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In Bayesian inference, some researchers have examined the difference of binominal 
proportions using ( )1 2 0 1 2P | ,X Xθ π π= > −∆ , where iX  denote binomial random 

variable with parameter iπ . An approximate method and the MCMC method are 
compared with an exact method for θ , and results of actual clinical trials using θ  are 
presented. 
 
Keywords: Binominal proportions; Bayesian inference; MCMC method; 
hypergeometric series. 
 

Introduction 

Statistical inference concerning the difference between two independent 
binominal proportions is often discussed from the frequency rather than the 
Bayesian viewpoint. Some researchers have examined significant differences in 
binominal proportions using the index, ( )1 2 0 1 2P | ,X Xθ π π= > −∆ , which 
indicates the difference in the posterior density for two independent binomial 
proportions that are assumed to be random variables. 

Originally, this index can be shown in the framework of frequency theory to 
be, 1 2P( )Y Y> , where 1Y  and 2Y  are random variables. The inference for 

1 2P( )Y Y>  can be observed in various fields. In engineering, it is used in the 
`stress strength model' to evaluate the reliability of an industrial component (see 
for instance Kotz, et al. (2003)). In clinical research, it is used as an index for the 
comparison of two groups given different treatments. In addition, this probability 
corresponds to the area under the receiver operating characteristic (ROC) curve. 
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In medicine, it is used as an index for evaluating the validity of a diagnostic 
method. Indeed, innumerable studies have been conducted for 1 2P( )Y Y>  in the 
framework of frequency theory (See for instance Sen (1960, 1967)). As for 
research papers on this index, Shirahata (1993), Zhou (2008) and Kawasaki and 
Miyaoka (2010) have published actively in recent years. 

Conversely, there have been a number of studies to apply a construction of 
1 2P( )Y Y>  to the Bayesian framework. Basu (1996) concisely showed the use of 

the Bayesian approach with respect to hypothesis testing. Berry (1995) using 
superior binomial proportions, presented a detailed comparison between two 
binomial proportions assumed to be random variables and presented some 
interesting examples. Zaslavsky (2009, 2010) applied θ  to a one-side hypothesis 
based on a one-sample situation. Kawasaki and Miyaoka (2012) showed an exact 
expression for θ , and applied θ  to a one-side hypothesis based on a two-sample 
situation. 

There are some pending issues with the above-mentioned method. An 
approximate method and exact method of θ  were adopted only while using a 
conjugate prior. The drawback of the approximate method is that it occasionally 
leads to a rough result in a small sample. The drawback of the exact method is 
that it is slightly complicated. In addition, the exact method requires extensive 
computing time with a large sample size. Hence, a Markov Chain Monte Carlo 
(MCMC) method is proposed for θ  as a solution to these problems. 

Methodology 

Let 1X  and 2X  denote binomial random variables for 1n  and 2n  trials with 
parameters 1π  and 2π , respectively. The conjugate prior density for iπ  is a beta 
distribution with parameters iα  and iβ , where 0iα > , 0iβ > , and 1,2i = . The 
proposed posterior density for iπ  is 

 

 ( ) ( ) ( ) 111| 1 †,
B ,

ii
ba

i i i i i
i i

g X
a b

π π π −−= −   (1) 

 
where i i ia xα= + , i i i ib n x β= − + , and ( )B ,a b  is the proposed beta function. Let 

,†i postπ  denote the binomial proportion following the posterior density. 
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Approximate method for θ  

θ  can be calculated via an approximation using the standard normal table. 
Assume that ia  and ib  of the posterior density are large. It is necessary to 
determine a Z-test statistic. The expected difference in the posterior density and 
the variance in this difference can be expressed as: 
 
 ( )1, 2, 1, 2,E †,post post post postπ π µ µ− = −   (2) 

 ( ) ( ) ( )1, 1, 2, 2,
1, 2,

1 1 2 2

1 1
V †,

1 1
post post post post

post post a b a b
µ µ µ µ

π π
− −

− = +
+ + + +

  (3) 

 
where ( ), /i post i i ia a bµ = +  denotes the posterior mean of iπ . The gZ -test statistic, 
 

 
( ) ( )

( )
1, 2, 1, 2,

1, 2,

E
†,

V

post post post post
g

post post

Z
π π π π

π π

− − −
=

−
  (4) 

 
is approximately distributed as the standard normal distribution. Therefore, the 
approximate probability of θ  is given by 
 

 

( )

( )
( ) ( )

1 2 1 2

1, 2,

1, 1, 2, 2,

1 1 2 2

P | ,

1
1 1

1 1

post post

post post post post

X X

a b a b

θ π π

µ µ
Φ

µ µ µ µ

= >

 
 

− − 
≈ −  

− − 
+ + + + + 

  (5) 

 
where ( )Φ ⋅  is the cumulative distribution function (CDF) of the standard normal 
distribution. Thus, the approximate probability can easily be calculated. 

Exact method for θ  

Kawasaki and Miyaoka (2012) derived the exact expression for θ  using the 
posterior density. The exact expression for θ  is 
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( )

( )
( ) ( ) ( )

1 2 1 2

1 2 1
3 2 2 2 1 2 2 1 2 1

2 1 1 2 2

P | ,

B ,
† F ,1 , ;1 ,† ;1 ,

B , B ,

X X

a a b
a b a a a a a b

a a b a b

θ π π= >

+
= − + + + +

  (6) 

 
where 
 

 ( ) ( ) ( ) ( )
( ) ( )

1 2 3
3 2 1 2 3 1 2 1 2 3 1 2

0 1 2

1† F , , ; , ;1 ,††
!

t t t

t t t

k k k
k k k l l k k k l l

l l t

∞

=

= + + < +∑   (7) 

 
is the hypergeometric series, and ( )t

k  is the Pochhammer symbol. 

MCMC method for θ  

A computational procedure for θ  using the MCMC method is now 
introduced. The MCMC method is a means of sampling from a posterior density. 
A random-walk Metropolis-Hasting algorithm was used as the MCMC Method. 
Given that the samples come from two independent populations, the posterior 
joint distribution of 1π  and 2π  is a product of its marginal distributions. For this 
reason, one can obtain samples from the posterior distribution of 1 2π π−  by 
simulating k  values from the posterior distribution of 1π  and 2π  using MCMC 
procedure of SAS, e.g., 1 2

1, 1, 1,, , , k
post post postπ π π  and 1 2

2, 2, 2,, , , †k
post post postπ π π , 

respectively. Then, by computing 
1 1 2 2
1, 2, 1, 2, 1, 2,,† †, , †k k

post post post post post postπ π π π π π− − − , the simulated values from the 
posterior distribution of 1, 2,post postπ π−  are obtained. The posterior samples 
obtained by the MCMC method after the burn-in period are 1 2, , , kδ δ δ . Let 

1 2, , , k∆ ∆ ∆  be independent identically distributed random variables with 
distribution function F. The posterior samples is the observed value of 

1 2, , , k∆ ∆ ∆ . Note the fact that 1, 2,P( )post postθ π π= >  equals 

1, 2,P( 0)post postθ π π= − > . Thus, θ  can be expressed as, 
 

 
( )
( ) ( )

1 2 1 2

1 2 1 2

P | ,

P 0 , 1 0ˆ| Fk

X X

X X

θ π π

π π

= >

= − > ≈ −
  (8) 
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where 
 

 ( ) ( )k i
1

1F s I sˆ
k

ik
∆

=

= ≤∑   (9) 

 
and 
 
 ( )I s

1† †
0† †

i
i

i

if s
if s

∆ ≤ =  ∆ ≤
 ∆ >

  (10) 

 
is the empirical distribution function. 

Results 

Comparison of three methods 
Now the probabilities of the three methods for θ  are compared. The difference 
between the sample proportions (horizontal axis) were plotted against the 
difference between the probabilities of the MCMC and exact methods (vertical 
axis), as shown in Figures 1, 3, and 5. Similarly, the difference between the 
sample proportions (horizontal axis) were plotted against the difference between 
the probabilities of the approximate and exact methods (vertical axis), as shown in 
Figures 2, 4, and 6. In Figures 1, and 2 consider small sample sizes, i.e., 

1 2n n 5= = , 10, 15, and 20. Conversely, in Figures 3 and 4 consider large sample 
sizes, i.e., 1 2n n= =  60, 70, 80, and 90. Figures 5 and 6 consider groups of 
different sample sizes, that is, 1n 15= , 2n 5= ; 1n 15= , 2n 10= ; 1n 15= , 

2n 20= ; and 1n 15= , 2n 20= . The following were confirmed from the results. 
First, the relationship between the difference in the probabilities and the 

difference in the sample proportions is described. In Figure 1(d) and Figure 3(d), 
the probability of the MCMC method is more or less equal to that of the exact 
method when the difference between the sample proportions is 0.8. On the other 
hand, the difference between the probabilities of the MCMC and exact methods is 
around 0.01 when the difference between the sample proportions is 0.05. Overall, 
when the difference between the sample proportions is large, the probabilities of 
the MCMC and exact methods are roughly equal. In contrast, when the difference 
between the sample proportions is small, the probability of the MCMC method is 
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different from that of the exact method. This general pattern is similar for the 
difference in the probabilities of the approximation and exact methods. 

Next, the relationship between the sample size and the difference in the 
probabilities is described. In Figure 2(a), the difference between the probabilities 
of the approximate and exact methods is around 0.013 when the difference 
between the sample proportions is 0.2. For a slightly larger sample size (Figure 
2(d)), the difference between the probabilities of the approximate and exact 
methods is around 0.006 for the same difference between the sample proportions. 
In addition, there is virtually no difference between the probabilities of the 
approximate and exact methods when the sample size is further increased, as 
shown in Figure 4(d). Thus, the sample size influences the accuracy of the 
probability of the approximate method. It also shows the difference in the 
probabilities of the MCMC and exact methods. In Figure 1(a), the difference 
between the probabilities of the MCMC and exact methods is around 0.006 when 
the difference between the sample proportions is 0.2. For a slightly larger sample 
size (Figure 2(d)), the difference between the probabilities of the MCMC and 
exact methods is around 0.005 for the same difference between the sample 
proportions. Thus, the accuracy of the probability of the MCMC method always 
remains high even when the sample sizes are small. 

Finally, the difference between the probabilities when groups of different 
sample sizes are considered is investigated. In Figure 2(d), the difference between 
the probabilities of the approximate and exact methods is around 0.006 when the 
difference between the sample proportions is 0.2. On the other hand, in Figure 
6(d), the difference between the probabilities of the approximate and exact 
methods is around 0.012 for the same difference between the sample proportions. 
In both the cases, the total sample size ( 1 2n n+ ) is the same. However, the 
difference between the probabilities of the approximate and exact methods is 
slightly greater in the case of groups with different sample sizes. It is also shown 
the case of the MCMC method. In Figure 1(d), the difference between the 
probabilities of the MCMC and exact methods is around 0.005 when the 
difference between the sample proportions is 0.2. On the other hand, in Figure 
5(d), the difference between the probability of the MCMC and exact methods is 
around 0.005 for the same difference between the sample proportions. Therefore, 
the difference between the probabilities of the MCMC and exact methods is the 
same regardless of whether the sample sizes are equal or different. 
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Figure 1: Comparison of the Exact and MCMC Method when sample sizes are small. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is Beta(1,1). 
horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 2: Comparison of the Exact and Approximate method when sample sizes are 
small. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample proportions. 
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Figure 3: Comparison of the Exact and MCMC Method when sample sizes are large. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is Beta(1,1). 
horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 4: Comparison of the Exact and Approximate method when sample sizes are 
large. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample proportions. 
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Figure 5: Comparison of the Exact and MCMC Method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and MCMC method. Prior 
distribution is Beta(1,1). horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 6: Comparison of the Exact and Approximate method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and Approximation method. 
horizontal axis : Differences of two sample proportions. 



KAWASAKI, SHIMOKAWA & MIYAOKA 

265 
 

Example 

Next the utility of θ  is illustrated by applying it to the results of clinical trials. A 
non-informative prior was assumed. Table 1 lists the results of a double-blind, 
randomized, 41-center study that compares the efficacy of TJN-318 cream with 
that of Bifonazole (BFZ) cream in the treatment of patients suffering from 
cutaneous mycosis (TJN-318 Solution Study Group (1992)). The main purpose of 
this clinical trial was to show that TJN-318 cream is more effective than BFZ 
cream in the treatment of cutaneous mycosis. The primary end point of this 
clinical trial is a binary variable. In other words, the patient either recovers or 
does not recover. In short, the alternative hypothesis is 1 2π π> . In general, the 
frequentist approach can be adopted to verify the purpose of the clinical trial via 
the calculation of a p-value. The p-value was calculated using the Z-test statistic 
for the purpose of reference, 
 

 

( )

1 2

1 2

ˆ ˆ

ˆ 1 11 ˆ

Z

n n

π π

π π

−
=

 
− + 

 

  (11) 

 
where /ˆi i ix nπ =  and ( ) ( )1 2 1 2/ˆ x x n nπ = + + . The values of θ  are listed in the 
rightmost column of Table 1. Consequently, a non-informative prior was adopted, 
that is, 1i iα β= =  and 1,†2i = . Clearly, θ  increases when the p-value is low, 
and 1θ ≈  when the null hypothesis is rejected. Moreover, 1 †θ ≈ − p-value. 

Next, the results of a double-blind, randomized, phase-3 clinical trial that 
compares the efficacies of follitropin alpha (hereafter, the study drug) and human 
menopausal gonadotropin (hereafter, the control drug) in the treatment of patients 
suffering from no-ovulation-cycle syndrome (from the assessment report of 
PMDA (2009)) was employed. Table 2 lists the resulting ovulation rate, that is, 
the primary end point. The Z-test affords a p-value of 0.764, which suggests no 
significant differences. Using the non-informative prior, the approximate 
probability of θ  is obtained as 0.238, whereas the exact probability and the 
MCMC probability is obtained as 0.237. 
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Table 1: The result of primary end point in clinical trial for TJN-318 cream vs Bifonazole 
cream. 
 
    Outcome   θ   

Disease Name Drug Name Cure Non-Cure p-value Approximate Exact MCMC 

Tinea Pedis 
TJN-318  110 27 0.264 0.734 0.735 0.735 

BFZ 96 31     

Tine Corporis 
TJN-318  70 13 0.417 0.581 0.582 0.581 

BFZ 69 14     

Candidal Intertigo 
TJN-318  39 4 0.472 0.531 0.530 0.531 

BFZ 37 4     

Candidal Interdigital 
TJN-318  25 2 0.021 0.978 0.977 0.977 

BFZ 23 9     

Ptyriasis Versicolor 
TJN-318  59 2 0.236 0.749 0.756 0.757 

BFZ 46 3     
 
 
Table 2: The result of primary end point in clinical trial for follitropin alpha vs human 
menopausal gonadotropin. 
 
  Outcome    θ  

Drug Name Cure Non-cure Total Ovulation Ratio p-value Approximate Exact MCMC 

Study 102 27 129 79.1% 0.764 0.238 0.237 0.237 

Control 109 23 132 82.6%     
 

Conclusion 

Three methods for the index 1 2 1 2P( | ,† )X Xθ π π= >  were presented to determine 
the probability that the binomial proportion for a study drug is superior to that for 
a control drug. In particular, a new procedure was described based on the MCMC 
method. The probabilities of these three methods were compared to test the 
relative effectiveness of each. 

The expression for the exact method was presented, which includes a 
hypergeometric series. It is speculated that this series causes the decrease in 
calculation efficiency when the sample size is very large. In addition, 
hypergeometric series are not built into SAS, which is a statistical software 
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program frequently used in pharmaceutical development. Therefore, if SAS is 
used, a calculation program for hypergeometric series must be developed. 

It is easy to calculate the probability for using the approximation method. 
This is an advantage when the approximate probability is used. Conversely, when 
the difference in the sample proportions is small and the sample sizes are 
unbalanced, the accuracy the approximation method is poor. That is, the accuracy 
of the probability of the approximation method depends on the sample size.  

This study showed that the accuracy of the MCMC method was greater than 
that of the approximation method. Moreover, the probability of the MCMC 
method can be easily calculated using SAS. In addition, it is possible to use the 
non-conjugate prior for the prior distribution in the MCMC method. The authors 
consider this as one of the advantages of the MCMC method 
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