 9.29 9.36 

(2.22 – 38.3) (2.21 – 38.0) (2.21 – 38.1) (2.21 – 38.5) 

 
1 (1)st OI

R


 
7.39 7.39 7.39 7.39 

(1.97 – 27.6) (1.97 – 27.6) (1.97 – 27.6) (1.97 – 27.6) 

 
1 (0)st OI

R


 
0.8 0.81 0.81 0.8 

(0.47 – 1.36) (0.48 – 1.37) (0.47 – 1.38) (0.46 – 1.38) 

 
2nd OI

R


 
9.23 9.16 9.16 9.24 

(2.22 – 38.3) (2.21 – 38.0) (2.21 – 38.1) (2.21 – 38.5) 

 CR


 
1.58 1.6 1.6 1.58 

(1.04 – 2.39) (1.10 – 2.32) (1.09 – 2.33) (1.07 – 2.31) 

 
 

After getting all possible combinations from admissible CF tables under 
scenario I for cases and controls, the bias-adjusted values of Eqs. 3-11 were 
computed for all 8 combinations. Only 4 combinations were listed here because 
the results from the other 4 combinations were similar; hence it was omitted to 
save space (table 4). On the one hand, the bias-adjusted values for the unstratified 
exposure odds ratio, the Mantel-Haenezel summary odds ratios, the odds ratio for 
the stratum without the presence of C, the 1st order interaction for controls are 
almost unchanged. On the other hand, the bias-adjusted values for the stratified 
odds ratio with the presence of C and the 1st order interaction for cases were 35% 
higher than the crude estimator. Similarly, the bias-adjusted value for the 2nd order 
multiplicative interaction was 36% higher than the crude estimator.  

Discussion 

This is a study on the effect of joint misclassification of exposure and extraneous 
(confounding) variables on the association among the disease, exposure and 
confounding variables. Through the use of counterfactual tables as a gold standard, 
a sensitivity analysis was conducted to examine effects on various measures used 
in analyzing 2 × 2 × 2 tables. Both Cox & Elwood (1991) and Walker & Lanes 
(1991) also used the same data set to investigate the issue of misclassification. But, 
they only considered the effect of the confounder misclassification.  
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Some comments are appropriate to be given below: 
 
1. Two scenarios concerning the joint misclassification were considered, 

that is, the classification errors of exposure and confounding variables 
are independent (scenario I) or not (scenario II). It turned out that 
results were very different for cases and controls. Under scenario I, 
there were 2 and 4 admissible CF tables for cases and controls 
respectively. It was noticed that no admissible CF tables exist, once 
the false positive or negative rates were greater than 0.02. Under 
scenario II none and 4 CF tables were available for cases and controls. 
Similarly, no admissible CF tables exist for controls, once the false 
positive or negative rates were greater than 0.01. Evidently, the 
existence of admissible CF tables depends on the structure of their 
collected data for cases and controls.  

2. From the result of this study, the effect of joint misclassification of the 
exposure and confounding variables varies. It depends on which 
statistics is used to measure the effect (table 4). For example, although 
the value of ER



is just a little larger than that of ˆ
ER , it implies that the 

bias-adjusted estimator is significantly greater than one because its 
lower bound of 95% CI moves further from one than that of ˆ

ER . Its 
95% CI becomes widened than that of ˆ

ER , even though the values of 

|E MHR


 are approximately the same as that of |
ˆ

E MHR . The values of 

| 1E CR =



,
1 (1)st OI

R


 and hmgφ


 are much larger than that of the corresponding 

crude estimators | 1
ˆ

E CR = , 
1 (1)

ˆ
st OI

R  and ĥmgφ . The value of CR


which is 

greater than that of ˆ
CR indicates that the strength of confounding by 

the use of oral corticosteroids is at least 1.3 times of the group without 
using it. Lastly, the effect of joint misclassification of E and C on the 
measure of | 0E CR = , 

1 (0)st OI
R , and |E Cφ  is almost negligible. 

3. Advantages in using counterfactual tables to conduct the sensitivity 
analysis are many folds. First, it solves the problem of finding a gold 
standard in order to calculate the misclassification probability. Second, 
the assumption of nondifferential misclassification is not needed on 
any factor under study. For example, if the exposure factor is not 
misclassified, all that has to be done is to keep the marginal totals for 
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the exposure factor fixed in selecting counterfactual tables. Third, all 
results are strictly obtained from the collected data. Hence, the drawn 
conclusion is real data-based rather than the hypothetical data used by 
other authors (Greenland 1980; Greenland & Robins 1985).  

4. Although the extraneous variable C (the use of corticosteroid) was not 
judged as a confounder by the estimated value of |

ˆ 0.98E Cφ = , it was 
shown to be a confounder by indication (Psaty et al. 1999) or by 
association with the death and the exposure (Miettinen 1974) or by not 
being equally distributed (lack of comparability) in the categories of 
the exposure variable (the use of prescribed fenoterol) (Miettinen 
1985). Further, it was shown to be an effect modifier by the statistics 
of ĥmgφ  or 

2
ˆ

nd OI
R . Once an effect modification is present, whether C is 

a confounder becomes not an issue. Rather, stratum-specific odds ratio 
estimates ( |

ˆ
E C iR = ) should be reported because summary estimates do 

not convey information on the pattern of variation of stratum-specific 
estimates. For other references on the confounder, please see 
Wickramaratne & Holford (1987), Weinberg (1993), and Yiostalo & 
Knuuttila (2006). 
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Appendix A 

By adapting the variance formula obtained in Lee (2013), the variance formula is 
readily given for the crude and bias-adjusted estimators for the 1st order 
(multiplicative) interaction as follows:  
 
 1

( ) ( ) ( ) ( )1 ( )
ˆ(ln( ))st

T
i i i iOI i

Var R n a a−= ⋅ Σ   (A1) 

 
where 1 1 1 1

( ) 11 10 01 00( , , , )T
i i i i ia p p p p− − − −= − − . 

 
 1

( ) ( ) ( ) ( )1 ( )
(ln( )st

T
i i i iOI i

Var R n a a−= ⋅ Σ


    (A2) 

 
where ( ) 11(.; ) 11 22(.; ) 10 33(.; ) 01 44(.; ) 00( , , , )T

i i i i i i i i ia v p v p v p v p= − −   

 , {vjj(.;i)} are the jth 
diagonal entry of the inverse matrix 1

.( ) .( )i iV W −= , .( ) ( )i I iW W=  or ( )II iW , 

( ) .( ) ( )i i ip V p= , and ( )iΣ is given by Eq. 2. 
The variance formula is also readily given for the crude and bias-adjusted 

estimators for the 2nd order (multiplicative) interaction as follows:  
 

 
1

2 1 ( )
0

ˆ ˆ(ln( )) (ln( ))nd stOI OI i
i

Var R Var R
=

=∑   (A3) 

 
1

2 1 ( )
0

(ln( )) (ln( ))nd stOI OI i
i

Var R Var R
=

=∑
 

  (A4) 

 
Similarly, obtain the variance for the crude and bias-adjusted odds ratio ignoring 
the confounding factor C to be given respectively by using the delta method 
which is given by Eq. 14.4 in Agresti (2002): 
 

 
1

1
( ) ( ) ( ) ( )

0

ˆ(ln( )) T
E i i i i

i
Var R n b b−

=

= ⋅ Σ∑   (A5) 

 
where 1 1 1 1

(1) 11 11 10 10( , , , )Tb p p p p− − − −
+ + + += − − , and 1 1 1 1

(0) 01 01 00 00( , , , )Tb p p p p− − − −
+ + + += − − . 

The variance of ln( )ER


is given by 
 

 
1

1
( ) ( ) ( ) ( )

0
(ln( )) T

E i i i i
i

Var R n b b−

=

= Σ∑


    (A6) 
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where 1 1 1 1
(1) 11(.;1) 11 22(.;1) 11 33(.;1) 10 44(.;1) 10( , , , )Tb v p v p v p v p− − − −

+ + + += − −   

 , 
1 1 1 1

(0) 11(.;0) 01 22(.;0) 01 33(.;0) 00 44(.;0) 00( , , , )Tb v p v p v p v p− − − −
+ + + += − −   

 , and ( )ip  is defined in Eq. A2. 
The variances of the crude and bias-adjusted odds ratio stratified by the 

confounder C are given respectively by 
 

 
1

1
| 1 ( ) | 1 ( ) ( )| 1

0

ˆ(ln( )) T
E C i i C i i C

i
Var R n c c−

= = =
=

= ⋅ Σ∑   (A7) 

   (A8) 
 
where 1 1

( )| 1 11 01( ,0, ,0)T
i C i ic p p− −

= = − , and 1 1
( )| 0 10 00(0, ,0, )T
i C i ic p p− −

= = − . 
 
   (A9) 

 
1

1
| 1 ( ) ( )| 1 ( ) ( )| 1

0
(ln( )) T

E C i i C i i C
i

Var R n c c−
= = =

=

= Σ∑


    (A10) 

 
 
where 1 1

( )| 1 11(.; ) 11 33(.; ) 01( ,0, ,0)T
i C i i i ic v p v p− −

= = − 

 , and 
1 1

( )| 0 22(.; ) 10 44(.; ) 00(0, ,0, )T
i C i i i ic v p v p− −

= = −  

 .  
The variance of the crude Mantel-Haenszel summary odds ratio is given 

by 
 

 
1

1
| ( ) ( ) ( ) ( )

0

ˆ(ln( )) T
E MH i i i i

i
Var R n d d−

=

= ⋅ Σ∑   (A11) 

 
where ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i id d d d d=  and each component in d(i) is given by 
 

1( 1) 0 1 1 001 101 011 001 0 101 011( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

2( 1) 1 0 1 000 100 010 000 0 100 010( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

3( 1) 0 1 1 111 001 0 011 111 011 001( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

4( 1) 1 0 1 110 000 0 010 110 010 000( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

1( 0) 0 1 1 111 001 0 101 111 101 001( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

2( 0) 1 0 1 110 000 0 100 110 100 000( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

3( 0) 0 1 1 111 111 101 001 0 101 011( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

4( 0) 1 0 1 110 110 100 010 0 100 010( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 
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1
1 0 111 001 1 110 000( )p p p p p pρ −

++ ++≡ + , 
1

0 0 101 011 1 100 010( )p p p p p pρ −
++ ++≡ + . 

 
The variance for the BACP of the Mantel-Haenszel summary odds ratio is 

given by 
 

 
1

1
| ( ) ( ) ( ) ( )

0
(ln( )) T

E MH i i i i
i

Var R n d d−

=

= ⋅ Σ∑


    (A12) 

 
where ( ) 1( ) 2( ) 3( ) 4( )[ , , , ]T

i i i i id d d d d=      and each component in ( )id  is given by 
 

1( 1) 11(.;1) 0 1 1 001 101 011 001 0 101 011( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

2( 1) 22(.;1) 1 0 1 000 100 010 000 0 100 010( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

3( 1) 33(.;1) 0 1 1 111 001 0 011 111 011 001( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

4( 1) 44(.;1) 1 0 1 110 000 0 010 110 010 000( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

1( 0) 11(.;0) 0 1 1 111 001 0 101 111 101 001( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

2( 0) 22(.;0) 1 0 1 110 000 0 100 110 100 000( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

3( 0) 33(.;0) 0 1 1 111 111 101 001 0 101 011( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

4( 0) 44(.;0) 1 0 1 110 110 100 010 0 100 010( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 
1

1 0 111 001 1 110 000( )p p p p p pρ −
++ ++≡ +     

 , 
1

0 0 101 011 1 100 010( )p p p p p pρ −
++ ++≡ +     

 . 
 

The variance of ˆln( )CR is given by 
 

 
1

1
( ) ( ) ( ) ( )

0

ˆ(ln( )) T
C i i i i

i
Var R n e e−

=

= ⋅ Σ∑   (A13) 

 
where each component of the vector ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i ie e e e e= is given by 

1(1) 0e = , 2(1) 101 000e p pρ= , 1
3(1) 10 100 110 000 010 001( )e p p p p p pρ −

+= − , 
1 1 2 2

4(1) 10 100 110 000 101 010 001 100( )e p p p p p p p pρ − −
+= − ; 1

1(0) 01e p−
+= − , 

1
2(0) 01 100 001 011 000 110 101( )e p p p p p p pρ −

+= − , 

3(0) 000 110 101 100 010 100 010 001[ ( ) 2 ]e p p p p p p p pρ= + + , 
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1 2
4(0) 00 000 001 110 000 100 010 001( )e p p p p p p p pρ −

+= − ; 1
000 110 101 100 010 001( )p p p p p pρ −= + . 

 
The variance of ln( )CR



is given by 
 

 
1

1
( ) ( ) ( ) ( )

0
(ln( )) T

C i i i i
i

Var R n e e−

=

= ⋅ Σ∑


    (A14) 

 
 where each component of the vector ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i ie e e e e=     is given by 
 

1(1) 0e = , 2(1) 22(.;1) 101 000e v p pρ=  

 , 1
3(1) 33(.;1) 10 100 110 000 010 001( )e v p p p p p pρ −

+= −     

 , 
1 1 2 2

4(1) 10 100 110 000 101 010 001 100 110 101 100 000( 2 )e p p p p p p p p p p p pρ − −
+= − + +           

 ;  
1

1(0) 11(.;0) 01e v p−
+= − 

 , 1
2(0) 22(.;0) 01 100 011 001 000 110 101( )e v p p p p p p pρ −

+= −      

 , 
1

3(0) 33(.;0) 00 000 110 101 100 010 100 010 001[ ( ) 2 ]e v p p p p p p p p pρ −
+= + +        

 , 
1 1 2 2

4(0) 44(.;0) 00 000 110 101 000 100 010 001( )e v p p p p p p p pρ − −
+= −       

 ; 
1

000 110 101 100 010 001( )p p p p p pρ −≡ +     

 . 
 

Lastly, the variances of the crude and bias-adjusted estimators for Eqs. 7 
& 8 are given respectively by 

 

| |
ˆ ˆ ˆ(ln( )) (ln( ) (ln( ))E C E MH EVar Var R Var Rφ ≈ +  , 

| |(ln( )) (ln( ) (ln( ))E C E MH EVar Var R Var Rφ ≈ +
  

, 

| 1 | 0
ˆ ˆ ˆ(ln( )) (ln( ) (ln( ))hmg E C E CVar Var R Var Rφ = == + ,  (A15) 

| 1 | 0(ln( )) (ln( ) (ln( ))hmg E C E CVar Var R Var Rφ = == +
  

. 
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