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A.S.C. Ehrenberg first noticed and S. Weisberg then formalized a property of pairwise 
regression to keep its quality almost at the same level of precision while the coefficients 
of the model could vary over a wide span of values. This paper generalizes the estimates 
of the percent change in the residual standard deviation to the case of competing multiple 
regressions. It shows that in contrast to the simple pairwise model, the coefficients of 
multiple regression can be changed over a wider range of the values including the 
opposite by signs coefficients. Consideration of these features facilitates better 
understanding the properties of regression and opens a possibility to modify the obtained 
regression coefficients into meaningful and interpretable values using additional criteria. 
Several competing modifications of the linear regression with interpretable coefficients 
are described and compared in the Ehrenberg-Weisberg approach. 
 
Keywords: Pairwise and multiple regression, residual deviation change, Ehrenberg-
Weisberg analysis 
 

Introduction 

In a fascinating work by A.S.C. Ehrenberg (1982) it was shown that the 
coefficients of pairwise regression can be varied over a wide span of values yet 
the modified model would still have a high quality of fit. Andrew Ehrenberg was 
a famous English statistician and marketing scientist recognized as the founder of 
probability models for consumer buying behavior (Ehrenberg, 1959, 1966, 1988; 
Fader and Hardie, 2009), and a prolific educator in statistics (for several examples, 
see Ehrenberg, 1981, 1983a,b). As Ehrenberg found, “The residuals from a least 
squares regression equation are hardly any smaller than those from many other 
possible lines” (1982, p. 364), and “markedly different equations give almost as 
good a fit as the least-squares regression equation itself” (1983a, p. 526). The 
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technique considered by Ehrenberg was also described by S. Weisberg (1985, p. 
68-70) in a convenient analytical form, thus, it will be called the Ehrenberg-
Weisberg, or EW analysis.  

EW analysis had been developed for pairwise models, but the current paper 
generalizes it to multiple regression where the results are even more interesting – 
in particular, it is even possible to change all the predictors’ coefficients to the 
opposite sign, and still have almost the same precision of model fit. Such results 
show that the coefficients of linear regression can be adjusted by some additional 
criteria, where the coefficients become meaningful and the quality of the model 
stays high.  

Regression modeling is widely used for statistical analysis and prediction in 
various problems of applied research. The main tool of regression modeling is the 
ordinary multiple linear least squares (OLS) regression which yields the best 
quality of data fit estimated by the minimum residual square error achieved by the 
aggregate of the predictors. However, OLS was not designed to obtain meaningful 
coefficients for individual predictors, and it is prone to multicollinearity effects 
which impact the coefficients’ values and directions. Multicollinearity can make 
confidence intervals so wide that coefficients are incorrectly identified as 
insignificant, theoretically important variables receive negligible coefficients, or 
the coefficients have signs opposite to those of the corresponding pair correlations, 
so it is hardly possible to identify the individual predictors’ importance in the 
regression (Grapentine, 1997; Mason and Perreault, 1991). Multicollinearity 
makes the covariance matrix of predictors close to singular, so its inversion yields 
inflated regression coefficients, pushing them to large values of both signs. It is 
difficult to use such an OLS solution for the analysis of key drivers, either by the 
coefficients or by the net effects (shares of the coefficient of multiple 
determination related to the predictors impact). 

In the statistical literature and social sciences the effects of multicollinarity 
are explained by the so-called enhance, synergism, suppression, and masking 
effects among the predictors (Lipovetsky and Conklin, 2004). But such an 
explanation hardly helps to the interpretation and analysis of the regression results 
in applied research. For instance, in customer satisfaction studies in marketing 
research, the direction of the predictors’ influence on the dependent variable is 
often known in advance. Suppose, the key drivers should all have a positive 
impact on overall satisfaction and it is evidenced by the pair correlations. But in 
OLS regression many coefficients turned out to be negative, so it is hardly 
possible to interpret the model and estimate the individual driver’s importance. It 
is also difficult to use such a model for predicting a lift in the output because it is 
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not clear whether to increase or decrease a presumably useful variable if it has a 
negative sign in the model. 

This article describes the features of EW analysis and its application to 
several modifications of multiple regression. One of those is the so-called Shapley 
value regression which is based on cooperative game theory used for finding the 
predictors’ importance and then adjusting the regression coefficients via a 
nonlinear optimizing procedure. Another approach uses several modifications of 
the enhanced ridge regression technique to produce interpretable coefficients with 
a high overall quality of the model. A nonlinear parameterization of the 
coefficients of linear regression is also used in several forms to obtain sparse 
regression models with the features of interest. And finally, a model based on the 
elasticity criterion applied for building regression coefficients by data gradients is 
used for a comparison with OLS. In contrast to OLS, all the modified models are 
meaningful and easily interpretable, and have a quality of fit very close to the 
maximum defined by the OLS regression (for more detail on these models see 
(Lipovetsky and Conklin, 2001, 2010 a,b; Lipovetsky, 2009, 2010 a,b). 

This paper is organized as follows: the next section describes the 
characteristics of EW for multiple and pairwise regressions, followed by a 
description of numerical simulations and a comparison of several modified 
regression solutions. A summary concludes the paper. 

Ehrenberg-Weisberg Analysis 

Consider briefly some relations from regression analysis needed for further 
development. For centered and normalized (by the standard deviations) dependent 
yi and n design variables xi1,...,xin (i = 1,2,…,N – number of observations), a 
multiple linear regression model is: 
 
 1 1 2 2 ...i i i n in iy b x b x b x e= + + + +   (1) 
 
where ei denotes deviations from the model, and b are beta-coefficients of the 
standardized regression. In matrix form (1) can be represented as y Xb e= + , 
where y and e are the vectors of Nth order, and X is the matrix of N by n order. 
The least-squares objective is: 
 

 
2 2 2|| || || || ( ) ( )

2 1 2 ,
S e y Xb y Xb y Xb

y y b X y b X Xb b r b Rb
′= = − = − −

′ ′ ′ ′ ′ ′ ′= − + = − +
  (2) 
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where for the standardized variables it is 1y y′ = , the vector of pair correlations 
between y and each of n predictors x is X y r′ = , and the matrix of pair 
correlations between the xs is X X C′ = , and the prime denotes transposition. 
Minimizing by vector b yields the normal system of equations and its solution 
 
 1, ,Cb r b C r−= =   (3) 
 
where 1C−  is inverted correlation matrix. Vector b (3) presents coefficients of the 
ordinary least squares, or OLS, regression. With OLS estimates b, the minimum 
residual sum of squares (2) and corresponding to it coefficient of multiple 
determination 2R  are defined as: 
 
 2 2 21 , 1S b r R S b r b Cb′ ′ ′= − = − = =   (4) 
 
where r’ is a transposed row-vector of correlations of x-s with y. The coefficient 
of multiple determination is always non-negative and less than one, its other 
properties are considered, for instance, in (Reisinger, 1997). 

Next, describe EW, or Ehrenberg-Weisberg analysis deriving it from the 
beginning for the general case of multiple regression. Suppose each jth coefficient 
of regression bj is changed with the term kj, so the modified coefficients are 
 
 j j jb k b=   (5) 
 
or in the matrix form ( )b diag k b= , where diag(k) is the diagonal matrix of terms 
kj, and b  is the vector of modified coefficients of regression. With the new 
parameters b  the residual sum of squares (2) becomes: 
 

 ( ) ( )

2 2|| || ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2( ) ( ) ( ) ( )

S y Xb y Xb y Xb

y Xb X b b y Xb X b b

y Xb y Xb b b X y Xb b b X X b b

′= − = − −
′

= − − − − − −

′ ′ ′ ′ ′= − − − − − + − −

  

 

  

  (6) 

 
Taking (3) into account, the middle item in (6) equals zero because 

( ) 0X y Xb r Cb′ − = − = , so (6) can be reduced to: 
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 ( ) ( )2 2 2( ) ( ) ( ) ( )S S b b C b b S b diag k I C diag k I b′ ′= + − − = + − −    (7) 
 

In a simple case when all coefficients are changed by the same term kj = k, 
taking (4) into account, the expression (7) can be reduced to: 
 
 2 2 2 2 2 2(1 ) (1 )S S k b Cb S k R′= + − = + −   (8) 
 
Dividing (8) by S2 and using (4) yields the relation: 
 

 
2 2

2
2 21 (1 )

1
S Rk
S R

= + −
−



  (9) 

 
For the simple pairwise regression by only one predictor (n = 1 in (1)) this 

formula coincides with the one obtained by Ehrenberg and Weisberg up to the 
change of the multiple correlation R to the pair correlation, R2 = r2. Taking the 
square root of (9) produces a quotient of the standard errors of OLS to the 
modified model expressed as: 
 

 
1/2 1/22 2

2
2 21 (1 )

1
S Rk
S R

   
= + −   −  



  (10) 

 
It is the formula given in Weisberg (1985, p. 69) for the pairwise model with R2 = 
r2. Because the OLS solution has minimum standard error, (10) can be 
represented as 
 

 
1/22

2
21 (1 ) 1

1
Rk d

R
 
+ − = + − 

  (11) 

 
where d > 0 denotes the relative difference of the modified model’s and OLS 
standard errors. 

If d is assumed to be at a desirable level, for example, 5% or 10% , then it is 
possible find the range of k values for which the regression coefficient can be 
changed but the standard error will be kept within a d% increase from the 
minimum OLS standard error value: 
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 ( ) ( )1/2 1/22 2/ 1S S d≤ +   (12) 

 
For this aim, the inequality for k is solved as: 
 

 
1/22

2
21 (1 ) 1

1
Rk d

R
 
+ − ≤ + − 

  (13) 

 
and the solution is: 
 

 
1/2 1/22 2

2 2
2 2

1 11 (2 ) 1 (2 )R Rd d k d d
R R

   − −
− + ≤ ≤ + +   
   

  (14) 

 
So for regression coefficient change with the term k (5) in the range (14) the 
inequality (12) is satisfied. With R2 close to 1 the range (14) is narrow, but with 
small R2 the modified coefficient of regression (5) can vary in the wide span 
without changing much of the residual error. For example, if d = 5%, the span 
(14) is given by the inequalities: 
 

 
1/2 1/22 2

2 2

1 11 0.32 1 0.32R Rk
R R

   − −
− ≤ ≤ +   

   
  (15) 

 
or the span for the regression coefficient keeping the residual error in the limit of 
d = 10% is: 
 

 
1/2 1/22 2

2 2

1 11 0.46 1 0.46R Rk
R R

   − −
− ≤ ≤ +   

   
  (16) 

 
It could seem that for small R2 (for instance if |R|<0.3 in (15), or |R|<.4 in 

(16)) k can even be negative, so the regression changes its direction. However, for 
the pairwise regression it is not so, and it is not so for the multiple regression if all 
parameters of change are constant, kj = k. Indeed, using the coefficients of 
multiple determination of OLS (4) and of the modified regression 2 21R S= −  , the 
equality (8) is represented as: 
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 2 2 2 21 1 (1 )R R k R− = − + −   (17) 
 
which reduces to: 
 
 2 2(2 )R k k R= −   (18) 
 
To keep 2 0R ≥ , the values of k should belong to the range 0 2k≤ ≤ . Thus, k in 
(14)-(16) cannot become negative for the pairwise regression, and the same holds 
for multiple regression in the case where all k are equal. The sufficient condition 
to have 0 2k≤ ≤ , so 2 0R ≥ , is to keep the square roots in (14) less than one: 
 

 
1/22

2
2

1(2 ) 1Rd d
R

 −
+ ≤ 

 
  (19) 

 
which can be represented more concisely as follows: 
 
 2 2(1 ) (1 ) 1d R+ − ≤   (20) 
 
Thus, for a given value of 2R  the percent d satisfying the condition (20) which 
guarantees the modified 2R to be positive should be chosen. 

Continuing with EW description for multiple regression in a general case 
where different parameters of change are assigned to each coefficient, similar to 
the transformation of (8) to (9), the general expression (7) can be presented in 
explicit form as: 
 

 
2

2 2
2 2

1

11 (1 ) 2 (1 )(1 )
1

n n

j j j q j q jq
j j q

S k b k k b b r
S R = >

 
= + − + − − −  

∑ ∑


  (21) 

 
where rjq are the pair correlations between xj and xq. The terms with 1 – kj in (21) 
modify the inputs from 2

jb  (the so-called pure net-effects of each predictor) and 
from j q jqb b r  (the so-called mixed net-effects of the predictors) into the coefficient 
of multiple determination. If only one coefficient of regression is changed, say, 

1jk ≠ , and all the others are kept intact (k = 1) then the ratio (21) reduces to: 
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22

2
2 21 (1 )

1
j

j

bS k
S R

= + −
−



  (22) 

 
From (22) with the net effect of the jth predictor in the numerator, it is easy to 
derive the relations (10)-(14) for considering a model with only one modified 
coefficient. But a general case of different changes for all the coefficients (21) can 
be studied in numerical simulations. 

Numerical Simulation and Examples 

Consider the case of two predictors, n = 2, trying several values of pairwise 
correlations ry1 and ry2 of y with x1 and x2, and the r12 correlation between two 
predictors taken within the allowed range of the values: 
 
 2 2 2 2

1 2 1 2 12 1 2 1 2(1 )(1 ) (1 )(1 )y y y y y y y yr r r r r r r r r− − − ≤ ≤ + − −   (23) 

 
 
Table 1. Numerical simulation with various k: pair correlations, OLS regressions, k-terms, 
modified regressions, and residual STD change. 
 

Pair  
correlations   OLS  

regression   Terms of 
change   Modified  

regression   STD 
change 

ry1 ry2 r12  b1 b2 R2  k1 k2  1b   2b  2R    d 
                                -0.75 0.75 -0.900  -0.395 0.395 0.592  -0.1 2.0  0.039 0.789 0.556  0.043 

-0.75 0.75 -0.900  -0.395 0.395 0.592  0.1 2.0  -0.039 0.789 0.562  0.036 

-0.75 0.75 -0.900  -0.395 0.395 0.592  0.5 2.0  -0.197 0.789 0.538  0.065 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 -0.1  -0.828 -0.041 0.548  0.091 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 0.1  -0.828 0.041 0.561  0.076 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 0.5  -0.828 0.207 0.546  0.094 

-0.50 0.50 -0.150  -0.435 0.435 0.435  0.5 0.5  -0.217 0.217 0.326  0.092 

0.10 0.50 0.739  -0.595 0.940 0.410  0.5 0.5  -0.297 0.470 0.308  0.084 

0.50 0.50 0.100  0.455 0.455 0.455  0.5 0.5  0.227 0.227 0.341  0.099 

0.50 0.75 0.490  0.175 0.664 0.586  2.0 0.5  0.349 0.332 0.502  0.097 

0.50 0.75 0.604  0.074 0.705 0.566  5.0 0.5  0.369 0.353 0.480  0.094 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 0.5  0.161 0.404 0.484  0.090 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 -0.1  0.822 -0.041 0.550  0.083 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 0.1  0.822 0.041 0.562  0.069 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 0.5  0.822 0.205 0.545  0.090 
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Table 1 presents the sets of these three correlations in the first three columns, and 
in the next three columns there are OLS beta-coefficients of regression (1) and the 
coefficient of multiple determination R2 (4). The terms kj for the modified 
coefficients are given in the two middle columns of Table 1, then there are the 
modified coefficients themselves (5), and the corresponding modified coefficient

2 21R S= −   of multiple determination. The last column of Table 1 presents the 
relative change of the residual standard deviation (STD), which can be expressed 
via (12) and (21) as follows: 
 

 
2 2 2 2

1 1 2 2 1 2 1 2 12
2

(1 ) (1 ) 2(1 )(1 )1 1
1

k b k b k k b b rd
R

− + − + − −
= + −

−
  (24) 

 
As shown in Table 1, the change of coefficients can be very noticeable but the 
change in STD is below 10% of the precision in all fifteen examples given in 
rows. 
 
 
Table 2. Numerical simulation with negative k: pair correlations, OLS regressions, k-
terms, modified regressions, and residual STD change. 
 

Pair  
correlations   OLS  

regression   Terms of 
change   Modified  

regression   STD 
change 

ry1 ry2 r12  b1 b2 R2  k1<0 k2<0  1b   2b  2R    d 
                                -0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -2.0  0.057 -0.212 0.016  0.151 

-0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -2.0  0.028 -0.212 0.039  0.137 

-0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -1.0  0.028 -0.106 0.016  0.150 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -1.0  0.082 -0.403 0.003  0.202 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -1.0  0.041 -0.403 0.023  0.190 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -0.5  0.041 -0.202 0.031  0.185 

-0.25 -0.10 0.603  -0.298 0.080 0.067  -0.1 -2.0  0.015 -0.160 0.002  0.034 

-0.25 -0.10 0.603  -0.298 0.080 0.067  -0.1 -1.0  0.015 -0.080 0.003  0.033 

-0.25 -0.10 0.796  -0.465 0.270 0.089  -0.1 -0.5  0.023 -0.135 0.002  0.047 

0.50 0.75 0.719  -0.081 0.808 0.566  -5.0 -0.1  0.404 -0.040 0.202  0.356 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 -0.1  0.161 -0.081 0.026  0.497 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 -0.1  0.161 -0.040 0.082  0.453 

0.50 0.75 0.833  -0.409 1.091 0.614  -2.0 -0.1  0.817 -0.055 0.139  0.493 

0.50 0.75 0.833  -0.409 1.091 0.614  -1.0 -0.1  0.409 -0.109 0.140  0.491 

0.50 0.75 0.833  -0.409 1.091 0.614  -1.0 -0.1  0.409 -0.055 0.194  0.444 
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Table 2 is organized as Table 1 but it contains both the k-terms of negative 
sign, k1 < 0 and k2 < 0, so the direction of y‘s connections with the predictors is 
flipped. Table 2 shows that although the direction of the model coefficients can be 
changed, the quality of such models is not high, and the precision of STD change 
could be low too. As can be expected, a model could receive the opposite signs of 
the coefficients and keep about the same quality of fit mostly in the cases of weak 
statistical relationships similar to those considered in (Langford et al., 2001). 

As it was discussed in the introduction, because of the effects of 
multicollinearity the coefficients of regression can be found in a wide range of the 
values of both signs. It can be shown in a simple example of the model with two 
predictors where the beta-coefficients of regression are defined as follows: 
 

 1 2 12 2 1 12
1 22 2

12 12

,
1 1

y y y yr r r r r r
b b

r r
− −

= =
− −

  (25) 

 
Suppose all correlations are positive, and x1 is strongly correlated with x2, so r12 is 
close to 1. Then the numerators in the coefficients (25) become close to 1 2y yr r−  
and 1 2y yr r− , respectively, so of opposite signs. At the same time the denominator 

2
121 r−  is close to zero, so b1 and b2 become big by the absolute value and of 

opposite signs. It is effect of inflation under multicollinearity, and changing 
directions of the connection from positive pairwise to opposite by sign in multiple 
regression. Using various methods of regularization, mentioned in the 
introduction, meaningful regression coefficients can be obtained. And the EW 
relative change of the residual standard deviations can be used for comparison of 
the several competing regression models and checking how far are the residual 
errors from their OLS minimum value. 

Consider a numerical example where several regressions were tried by the 
data on various cars’ characteristics given in (Chambers and Hastie, 1992; and 
also available in S-PLUS'2000, 1999, as “car.all” data). The data describes 
dimensions and mechanical specifications supplied by the manufacturers and 
measured by Consumer Reports. The variables are: y – Price of a car, US$K; x1 – 
Weight, pounds; x2 – Length overall, inches; x3 – Wheel base length, inches; x4 – 
Width, inches; x5 – Front Leg Room maximum, inches; x6 – Front Shoulder room, 
inches; x7 – Turning circle radius, feet; x8 – Displacement of the engine, cubic 
inches; x9 – HP, the net horsepower; x10 – Tank fuel refill capacity, gallons. The 
cars’ price is estimated in the regression model by the dimensions and 
specifications variables. 
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Table 3. Cars example: correlations and several regressions. 
 
Name variable ryx OLS SV Grad RR RE2 RE3 Exp Multin 

Weight x1 0.653 0.278 0.129 0.101 0.053 0.105 0.116 0.088 0.000 

Length x2 0.533 0.225 0.072 0.083 0.039 0.056 0.062 0.066 0.099 

Wheel 
.base x3 0.496 -0.085 0.043 0.077 0.032 0.034 0.038 0.000 0.000 

Width x4 0.478 -0.144 0.047 0.074 0.029 0.024 0.026 0.000 0.000 

Frt.Leg 
.Room x5 0.567 0.245 0.140 0.088 0.063 0.129 0.143 0.258 0.248 

Frt.Shld x6 0.371 -0.060 0.012 0.057 0.017 0.006 0.007 0.000 0.000 

Turning x7 0.378 -0.199 0.022 0.059 0.017 0.003 0.003 0.000 0.000 

Disp. x8 0.642 0.101 0.110 0.100 0.053 0.097 0.107 0.000 0.000 

HP x9 0.783 0.409 0.191 0.121 0.082 0.293 0.323 0.512 0.528 

Tank x10 0.657 0.160 0.114 0.102 0.056 0.116 0.128 0.085 0.125 

 

R2  0.722 0.596 0.503 0.409 0.637 0.645 0.695 0.694 

  d     0.205 0.337 0.458 0.143 0.130 0.047 0.049 

 
 

Table 3 in the first and second numerical columns presents the pair 
correlations ryx of y with x, and the OLS beta-coefficients (1). All correlations are 
positive, but four of the ten variables have negative coefficients in the multiple 
OLS regression, although it has a good coefficient of multiple determination 

2 0.722R = . The next seven columns in Table 3 present several modified 
solutions referred to in the introduction: SV – Shapley value model, Grad – the 
model constructed by the data gradients; RR – the regular ridge regression, RE2 
and RE3 – two kinds of the ridge enhanced models, Exp and Multin – the model 
with exponential and multinomial-logit parameterization of the coefficients of 
multiple linear regression. Below each model, its coefficient of multiple 
determination is shown, together with the EW relative change characteristic of the 
residual standard deviation d.  

All the modified models have non-negative coefficients of regression, and 
their coefficients R2 are slightly less than the maximum R2 of OLS. But the more 
sensitive characteristic of d indicates rather clearly that RR and Grad models are 
fair, the SV and both RE models are good, and the Exp and Mult models give the 
best variants with less than 5% of the difference in standard deviations. As had 
been shown with more detail in (Lipovetsky, 2009, 2010a,b), the enhanced and 
adjusted ridge models systematically outperform regular ridge regression, and 
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special parameterization techniques produce nonnegative coefficients with a clear, 
sparse structure in the two last approaches. As an additional useful feature of the 
Mult model, the total of the beta-coefficients equals exactly one, so the 
coefficients equivalent to the shares of the predictors’ impact on the dependent 
variable. However, if it is desirable to keep and compare all the variables in the 
model then the SV and ridge regressions should be used, and the Grad model is 
preferable for an express analysis when no special software is available. 

Summary 

A modified least squares regression can have better interpretable coefficients and 
practically the same quality of fit, which can be estimated by the characteristic of 
the relative change in the residual standard deviation. This paper develops the 
Ehrenberg-Weisberg estimation of the characteristic of relative change in the 
residual standard deviation for pair regression to the general case of multiple 
regression. It shows that the coefficients of ordinary least-squares can be changed 
over a wide range of values, including the opposite sign, and the quality of fit can 
still be at an acceptable level. This estimation is applied for a comparison of 
several regressions with the ordinary least squares model, to identify the modified 
regressions with interpretable coefficients and good quality of fit. The obtained 
results help provide a better understanding of the properties of multiple regression, 
and are useful for theoretical consideration and practical applications of 
regression modeling and analysis. 
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