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The problem of estimating the population variance is presented using auxiliary 
information in the presence of measurement errors. The estimators in this article use 
auxiliary information to improve efficiency and assume that measurement error is present 
both in study and auxiliary variable. A numerical study is carried out to compare the 
performance of the proposed estimator with other estimators and the variance per unit 
estimator in the presence of measurement errors. 
 
Keywords: Population mean, study variate, auxiliary variates, mean squared error, 
measurement errors, efficiency. 
 

Introduction 

Over the past several decades, statisticians are paying their attention towards the 
problem of estimation of parameters in the presence of measurement errors. In 
survey sampling, the properties of estimators based on data usually presuppose 
that the observations are the correct measurements on characteristics being 
studied. However, this assumption is not satisfied in many applications and data is 
contaminated with measurement errors, such as non-response errors, reporting 
errors, and computing errors. These measurement errors make the result invalid, 
which are meant for no measurement error case. If measurement errors are very 
small and we can neglect it, then the statistical inferences based on observed data 
continue to remain valid. On the contrary, when they are not appreciably small 
and negligible, the inferences may not be simply invalid and inaccurate but may 
often lead to unexpected, undesirable and unfortunate consequences (see 
Srivastava and Shalabh, 2001). Some important sources of measurement errors in 
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survey data are discussed in Cochran (1968), Shalabh (1997), and Sud and 
Srivastva (2000). Singh and Karpe (2008, 2010), Kumar et al. (2011a, b) studied 
some estimators of population mean under measurement error. 

Many authors, including Das and Tripathi (1978), Srivastava and Jhajj 
(1980), Singh and Karpe (2009) and Diana and Giordan (2012), studied the 
estimation of population Variance 2

yσ  of the study variable y using auxiliary 
information in the presence of measurement errors. The problem of estimating the 
population variance and its properties are studied here in the presence of 
measurement errors. 

Consider a finite population U= (U1, U2, ........ UN) of N units. Let Y and X be 
the study variate and auxiliary variate, respectively. Suppose a set of n paired 
observations are obtained through simple random sampling procedure on two 
characteristics X and Y. Further assume that xi and yi for the ith sampling units are 
observed with measurement error as opposed to their true values (Xi, Yi) For a 
simple random sampling scheme, let (xi, yi) be observed values instead of the true 
values (Xi, Yi) for ith (i=1.2….n) unit, as 
 

 i i iu y Y= −    (1) 

i i iv x X= −    (2) 
 
where ui and vi are associated measurement errors which are stochastic in nature 
with mean zero and variances 2

uσ  and 2 ,vσ  respectively. Further, let the ui’s and 
vi’s are uncorrelated although Xi’s and Yi’s are correlated . 

Let the population means of X and Y characteristics be xµ and yµ , 

population variances of (x, y) be ( 2
xσ , 2

yσ ) and let ρ  be the population correlation 
coefficient between x and y respectively (see Manisha and Singh (2002)). 

Notations 

Let 
1

1 ,
n

i
i

x x
n =

= ∑  
1

1 ,
n

i
i

y y
n =

= ∑  be the unbiased estimator of population means X  

and Y  , respectively but ( )22

1

1
1

n

x i
i

s x x
n =

= −
− ∑  and ( )22

1

1
1

n

y i
i

s y y
n =

= −
− ∑  are not 

unbiased estimator of ( 2
xσ , 2

yσ ), respectively. The expected values of 2
xs and 2

ys  in 
the presence of measurement error are, given by, 
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( )2 2 2
x x vE s σ σ= +  

( )2 2 2
y y uE s σ σ= +  

 
When the error variance 2

vσ  is known, the unbiased estimator of 2
xσ , is 

2 2 2ˆ 0x x vsσ σ= − > , and when 2
uσ  is known, then the unbiased estimator of 2

yσ  is 
2 2 2ˆ 0y y usσ σ= − > . 

 
Define  
 

( )2 2
0ˆ 1y y eσ σ= +  

( )11xx eµ= +  
 
such that  
 
( )0E e = ( )1E e =0, 

2 2
2
1 2( ) 1x v

x

CE e
n

σ
σ

 
= + 

 
=

2
x

x

C
nθ

, 

 
and to the first degree of approximation (when finite population correction factor 
is ignored) 

 

( )2
0 ,yA

E e
n

=  ( )0 1
xCE e e

n
λ

= . 

 
where,  
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+
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xθ and yθ are the reliability ratios of X and Y, respectively, lying between 0 and 1. 

Estimator of population variance under measurement error 

According to Koyuncu and Kadilar (2010), a regression type estimator t1 is 
defined as  
 

2
1 1 2ˆ ( )y xt w w xσ µ= + −    (3) 

 
where w1 and w2 are constants that have no restriction . 
 
Expression (3) can be written as 
 

2 2 2
1 1 1 0 2 1( 1)y y y xt w w e w eσ σ σ µ− = − + −    (4) 

 
Taking expectation both sides of (4), results in  
 

2
1 1( ) ( 1)yBias t wσ= −    (5) 

 
Squaring both sides of (4)  
 

( ) ( )22 2 2
1 1 1 0 2 11y y y xt w w e w eσ σ σ µ − = − + −     (6) 

 
or 

 

( )22 4 2 2 4 2 2 2 2 4
1 1 1 0 2 1 1 1 0

2 2
1 2 1 1 2 0 1

( 1) 2( 1)

2( 1) 2 )

y y y x y

y x y x

t w w e w e w w e

w w e w w e e

σ σ σ µ σ

σ µ σ µ

− = − + + + −
− − − 

  (7) 

 
Simplifying equation (7), taking expectations and using notations, results in 

the mean square error of 1t up to first order of approximation, as  
 

22
1 24 2 4 2 2

1 1 1 2

2
( ) ( 1) (1 2 )y x y xx

y y x
x

A w w CCMSE t w w w
n n n

µ σ λ
σ σ µ

θ


= + + − + − 
 

   (8) 
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In the case, when the measurement error is zero, MSE of 1t  without 
measurement error is given by, 
 

{ }
4 2

* 4 2 2 2
1 2 1 2 1 2( ) 2 (1 2 ) 2y x x

y y x x y
C CMSE t n w w w w

n n n
σ

γ σ µ µ σ λ = + + + − + − 
  (9) 

 
and 
 

1

22 4 4 4 2 2
2 2

2 24 4 4 22 4y u u u x v
t u x

y y y x

CM w
n n
σ σ σ σ σγ µ

σ σ σ σ

  
 = + + +     

  (10) 

 
is the contribution of measurement errors in the MSE of estimator 1t . 

Differentiating (8) with respect to 1w  and 2w  partially, equating them to 
zero and after simplification, results in the optimum values of 1w  and 2w , 

respectively as  
 

4 4
* *
1 22 2, y yB C

w w
C AB C AB
σ σ− −

= =
− −

   (11) 

 

where, 4( 1)y
y

A
A

n
σ= +  , 

2 2
x x

x

CB
n
µ
θ

=  and 
2
y x xC

C
n

σ µ λ
= . 

Using the values of *
1ω  and *

2ω  from equation (11) into equation (8), gives 
the minimum MSE of the estimator t2 in terms of A, B and C as  

 

( )22 24
2 2

1 min 2 4( ) 3 2
( )

y

y

C AB
MSE t BC AB BC

C AB
σ

σ

 −   = + − −    −   
  (12) 

Another estimator under measurement error 

Based on Solanki and Singh (2012), an estimator 3t  is defined as 
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( )
( )

2
2 ˆ 2- exp   x

y
x x

xxt
x

α
β µ

σ
µ µ

  −  =     +     
   (13) 

 
where α and β are suitably chosen constants. 
Expressing the estimator 2t , in terms of e’s is 
 

( )
1

2 1 1
2 1ˆ 2 1 exp ( ) 1

2 2y
e et e α βσ

−    = − + +   
     

  (14) 

 
Expanding equation (14) and simplifying results in  
 

( ) ( )
2

2 2 21
2 0 1 0 1( ) 2

2 8y y
ekt e e e e k kσ σ

 
− = − + − − 

 
  (15) 

 
where ( )2k β α= + . 

On taking expectations of both sides of (15), the bias of the estimator 3t  up 
to the first order of approximation is obtained as  
 

( )
22

2
2

k 2  -    
2 8

x x
y

x

C Ck kBias t
n n

λσ
θ

  −
= −  

  
  (16) 

 
Squaring both sides of (15) and after simplification, 
 

( )
222 4 2

2 0 1 0 14y y
kt e e ke eσ σ

 
− = + − 

 
   (17) 

 
Taking expectations of (17) and using notations, the MSE of estimator t2 is 
calculated as 
 

4 2
2

2( )
4

y
y x x x x

x

kMSE t A C k C
n
σ

θ λ θ
θ

 
= + − 

 
  (18) 
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Differentiating equation (18) with respect to k and equating to zero and after 
simplification the optimum value of k is  
 

* 2 x

x

k
C
λθ

=    (19) 

 
Putting the optimum value of k from (19) to (18), results in the minimum MSE of 
estimator t2 as 
 

4
2

2 min( ) y
y xMSE t A

n
σ

λ θ = −     (20) 

Remark:  

Singh and Karpe (2009) defined a class of estimator for 2
yσ  as  

 
2ˆ ( )d yt d bσ=    (21) 

 
where, d(b) is a function of b such that d(1)= 1, and certain other conditions, 
similar to those given in Srivastava (1971). The minimum MSE of td is given by, 
 

4
2

min( ) y
d y xMSE t A

n
σ

λ θ = −     (22) 

 
which is the same as the minimum MSE of estimator t2, given in equation (20).  

A General Class of Estimators 

A general class of estimator t3 is proposed as 
 

( ) ( )
( )

2
3 1 2ˆ 2- exp   x

y x
x x

xxt m m x
x

α
β µ

σ µ
µ µ

  −   = + −      +     
  (23) 

 
Where 1m  and 2m  are constants chosen so as to minimize the mean squared error 
of the estimator t3. 

Equation (23) can be expressed in terms of e’s as  
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( )2

2 2 2
3 1 1 0 2 1 1 1

2
1

2 8y y x

k kkt m m e m e e eσ σ µ
 −

   = + − − −    
  (24) 

 
Expanding equation (24) and subtracting 2

yσ from both sides, results in 
 

( ) ( )

( )

2 2 2 2
3 1 1 1 1 0 2 1

22
12 2 21

1 0 1 2 1

1
2

2
8 2 2

y y y y x

y
y x

kt m m e m e m e

m ke km k k e e m e

σ σ σ σ µ

σ
σ µ

− = − − + −


− − − + 


  (25) 

 
On taking expectations of both sides of (25) the bias of the estimator 3t  up 

to the first order approximation is obtained as 
 

( ) ( ) ( )
22 2

12 2 2
3 1 1 2

1 1 2  
8 2 2

yx x x
y y x

x x

m kC C CkBias t m m k k m
n n n

σ λσ σ µ
θ θ

= − − − − +   (26) 

 
Squaring both sides of (25), results in 
 

( ) ( )
2

22 2 2 2
3 1 1 1 1 0 2 11

2y y y y x
kt m m e m e m eσ σ σ σ µ − = − − + −  

  (27) 

 
Simplifying equation (27) and taking expectations both sides the MSE of 

estimator 3t  up to the first order of approximation is obtained as  
 

( ) 4 2 2
3 1 1 2 1 2( ) 1 2 yMSE t m m P m Q m m Rσ = − + + −    (28) 

 

where 
2 2

41
4

y x
x y

x

A k C kP C
n n n

λ σ
θ

 
= + + − 
 

, 
2 2
x x

x

CQ
n
µ
θ

=  and 
2

2 2x x
y x

x

CR k C
n
µσ λ

θ
 

= + 
 

. 

 
Minimizing MSE t3 with respect to m1 and m2 the optimum values of 1m  and 

2m  is 
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4 4
* *
1 22 2

4 2
m   and  

4 4
y yQ R

m
R PQ R PQ

σ σ− −
= =

− −
 

 
Putting the optimum values of 1m  and 2m  in equation (28) results in the 
minimum MSE of estimator 3t  as 
 

( ) ( )
4

4
3 2

4
1

4
y

y

Q
MSE t

PQ R
σ

σ
 
 = =

−  
   (29) 

Empirical Study 

Data Statistics: 
The data used for empirical study was taken from Gujrati and Sangeetha (2007) -
pg, 539., where,  
 

iY  = True consumption expenditure, 

iX  = True income, 

iy  = Measured consumption expenditure, 

ix  = Measured income. 
 

From the data given we get the following parameter values: 
 
 
Table 1. Parameter values from empirical data 
 
N yµ  xµ  2

yσ  2
xσ  ρ  2

uσ  2
vσ  

10 127 170 1278 3300 0.964 36.0 36.0 
 
 
Table 2. Showing the MSE of the estimators with and without measurement errors 
 

Estimators MSE without meas. 
Error 

Contribution of meas. 
Errors in MSE 

MSE with meas. 
Errors 

 2ˆ yσ  245670 35458 281128 

 1t  229734 30354 260088 
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Table 2 continued.    

Estimators MSE without meas. 
Error 

Contribution of meas. 
Errors in MSE 

MSE with meas. 
Errors 

 2mint  245411 35461 280872 

 3min ( 1, 0)t α β= =  247440 30442 277862 

 ( )0, 1α β= =  234402 30555 267957 

 ( )1, 1α β= =  268144 30219 298363 

 ( )1, 1α β= = −  234402 33555 267957 

 ( )0, 1α β= = −  231969 30600 262569 

 ( )0.9, 2α β= − =  229145 30365 259510 

Conclusion 
Table 2 shows that the MSE of proposed estimator t3 (for 0.9, 2α β= − = ) is 
minimum among all other estimators considered. It is also observed that the effect 
due to measurement error on the estimator t1 and usual estimators is less than the 
effect on the estimator 2t  under measurement error for this given data set. 
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