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Mixtures models have received sizeable attention from analysts in the recent years. Some 
work on Bayesian estimation of the parameters of mixture models have appeared. 
However, the were restricted to the Bayes point estimation The methodology for the 
Bayesian interval estimation of the parameters for said models is still to be explored. This 
paper proposes the posterior interval estimation (along with point estimation) for the 
parameters of a two-component mixture of the Gompertz distribution. The posterior 
predictive intervals are also derived and evaluated. Different informative and non-
informative priors are assumed under a couple of loss functions for the posterior analysis. 
A simulation study was carried out in order to make comparisons among different point 
and interval estimators. The applicability of the results is illustrated via a real life 
example. 
 
Keywords: Bayes estimators, loss functions, posterior distributions, censoring, 
mixture densities 
 

Introduction 

The Gompertz distribution is used to model survival times, human mortality and 
actuarial tables. It has many real life applications, especially in medical and 
actuarial studies. The Gompertz distribution is also used as a survival model in 
reliability. It has an increasing hazard rate for the life of the systems. Due to its 
complicated form it has not received enough attention in past.  However, recently, 
this distribution has received considerable attention from demographers and 
actuaries. Pollard and Valkovics (1992) were the first to deal with the Gompertz 
distribution thoroughly. However, their results are true only in cases where the 
initial level of mortality is very close to zero. Willemse and Koppelaar (2000) 
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reformulated the Gompertz force of mortality and derived relationships for this 
new formulation. Jaheen (2003) applied the Bayesian approach on record values 
from the Gompertz distribution. The simulation study was used for illustration of 
the results. Wu et al. (2003) derived the point and interval estimators for 
parameters of the Gompertz distribution under progressive type II censored 
samples. Wu et al. (2004) used the least square method to estimate the parameters 
of the Gompertz distribution. Wu et al. (2006) obtained the maximum likelihood 
estimators and the estimated expected test time for the two-parameter Gompertz 
distribution under progressive censoring with binomial removals. Khedhair and 
Gohary (2008) proposed the bivariate Gompertz distribution and completed the 
analysis for the mixture of components of proposed distribution. Saracoglu et al. 
(2009) compared the maximum likelihood, uniformly minimum variance 
unbiased, and Bayes estimators for the parameter of the Gompertz distribution. 
The numerical example was used for illustration. Ismail (2010) considered the 
Gompertz distribution as a lifetime model for applying the Bayesian approach to 
the estimation problem in the case of step stress partially accelerated life tests 
with two stress levels and type-I censoring. Ismail (2011) discussed the point and 
interval estimations of a two-parameter Gompertz distribution under partially 
accelerated life tests with Type-II censoring. Kiani et al. (2012) studied the 
performance of the Gompertz model with time-dependent covariate in the 
presence of right censored data. Moreover, the performance of the model was 
compared at different censoring proportions (CP) and sample sizes.  

The mixture models have received great interest from analysts in recent era. 
These models include finite and infinite numbers of components that can analyze 
different datasets. A finite mixture of probability distribution is suitable to study a 
population categorized in number of subpopulations. A population of lifetimes of 
certain electrical elements can be classified into a number of subpopulations 
based on causes of failures. The analysis of mixture models under Bayesian 
framework has developed a significant interest among statisticians. Authors 
dealing with the Bayesian analysis of mixture models include: Saleem and Aslam 
(2008), Saleem et al. (2010), Majeed and Aslam (2012) and Kazmi et al. (2012). 
These contributions are concerned with Bayes point estimation of the parameters.  
The interval estimation of the parameters of the mixture models under a Bayesian 
framework has not yet been discussed by any author. We considered point and 
interval estimation of the parameters for a two-component mixture of the 
Gompertz distribution. The population of certain items is assumed to be 
partitioned into two subpopulations. The randomly selected observations from 
said population are considered to be a part of one of the above mentioned 
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subpopulations. These subpopulations are assumed to follow the Gompertz 
distribution. Therefore, the two components mixture of the Gompertz distribution 
has been proposed to model this population. The observations have been assumed 
to be right censored. The inverse transformation technique of simulation under a 
probabilistic mixing has been used to generate data and to evaluate the 
performance of different estimators. 

The Population and the Model 

A density function for the mixture of two component densities with mixing 
weights (p,q) is 
 
 ( ) ( ) ( )1 2 ,0 1f x pf x qf x p= + < <   (1) 
 
The following Gompertz distribution is considered for both mixture densities: 
 

 ( ) ( )1
; , 0, 0

xi
i ix e

i i i i if x e xα
α α α

− −
= > >   (2) 

 
with the cumulative distribution function as 
 

 ( ) ( )1
; 1

xi
i e

i iF x e α
α

− −
= −   (3) 

 
The cumulative distribution function for the mixture model is 
 
 ( ) ( ) ( )1 2F x pF x qF x= +   (4) 
 

Suppose n items are put on a life testing experiment and w units failed until 
time T, while n – w units are still working. Now based on causes of failure, the 
failed items are assumed to come either from subpopulation 1 or from 
subpopulation 2. Therefore it can be observed that w1 and w2 failed items come 
from the first and second subpopulation respectively, where w = w1 + w2. The 
remaining n – w items are assumed to be censored observations. The likelihood 
function for above type I censored data can be obtained as 
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( ) ( ){ } ( ){ }

( )

1 2

1 2 1 1 2 2
1 1

, ,

1

w w

j j
j j

n w

L p x pf x pf x

F t

α α
= =

−

∝

 × − 

∏ ∏
  (5) 

 
After simplifications the likelihood function becomes 
 

 
( )

( ) ( )

1 2 2

1 1 2 22

1 2 1 2
0

, ,

k k

n w
w w n k w

k

x xw k

L p x p
n w

k

q e eα ξ α ξ

α α α α
−

− −

=

− −+

∝  
− 

 
 

×

∑
  (6) 

 
where 
 

 ( ) ( ) ( )( )
1

1
1

1
1 1j

w
x t

k
j

x e n w k eξ
=

= − + − − −∑   

 
and 
 

 ( ) ( ) ( )
2

2
2

1
1 1j

w
x t

k
j

x e k eξ
=

= − + −∑   

 

The Posterior Distributions under Different Priors 
The main difference between the Bayesian and classical inference is the use of 
prior information under the Bayesian framework. However, in cases where the 
sufficient prior information regarding the parameter is not available, the use of 
non-informative priors becomes mandatory. An important non-informative prior, 
proposed by Laplace (1812), is a uniform prior. It has been applied to many 
problems, and often the results are entirely satisfactory. Here, this prior has been 
used for the posterior estimation. 

Let ( )1 1Uniform  0, ,α α∈ ∀ ∈ ∞ ( )2 2Uniform  0, ,α α∈ ∀ ∈ ∞ and 

( )0,1p U∼ . Assuming independence, these priors result into a joint prior that is 
proportional to a constant. That joint prior has been used to derive the joint 
posterior distribution of 1 2,  and .pα α  The marginal distribution for each 
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parameter can be obtained by integrating the joint posterior distribution with 
respect to nuisance parameters. The joint posterior distribution is 
 

 
( )

( ) ( )

( ) ( )
( ){ }

( )
( ){ }

1 1 2 21 2 2 2

1 2

1 2
0

1 2
1 2

1 2 1 1
0 1 2

1 2

, , ,
1 1

,

, 0

k k
n w

x xw w n k w w k

k

n w

k k w w
k k k

p q e e
n w

k
p p x

w w
B

n w x x
k

a a

α ξ α ξα α

α α
ψ ψ

ξ ξ

−
− −− − +

=

−

+ +
=

 
− 

 
 =

Γ + Γ +
 

− 
 
 

>

∑

∑   (7) 

 
where 1 2 1k n k wψ = − − +  , 2 2 1k w kψ = + +  and ( )1 2,k kB ψ ψ  is standard beta 
function. 

Another non-informative prior has been suggested by Jeffreys (1961), and is 
frequently used in situations where one does not have much information about the 
parameters. This prior is defined as 
 

 ( ) ( ){ }
1
2p Iα α∝   

 
where ( )i i if x α  have been defined in (2) and ( )0,1p U∼ . Assuming 

independence, the joint prior is obtained as 
 

 ( )1 2 1 2
1 2

1, , , , 0h p a aα α
α α

∝ >   (8) 

 
The joint posterior distribution using the above prior is 
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The utilization of informative prior is of much importance under Bayesian 

inference. The results under informative priors are often better than non-
informative priors. The gamma, chi square and exponential priors have been 
assumed for the posterior analysis in the current study. The combined priors have 
been obtained by assuming the independence. 

Let ( )1 1 1: Gamma ,α σ τ  , ( )2 2 2 Gamma ,α σ τ  and ( ) Uniform 0,1p  . 
Under the assumption of independence, the joint prior becomes 
 
 ( ) ( )1 1 2 21 21 1

1 2 1 2 1 2, , , , 0h p e a aα τ α τσ σα α α α − +− −∝ >   (10) 
 
The posterior distribution under the assumption of above prior is 
 

 ( )

( ){ } ( ){ }

( ) ( )
( ){ }

( )
( ){ }

1 1 1 2 2 21 1 2 2 2 2

1 1 2 2

1 1
1 2

0

1 2
1 1 2 2

1 2
0 1 1 2 2

1 2

, , ,
,

, 0

k k
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x xw w n k w w k

k
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k k w w
k k k

p q e e
n w
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w w
B

n w x x
k

a a

α ξ τ α ξ τσ σ

σ σ

α α

α α
σ σ

ψ ψ
ξ τ ξ τ

−
− + − ++ − + − − − +

=

−

+ +
=

 
− 

 
 =

Γ + Γ +
 

−  + +
 
 

>

∑

∑
 (11) 

 
Again, suppose ( )1 1 Chi Squareα ν , ( )2 2 Chi Squareα ν  and

( ) Uniform 0,1p  . Assuming independence, the joint prior becomes 
 

 ( )
( )1 21 21 1

2 2 2
1 2 1 2 1 2, , , , 0h p e a a

α αν ν

α α α α
+

− − −
∝ >  (12) 

 
The posterior distribution under the assumption of the prior given in (12) is 
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=
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=
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− 

 
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Γ + Γ +
 

−  + +
 
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>

∑

∑
  (13) 

 
Further, consider ( )1 1 Exponentialα ϕ , ( )2 2 Exponentialα ϕ  and

( ) Uniform 0,1p  . Under the assumption of independence, the joint prior 
becomes 
 
 ( ) ( )1 1 2 2

1 2 1 2, , , , 0h p e a aα ϕ α ϕα α − +∝ >   (14) 
 
The posterior distribution under the assumption of above prior is 
 

 ( )

( ){ } ( ){ }

( ) ( )
( ){ }

( )
( ){ }

1 1 1 2 2 21 2 2 2

1 2

1 2
0

1 2
1 2

1 2 1 1
0 1 1 2 2

1 2

, , ,
1 1

,

, 0

k k
n w

x xw w n k w w k

k

n w

k k w w
k k k

p q e e
n w

k
p p x

w w
B

n w x x
k

a a

α ξ ϕ α ξ ϕα α

α α
ψ ψ

ξ ϕ ξ ϕ

−
− + − +− − +

=

−

+ +
=

 
− 

 
 =

Γ + Γ +
 

−  + +
 
 

>

∑

∑
  (15) 

 

Bayes Estimators and Posterior Risks 
The Bayes estimators and associated posterior risks have been derived under the 
squared error loss function (SELF) and precautionary loss function (PLF). The 
respective expressions have been presented in the following. 

Bayes estimator and posterior risk for α1, α2 and p under uniform prior using 
SELF are: 
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B
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−
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ξ
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+ +

−
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=

Γ + +

Γ + Γ +
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 

∑

  

 
where, ( ).

PLF
B E  and ( ){ }.

PLF
B Eρ are the Bayes estimator and the posterior risk 

under PLF. The Bayes estimates and corresponding risks under other priors can 
be derived in the similar manner. 

Credible intervals 

The credible interval is defined as: Let ( )xg α  be the posterior distribution then 

a ( )100 1 %k−  credible interval in any set C is such that ( ) ( )x 1gP C kα = − . 

According to Eberly and Casella (2003) the credible interval can also be defined 

as: ( )
0 2

x
L kg dα α =∫ , ( )x

2U

kg dα α
∞

=∫  where L and U are the lower and upper 

limits of the credible interval respectively and k is level of significance. 
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The ( )100 1 %k− credible intervals for α1, α2 and p under uniform prior can 
be obtained by solving the following two equations. 
 

( ) ( )( ) ( )( )
( ){ } ( ){ }

( ) ( ) ( )
( ){ } ( ){ }

1 2

1 2
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1 2 1 1
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ξ ξ
ψ ψ

ξ ξ

ψ ψ
ξ ξ

−

+ +
=

−

+ +
=

Γ + Γ +− 
 
 

= −
− Γ + Γ + 

 
 

∑

∑
 

 

( ) ( )( ) ( )( )
( ){ } ( ){ }

( ) ( ) ( )
( ){ } ( ){ }

1 2

1 2

1 1 2 2
1 2 1 1

0 1 2

1 2
1 2 1 1

0 1 2

1, 1,
, ,

1 1 2
,

n w
k kh

k k w w
k k k

n w

k k w w
k k k

w iU x w jU xn w
B U

k x x k
n w w w

B
k x x

ξ ξ
ψ ψ

ξ ξ

ψ ψ
ξ ξ

−

+ +
=

−

+ +
=

Γ + Γ +− 
 
 

=
− Γ + Γ + 

 
 

∑

∑
 

 
where h, i, j = 0.1, ( ),x yΓ  is incomplete gamma function, ( ), ,B x y z  is 
incomplete beta function and ( ),L U  define the limits of the credible intervals. 
Now, the credible interval for α1, α2 and p can be derived by putting 

0, 1, 0,h i j= = =  0, 0, 1,h i j= = =  and 1, 0, 0h i j= = = , respectively, in the 
above equations. It should be noted that ( ) ( ),0x xΓ = Γ  and ( ) ( )1, , ,B y z B y z= . 
It can be observed that the explicit solution of the limits for the credible intervals 
cannot be obtained. The numerical methods have been used to find the 
approximate solution of the limits. 

Posterior Predictive Distributions and Intervals 
The posterior predictive distribution is used to make predictions of future 
observations, based on the inferences drawn from the data at hand. Posterior 
predictive distribution can be simply obtained by the product of the posterior 
distribution and (conditional) independence (given the parameters) of the new 
observation from the current sample. It can be defined as 
 

 
( )

( )

1

1 2
0 0 0

1 2 1 2

( , , )

; , ,

x xg y p p

f y p dpd d

α α

α α α α

∞ ∞

=

×

∫ ∫ ∫   (16) 
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where y = xn+1 is the future observation given the sample information x = x1, x2, ..., 
xn, from the model (7). The posterior predictive distribution using (7) and (16) can 
be obtained as 
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The posterior predictive interval can be obtained by solving the following two 
equations 
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2
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=∫  

 
The simplification of the above equations leads to the following equations 
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As the limits of the posterior predictive interval cannot be derived explicitly, the 
numerical solutions of the limits have been obtained by iterative methods. 
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Prior Elicitation 

The elicitation is a technique to formulate an expert’s knowledge or belief about a 
certain quantity into a joint probability distribution. In the case of Bayesian 
analysis, it can be considered as a method to specify the values of hyper-
parameters in a prior distribution for one or more parameters of the sampling 
distribution.  

Much of the literature on elicitation has been concerned with formulating a 
probability distribution for unsure quantities when there is no data with which to 
supplement the knowledge expressed in that distribution. This process facilitates 
decision-making, where uncertainty about certain phenomena needs to be 
described in terms of a probability distribution in order to derive the posterior 
distributions. 

To achieve accurate elicitation is a difficult task, even if we are interested in 
elicitation of a single event. In such a situation, a single probability is needed, but 
the expert may not be familiar with the concept of probabilities. Even when the 
expert is familiar with the concept of probabilities, it is by no means 
straightforward to evaluate a probability value for an event exactly. In such cases, 
elicitation encourages the expert and the facilitator to consider the meaning of the 
parameters being elicited. This has two helpful consequences. First, it brings the 
analysis closer to the application by demanding attention to what is being 
modeled, and what is reasonable to believe about it. Second, it helps to make the 
posterior distributions, once calculated, into meaningful quantities. Many methods 
of elicitation have been discussed in the literature; among those, the method 
suggested by Aslam (2003) has been used to elicit the prior distribution in the 
recent study. This method requires the derivation of prior predictive distribution 
for elicitation. The prior predictive distribution can be defined as 
 

 ( ) ( )
1

1 2 1 2 1 2
0 0 0

( , , ) , ,g y h p f y p dpd dα α α α α α
∞ ∞

= ∫ ∫ ∫   (18) 

 
where 1 2( , , )h pα α and ( )1 2, ,f y pα α are prior distribution and mixture Gompertz 

model respectively. 
According to (18), the prior predictive distribution under gamma prior is 
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In order to elicit the four hyper-parameters, the following four integrals have been 
considered. The expert’s probabilities have been assumed to be 0.15 for each 
integral: 
 

, ,  and . 
 
A program has been developed in SAS package using the “PROC SYSLIN” 
command to solve the above integrals simultaneously. The set of hyper-
parameters with minimum values has been chosen to be the elicited values of the 
hyper-parameters. These elicited values of the hyper-parameters have been found 
to be ( ) ( )1 1 2 2, , , 0.000233,0.190642,0.000101,0.189112σ τ σ τ =  . The prior 
predictive distribution under chi square prior, given in (12), has been derived as 
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Using the similar program mentioned above, the elicited values of the hyper-
parameters are ( ) ( )1 2, 1.226759,1.064564v v = . 

The prior predictive distribution under chi square prior, given in (14), has 
been presented as 
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  (20) 

 
The elicited values of the hyper-parameters in the above prior predictive 
distribution are ( ) ( )1 2, 0.232768,0.322483ϕ ϕ = . 
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Results and Discussion 

A simulation study has been conducted to assess and compare the performance of 
Bayes estimators and to analyze the impact of sample size, mixing weight and 
magnitude of parametric values on the Bayes estimators. Samples of sizes n = 50, 
100, 200, 300, 400 and 500 have been generated by inverse transformation 
method from a two components mixture of the Gompertz distribution. The 
parametric values used are: ( ) ( ) ( ){ }1 2, 4,6 , 8,12α α ∈  and ( )0.45,0.60p∈ . 

Probabilistic mixing has been used to generate the mixture data. For each 
observation a random number u has been generated from ( )0,1U . If u p<  the 
observation has been randomly taken from first subpopulation and if u p>  then 
the observation has been taken from the second subpopulation. The observations 
above a fixed censoring time T have been assumed to be right censored. Under 
each combination of parametric values, the choice of censoring time has been 
made so that the censoring rate in the respective sample is 15%. As one sample 
cannot completely describe the behavior and properties of the Bayes estimators, 
the results have been replicated 1000 times and the average of results has been 
presented in the tables below (the amounts of posterior risks are presented in 
parenthesis). The abbreviations used in tables are; B.Es: Bayes estimates; P.Rs: 
posterior risks; LL: lower limit and UL: upper limit. 
 
 
Table 1. B.Es and P.Rs under Uniform Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.5131  4.5363  4.3991  4.4217  6.7921  6.8271  6.7307  6.7653  0.5190  0.5217  0.6709  0.6743  

(0.2039) (0.0464) (0.1987) (0.0452) (0.3068) (0.0698) (0.3040) (0.0692) (0.0612) (0.0139) (0.0845) (0.0192) 

100 
4.4795  4.4908  4.3664  4.3775  6.7416  6.7587  6.6806  6.6975  0.5151  0.5164  0.6659  0.6676  

(0.0989) (0.0227) (0.0964) (0.0221) (0.1488) (0.0342) (0.1475) (0.0339) (0.0297) (0.0068) (0.0410) (0.0094) 

200 
4.3936  4.3991  4.2827  4.2881  6.6124  6.6207  6.5525  6.5608  0.5053  0.5059  0.6531  0.6539  

(0.0472) (0.0111) (0.0460) (0.0108) (0.0710) (0.0166) (0.0704) (0.0165) (0.0142) (0.0033) (0.0196) (0.0046) 

300 
4.2706  4.2742  4.1628  4.1663  6.4273  6.4327  6.3691  6.3744  0.4911  0.4915  0.6348  0.6354  

(0.0297) (0.0072) (0.0289) (0.0070) (0.0446) (0.0108) (0.0442) (0.0107) (0.0089) (0.0021) (0.0123) (0.0030) 

400 
4.1707  4.1734  4.0655  4.0680  6.2770  6.2809  6.2202  6.2241  0.4796  0.4799  0.6200  0.6204  

(0.0212) (0.0052) (0.0207) (0.0051) (0.0319) (0.0079) (0.0316) (0.0078) (0.0064) (0.0016) (0.0088) (0.0022) 

500 
4.1428  4.1449  4.0383  4.0403  6.2350  6.2381  6.1785  6.1816  0.4764  0.4767  0.6158  0.6161  

(0.0167) (0.0042) (0.0163) (0.0040) (0.0252) (0.0063) (0.0249) (0.0062) (0.0050) (0.0012) (0.0069) (0.0017) 
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Table 2. B.Es and P.Rs under Uniform Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.8508 8.8963 8.8947 8.9404 13.3205 13.3890 13.4754 13.5447 0.5311 0.5338 0.7027 0.7063 

(0.3998) (0.0910) (0.3563) (0.0811) (0.6017) (0.1370) (0.6769) (0.1541) (0.0760) (0.0173) (0.0994) (0.0226) 

100 
8.7850 8.8072 8.8284 8.8508 13.2214 13.2549 13.3751 13.4090 0.5271 0.5284 0.6974 0.6992 

(0.1939) (0.0445) (0.1728) (0.0397) (0.2919) (0.0670) (0.3283) (0.0754) (0.0368) (0.0085) (0.0482) (0.0111) 

200 
8.6166 8.6274 8.6592 8.6701 12.9679 12.9842 13.1187 13.1352 0.5170 0.5176 0.6841 0.6849 

(0.0926) (0.0217) (0.0825) (0.0193) (0.1393) (0.0326) (0.1567) (0.0367) (0.0176) (0.0041) (0.0230) (0.0054) 

300 
8.3754 8.3824 8.4168 8.4239 12.6050 12.6155 12.7515 12.7622 0.5025 0.5029 0.6649 0.6655 

(0.0582) (0.0140) (0.0518) (0.0125) (0.0875) (0.0211) (0.0985) (0.0237) (0.0111) (0.0027) (0.0145) (0.0035) 

400 
8.1795 8.1847 8.2200 8.2252 12.3102 12.3179 12.4533 12.4611 0.4908 0.4911 0.6494 0.6498 

(0.0416) (0.0103) (0.0370) (0.0091) (0.0625) (0.0154) (0.0704) (0.0174) (0.0079) (0.0019) (0.0103) (0.0026) 

500 
8.1248 8.1289 8.1650 8.1691 12.2278 12.2339 12.3700 12.3762 0.4875 0.4877 0.6450 0.6454 

(0.0328) (0.0081) (0.0292) (0.0073) (0.0493) (0.0123) (0.0555) (0.0138) (0.0062) (0.0015) (0.0081) (0.0020) 

                      
 
 
Table 3. B.Es and P.Rs under Jeffreys Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4679 4.4909 4.3551 4.3775 6.7242 6.7588 6.6634 6.6976 0.5138 0.5165 0.6642 0.6676 

(0.2018) (0.0459) (0.1967) (0.0448) (0.3037) (0.0691) (0.3010) (0.0685) (0.0550) (0.0125) (0.0760) (0.0173) 

100 
4.4347 4.4459 4.3227 4.3337 6.6742 6.6911 6.6138 6.6305 0.5100 0.5113 0.6592 0.6609 

(0.0979) (0.0225) (0.0954) (0.0219) (0.1473) (0.0338) (0.1460) (0.0335) (0.0267) (0.0061) (0.0369) (0.0085) 

200 
4.3497 4.3551 4.2399 4.2452 6.5462 6.5545 6.4870 6.4951 0.5002 0.5008 0.6466 0.6474 

(0.0467) (0.0109) (0.0456) (0.0107) (0.0703) (0.0165) (0.0697) (0.0163) (0.0127) (0.0030) (0.0176) (0.0041) 

300 
4.2279 4.2314 4.1212 4.1246 6.3630 6.3683 6.3054 6.3107 0.4862 0.4866 0.6285 0.6290 

(0.0294) (0.0071) (0.0286) (0.0069) (0.0442) (0.0107) (0.0438) (0.0106) (0.0080) (0.0019) (0.0111) (0.0027) 

400 
4.1290 4.1316 4.0248 4.0273 6.2142 6.2181 6.1580 6.1618 0.4748 0.4751 0.6138 0.6142 

(0.0210) (0.0052) (0.0204) (0.0050) (0.0316) (0.0078) (0.0313) (0.0077) (0.0057) (0.0014) (0.0079) (0.0020) 

500 
4.1014 4.1035 3.9979 3.9999 6.1726 6.1757 6.1167 6.1198 0.4717 0.4719 0.6097 0.6100 

(0.0165) (0.0041) (0.0161) (0.0040) (0.0249) (0.0062) (0.0247) (0.0061) (0.0045) (0.0011) (0.0062) (0.0015) 
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Table 4. B.Es and P.Rs under Jeffreys Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.7623 8.8074 8.8057 8.8510 13.1873 13.2551 13.3406 13.4092 0.5257 0.5284 0.6957 0.6992 

(0.3958) (0.0901) (0.3527) (0.0803) (0.5957) (0.1356) (0.6701) (0.1525) (0.0684) (0.0156) (0.0895) (0.0204) 

100 
8.6971 8.7191 8.7402 8.7623 13.0891 13.1223 13.2413 13.2749 0.5218 0.5231 0.6905 0.6922 

(0.1920) (0.0441) (0.1711) (0.0393) (0.2890) (0.0664) (0.3251) (0.0747) (0.0332) (0.0076) (0.0434) (0.0100) 

200 
8.5304 8.5411 8.5726 8.5834 12.8382 12.8544 12.9875 13.0039 0.5118 0.5125 0.6772 0.6781 

(0.0917) (0.0215) (0.0817) (0.0191) (0.1379) (0.0323) (0.1552) (0.0364) (0.0158) (0.0037) (0.0207) (0.0049) 

300 
8.2916 8.2986 8.3327 8.3397 12.4789 12.4893 12.6240 12.6346 0.4975 0.4979 0.6583 0.6588 

(0.0576) (0.0139) (0.0513) (0.0124) (0.0867) (0.0209) (0.0975) (0.0235) (0.0099) (0.0024) (0.0130) (0.0031) 

400 
8.0977 8.1028 8.1378 8.1429 12.1871 12.1947 12.3288 12.3365 0.4859 0.4862 0.6429 0.6433 

(0.0411) (0.0102) (0.0367) (0.0091) (0.0619) (0.0153) (0.0697) (0.0172) (0.0071) (0.0018) (0.0093) (0.0023) 

500 
8.0435 8.0476 8.0834 8.0874 12.1055 12.1116 12.2463 12.2524 0.4826 0.4829 0.6386 0.6389 

(0.0324) (0.0081) (0.0289) (0.0072) (0.0488) (0.0121) (0.0549) (0.0137) (0.0056) (0.0014) (0.0073) (0.0018) 

                      
 
 
Table 5. B.Es and P.Rs under Gamma Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.3777 4.4002 4.2672 4.2891 6.5884 6.6222 6.5287 6.5623 0.5034 0.5060 0.6507 0.6541 

(0.1835) (0.0418) (0.1788) (0.0407) (0.2761) (0.0629) (0.2736) (0.0623) (0.0428) (0.0097) (0.0591) (0.0135) 

100 
4.3451 4.3561 4.2354 4.2461 6.5393 6.5559 6.4801 6.4966 0.4997 0.5009 0.6459 0.6475 

(0.0890) (0.0204) (0.0868) (0.0199) (0.1339) (0.0308) (0.1327) (0.0305) (0.0208) (0.0048) (0.0287) (0.0066) 

200 
4.2618 4.2671 4.1542 4.1594 6.4140 6.4221 6.3559 6.3639 0.4901 0.4907 0.6335 0.6343 

(0.0425) (0.0100) (0.0414) (0.0097) (0.0639) (0.0150) (0.0634) (0.0148) (0.0099) (0.0023) (0.0137) (0.0032) 

300 
4.1425 4.1460 4.0379 4.0413 6.2345 6.2397 6.1780 6.1832 0.4764 0.4768 0.6158 0.6163 

(0.0267) (0.0064) (0.0260) (0.0063) (0.0402) (0.0097) (0.0398) (0.0096) (0.0062) (0.0015) (0.0086) (0.0021) 

400 
4.0456 4.0482 3.9435 3.9460 6.0887 6.0925 6.0336 6.0373 0.4652 0.4655 0.6014 0.6018 

(0.0191) (0.0047) (0.0186) (0.0046) (0.0287) (0.0071) (0.0284) (0.0070) (0.0044) (0.0011) (0.0061) (0.0015) 

500 
4.0185 4.0206 3.9171 3.9191 6.0479 6.0509 5.9932 5.9962 0.4621 0.4624 0.5974 0.5977 

(0.0150) (0.0037) (0.0147) (0.0036) (0.0226) (0.0056) (0.0224) (0.0056) (0.0035) (0.0009) (0.0048) (0.0012) 
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Table 6. B.Es and P.Rs under Gamma Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.5853 8.6295 8.6278 8.6722 12.9209 12.9873 13.0711 13.1383 0.5151 0.5178 0.6816 0.6851 

(0.3598) (0.0819) (0.3206) (0.0730) (0.5415) (0.1233) (0.6092) (0.1387) (0.0532) (0.0121) (0.0696) (0.0158) 

100 
8.5214 8.5430 8.5636 8.5853 12.8247 12.8572 12.9738 13.0067 0.5113 0.5126 0.6765 0.6782 

(0.1745) (0.0401) (0.1555) (0.0357) (0.2627) (0.0603) (0.2955) (0.0679) (0.0258) (0.0059) (0.0338) (0.0078) 

200 
8.3581 8.3686 8.3994 8.4100 12.5789 12.5947 12.7251 12.7412 0.5015 0.5021 0.6636 0.6644 

(0.0833) (0.0195) (0.0742) (0.0174) (0.1254) (0.0294) (0.1411) (0.0331) (0.0123) (0.0029) (0.0161) (0.0038) 

300 
8.1241 8.1309 8.1643 8.1712 12.2268 12.2370 12.3690 12.3793 0.4874 0.4879 0.6450 0.6455 

(0.0524) (0.0126) (0.0466) (0.0112) (0.0788) (0.0190) (0.0886) (0.0214) (0.0077) (0.0019) (0.0101) (0.0024) 

400 
7.9341 7.9391 7.9734 7.9784 11.9409 11.9484 12.0797 12.0873 0.4760 0.4763 0.6299 0.6303 

(0.0374) (0.0092) (0.0333) (0.0082) (0.0563) (0.0139) (0.0633) (0.0156) (0.0055) (0.0014) (0.0072) (0.0018) 

500 
7.8810 7.8850 7.9201 7.9240 11.8610 11.8669 11.9989 12.0049 0.4729 0.4731 0.6257 0.6260 

(0.0295) (0.0073) (0.0263) (0.0065) (0.0444) (0.0110) (0.0499) (0.0124) (0.0044) (0.0011) (0.0057) (0.0014) 

                      
 
 
Table 7. B.Es and P.Rs under Chi Square Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4228 4.4455 4.3111 4.3333 6.6563 6.6905 6.5961 6.6300 0.5086 0.5112 0.6574 0.6608 

(0.1876) (0.0427) (0.1828) (0.0416) (0.2823) (0.0643) (0.2797) (0.0637) (0.0489) (0.0111) (0.0676) (0.0154) 

100 
4.3899 4.4010 4.2791 4.2899 6.6067 6.6235 6.5470 6.5635 0.5048 0.5061 0.6526 0.6542 

(0.0910) (0.0209) (0.0887) (0.0204) (0.1369) (0.0314) (0.1357) (0.0312) (0.0237) (0.0055) (0.0328) (0.0075) 

200 
4.3057 4.3111 4.1970 4.2023 6.4801 6.4883 6.4215 6.4295 0.4952 0.4958 0.6400 0.6409 

(0.0434) (0.0102) (0.0423) (0.0099) (0.0654) (0.0153) (0.0648) (0.0152) (0.0113) (0.0027) (0.0156) (0.0037) 

300 
4.1852 4.1887 4.0796 4.0830 6.2987 6.3040 6.2417 6.2469 0.4813 0.4817 0.6221 0.6227 

(0.0273) (0.0066) (0.0266) (0.0064) (0.0411) (0.0099) (0.0407) (0.0098) (0.0071) (0.0017) (0.0098) (0.0024) 

400 
4.0873 4.0899 3.9842 3.9867 6.1514 6.1553 6.0958 6.0996 0.4700 0.4703 0.6076 0.6080 

(0.0195) (0.0048) (0.0190) (0.0047) (0.0293) (0.0072) (0.0291) (0.0072) (0.0051) (0.0013) (0.0070) (0.0017) 

500 
4.0600 4.0620 3.9575 3.9595 6.1103 6.1133 6.0550 6.0580 0.4669 0.4671 0.6035 0.6038 

(0.0154) (0.0038) (0.0150) (0.0037) (0.0231) (0.0058) (0.0229) (0.0057) (0.0040) (0.0010) (0.0055) (0.0014) 
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Table 8. B.Es and P.Rs under Chi Square Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.6738 8.7184 8.7168 8.7616 13.0541 13.1212 13.2059 13.2738 0.5204 0.5231 0.6886 0.6922 

(0.3678) (0.0837) (0.3278) (0.0746) (0.5536) (0.1260) (0.6227) (0.1418) (0.0608) (0.0138) (0.0795) (0.0181) 

100 
8.6093 8.6311 8.6519 8.6738 12.9569 12.9898 13.1076 13.1408 0.5166 0.5179 0.6835 0.6852 

(0.1784) (0.0410) (0.1590) (0.0365) (0.2685) (0.0617) (0.3021) (0.0694) (0.0295) (0.0068) (0.0386) (0.0089) 

200 
8.4442 8.4549 8.4860 8.4967 12.7086 12.7246 12.8563 12.8725 0.5067 0.5073 0.6704 0.6712 

(0.0852) (0.0200) (0.0759) (0.0178) (0.1282) (0.0300) (0.1442) (0.0338) (0.0141) (0.0033) (0.0184) (0.0043) 

300 
8.2079 8.2147 8.2485 8.2554 12.3529 12.3632 12.4965 12.5070 0.4925 0.4929 0.6516 0.6522 

(0.0535) (0.0129) (0.0477) (0.0115) (0.0805) (0.0194) (0.0906) (0.0218) (0.0088) (0.0021) (0.0116) (0.0028) 

400 
8.0159 8.0210 8.0556 8.0607 12.0640 12.0715 12.2043 12.2119 0.4810 0.4813 0.6364 0.6368 

(0.0382) (0.0094) (0.0341) (0.0084) (0.0575) (0.0142) (0.0647) (0.0160) (0.0063) (0.0016) (0.0083) (0.0020) 

500 
7.9623 7.9663 8.0017 8.0057 11.9832 11.9892 12.1226 12.1287 0.4777 0.4780 0.6321 0.6325 

(0.0302) (0.0075) (0.0269) (0.0067) (0.0454) (0.0113) (0.0511) (0.0127) (0.0050) (0.0012) (0.0065) (0.0016) 

                      
 
 
Table 9. B.Es and P.Rs under Exponential Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4724 4.4954 4.3595 4.3820 6.7310 6.7656 6.6701 6.7044 0.5143 0.5170 0.6648 0.6682 

(0.1939) (0.0441) (0.1890) (0.0430) (0.2918) (0.0664) (0.2891) (0.0658) (0.0520) (0.0118) (0.0719) (0.0164) 

100 
4.4391 4.4504 4.3271 4.3381 6.6809 6.6978 6.6204 6.6372 0.5105 0.5118 0.6599 0.6616 

(0.0940) (0.0216) (0.0917) (0.0211) (0.1415) (0.0325) (0.1403) (0.0322) (0.0252) (0.0058) (0.0349) (0.0080) 

200 
4.3540 4.3595 4.2441 4.2495 6.5528 6.5611 6.4935 6.5017 0.5007 0.5013 0.6472 0.6480 

(0.0449) (0.0105) (0.0438) (0.0103) (0.0676) (0.0158) (0.0670) (0.0157) (0.0121) (0.0028) (0.0166) (0.0039) 

300 
4.2322 4.2357 4.1253 4.1288 6.3694 6.3748 6.3118 6.3171 0.4867 0.4871 0.6291 0.6296 

(0.0282) (0.0068) (0.0275) (0.0066) (0.0425) (0.0102) (0.0421) (0.0101) (0.0076) (0.0018) (0.0105) (0.0025) 

400 
4.1332 4.1358 4.0289 4.0314 6.2205 6.2244 6.1642 6.1680 0.4753 0.4756 0.6144 0.6148 

(0.0202) (0.0050) (0.0196) (0.0048) (0.0303) (0.0075) (0.0301) (0.0074) (0.0054) (0.0013) (0.0075) (0.0018) 

500 
4.1055 4.1076 4.0019 4.0039 6.1788 6.1819 6.1229 6.1260 0.4721 0.4724 0.6103 0.6106 

(0.0159) (0.0040) (0.0155) (0.0039) (0.0239) (0.0059) (0.0237) (0.0059) (0.0043) (0.0011) (0.0059) (0.0015) 
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Table 10. B.Es and P.Rs under Exponential Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.7712 8.8163 8.8146 8.8599 13.2006 13.2685 13.3541 13.4228 0.5263 0.5290 0.6964 0.6999 

(0.3802) (0.0866) (0.3388) (0.0771) (0.5722) (0.1303) (0.6437) (0.1465) (0.0646) (0.0147) (0.0846) (0.0193) 

100 
8.7059 8.7280 8.7490 8.7712 13.1024 13.1356 13.2547 13.2883 0.5224 0.5237 0.6912 0.6929 

(0.1844) (0.0424) (0.1643) (0.0377) (0.2776) (0.0637) (0.3123) (0.0717) (0.0314) (0.0072) (0.0410) (0.0094) 

200 
8.5390 8.5498 8.5813 8.5921 12.8512 12.8674 13.0006 13.0170 0.5123 0.5130 0.6779 0.6788 

(0.0880) (0.0206) (0.0785) (0.0184) (0.1325) (0.0310) (0.1491) (0.0349) (0.0150) (0.0035) (0.0196) (0.0046) 

300 
8.3000 8.3070 8.3411 8.3481 12.4915 12.5020 12.6368 12.6473 0.4980 0.4984 0.6589 0.6595 

(0.0553) (0.0133) (0.0493) (0.0119) (0.0833) (0.0201) (0.0937) (0.0226) (0.0094) (0.0023) (0.0123) (0.0030) 

400 
8.1059 8.1110 8.1460 8.1511 12.1994 12.2070 12.3412 12.3490 0.4864 0.4867 0.6435 0.6439 

(0.0395) (0.0098) (0.0352) (0.0087) (0.0595) (0.0147) (0.0669) (0.0165) (0.0067) (0.0017) (0.0088) (0.0022) 

500 
8.0517 8.0557 8.0915 8.0956 12.1177 12.1238 12.2586 12.2648 0.4831 0.4833 0.6392 0.6396 

(0.0312) (0.0077) (0.0278) (0.0069) (0.0469) (0.0117) (0.0528) (0.0131) (0.0053) (0.0013) (0.0069) (0.0017) 

                      

 
Table 11. 95% credible intervals under Uniform Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.4241  4.9498  1.5257  5.1532  7.4494  2.2962  0.3938  0.5692  0.1755  

100 3.4882  4.9129  1.4248  5.2497  7.3939  2.1443  0.4011  0.5650  0.1638  

200 3.5092  4.8187  1.3096  5.2813  7.2522  1.9709  0.4036  0.5542  0.1506  

300 3.5391  4.6839  1.1448  5.3263  7.0492  1.7229  0.4070  0.5386  0.1317  

400 3.6231  4.5743  0.9512  5.4528  6.8844  1.4316  0.4167  0.5260  0.1094  

500 3.6817  4.5437  0.8620  5.5410  6.8383  1.2973  0.4234  0.5225  0.0991  

                     
Table 12. 95% credible intervals under Jeffreys Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3898 4.9003 1.5104 5.1017 7.3749 2.2732 0.3898 0.5635 0.1737 

100 3.4533 4.8638 1.4105 5.1972 7.3200 2.1228 0.3971 0.5593 0.1622 

200 3.4741 4.7705 1.2965 5.2285 7.1797 1.9512 0.3995 0.5486 0.1491 

300 3.5037 4.6370 1.1334 5.2730 6.9787 1.7057 0.4029 0.5333 0.1303 

400 3.5869 4.5286 0.9417 5.3983 6.8155 1.4172 0.4125 0.5208 0.1083 

500 3.6449 4.4983 0.8534 5.4856 6.7699 1.2843 0.4192 0.5173 0.0981 
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Table 13. 95% credible intervals under Gamma Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3213 4.8013 1.4799 4.9986 7.2259 2.2273 0.3820 0.5521 0.1702 

100 3.3835 4.7655 1.3820 5.0922 7.1721 2.0799 0.3891 0.5480 0.1589 

200 3.4039 4.6742 1.2703 5.1228 7.0346 1.9118 0.3914 0.5375 0.1461 

300 3.4329 4.5433 1.1105 5.1665 6.8377 1.6712 0.3948 0.5225 0.1277 

400 3.5144 4.4371 0.9227 5.2892 6.6778 1.3886 0.4042 0.5103 0.1061 

500 3.5713 4.4074 0.8361 5.3748 6.6331 1.2584 0.4107 0.5069 0.0962 

                     
 
Table 14. 95% credible intervals under Chi Square Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3556 4.8508 1.4952 5.0501 7.3004 2.2503 0.3859 0.5578 0.1719 

100 3.4184 4.8146 1.3963 5.1447 7.2460 2.1014 0.3931 0.5537 0.1606 

200 3.4390 4.7224 1.2834 5.1757 7.1071 1.9315 0.3955 0.5431 0.1476 

300 3.4683 4.5902 1.1219 5.2198 6.9082 1.6885 0.3989 0.5279 0.1290 

400 3.5507 4.4828 0.9322 5.3438 6.7467 1.4029 0.4083 0.5155 0.1072 

500 3.6081 4.4528 0.8447 5.4302 6.7015 1.2713 0.4149 0.5121 0.0971 

                     
 
Table 15. 95% credible intervals under Exponential Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3932 4.9052 1.5120 5.1068 7.3823 2.2755 0.3902 0.5641 0.1739 

100 3.4568 4.8687 1.4119 5.2024 7.3274 2.1250 0.3975 0.5599 0.1624 

200 3.4776 4.7754 1.2978 5.2338 7.1869 1.9532 0.3999 0.5492 0.1492 

300 3.5072 4.6417 1.1345 5.2783 6.9858 1.7074 0.4033 0.5338 0.1305 

400 3.5905 4.5332 0.9426 5.4037 6.8224 1.4187 0.4129 0.5213 0.1084 

500 3.6486 4.5028 0.8542 5.4911 6.7767 1.2856 0.4196 0.5178 0.0982 
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Table 16. 95% posterior predictive intervals under different priors 
 

n Limits Uniform Jeffreys Gamma Chi square Exponential 

50 

LL 2.4773  2.4037  2.2609  2.3316  2.4110  

UL 17.9778  17.4438  16.4078  16.9206  17.4967  

UL – LL 15.5005  15.0401  14.1469  14.5890  15.0858  

100 

LL 2.6190  2.5412  2.3903  2.4650  2.5489  

UL 17.5793  17.0572  16.0442  16.5455  17.1089  

UL – LL 14.9603  14.5160  13.6539  14.0805  14.5600  

200 

LL 2.6666  2.5874  2.4338  2.5098  2.5953  

UL 16.5876  16.0950  15.1391  15.6121  16.1438  

UL – LL 13.9210  13.5075  12.7053  13.1023  13.5485  

300 

LL 2.7354  2.6541  2.4965  2.5745  2.6622  

UL 15.2334  14.7810  13.9031  14.3376  14.8258  

UL – LL 12.4981  12.1269  11.4066  11.7631  12.1636  

400 

LL 2.9350  2.8478  2.6787  2.7624  2.8564  

UL 14.1895  13.7681  12.9504  13.3551  13.8098  

UL – LL 11.2546  10.9203  10.2717  10.5927  10.9534  

500 

LL 3.0797  2.9882  2.8108  2.8986  2.9973  

UL 13.9065  13.4935  12.6921  13.0887  13.5344  

UL – LL 10.8268  10.5052  9.8813  10.1901  10.5371  

 
 

The simulation study has been conducted under the assumption of different 
priors using two loss functions. The performance of different estimators has been 
compared in terms of posterior risks and rate of convergence. It has been observed 
that the estimated value of the parameter converges to the true value of the 
parameter by increasing the sample size. This pattern is similar under each prior 
and for every loss function. In cases of non-informative priors, the estimates 
under the Jeffreys prior provide better convergence, while among informative 
priors the gamma prior gives comparatively rapid convergence. On the other hand, 
use of squared error loss function results in faster convergence than precautionary 
loss function. It is interesting to note that for each combination of prior and loss 
function, the increased values of the parameters impose a negative impact on the 
convergence rate of the estimates. However, increasing the value of weight 
parameter has a positive effect on the convergence of the corresponding 
estimators but convergence rate of the weight estimator itself becomes slower. All 
the parameters have been overestimated in almost all the cases and the extent of 
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overestimation is greater for larger true parametric values. On the whole, it can be 
assessed that the estimates under gamma prior using precautionary loss function 
have the best convergence rate. Some prior elicitation technique may further 
strengthen this argument. 

It is apparent from the above tables that the magnitude of posterior risks is 
indirectly proportional to sample size, while it is directly related to the true value 
of the parameter. This property holds for all estimators. The estimates under the 
Jeffreys prior have smaller risks than those under uniform prior. Similarly, among 
all informative priors, the estimates using gamma prior are associated with the 
minimum risks. In a comparison of informative and non-informative priors, 
informative priors perform better. This indicates the dominance of informative 
priors over non-informative priors. The performance of the estimates 
(representing the corresponding component) has been positively affected by 
increasing the values of the weight parameter, but at the cost of inflated risks for 
the parameter itself. It can also be observed that the estimates under precautionary 
loss function have smaller risks than those based on squared error loss function, 
irrespective of choice of prior and the true parametric values. Therefore, in terms 
of posterior risks, the estimates using gamma prior based on precautionary loss 
function provide the best point estimation. 

In case of interval estimation (presented in Tables 11-16), the widths of 95% 
credible intervals decrease when increasing the sample size. The least amount of 
widths for credible intervals has been observed under gamma prior. In addition, 
the posterior predictions tend to be more specific under gamma prior. This is 
another indication that the gamma prior performs well as compared to other priors.  

Real Life Example 
Real life data regarding cancer survival times in years presented by Bekker et al. 
(2000) has been analyzed to illustrate the practical applicability of the results. The 
test termination time is considered to be such that the overall sample is 15% 
censored. 

The analysis of real life data replicated the patterns observed under 
simulation study. The point and interval estimates for the parameters of the 
Gompertz mixture model; based on gamma prior; using PLF are found to be the 
most efficient. The posterior predictive intervals have the least amounts of widths 
again under gamma prior. So, in order to estimate the said parameters and to make 
predictions of the future values of the variable from the mentioned model, the use 
of gamma prior under PLF may be preferred.  
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Table 17. Bayes estimates and posterior risks under real life data 
 

Priors 
SELF PLF 

α1 α2 p = 0.45 α1 α2 p = 0.45 

Uniform 
2.0841  2.3456  0.4963  2.0948  2.3577  0.4988  

(1.1218) (1.0466) (0.1298) (0.2554) (0.2382) (0.0296) 

Jefrreys 
2.0632  2.3222  0.4913  2.0738  2.3341  0.4939  

(1.1106) (1.0361) (0.1169) (0.2528) (0.2359) (0.0266) 

Gamma 
2.0215  2.2753  0.4814  2.0319  2.2870  0.4839  

(1.0096) (0.9419) (0.0909) (0.2298) (0.2144) (0.0207) 

Chi Square 
2.0424  2.2987  0.4864  2.0529  2.3105  0.4889  

(1.0321) (0.9629) (0.1039) (0.2349) (0.2192) (0.0236) 

Exponential 
2.0653  2.3245  0.4918  2.0759  2.3365  0.4944  

(1.0668) (0.9953) (0.1105) (0.2429) (0.2266) (0.0252) 
 
 
Table 18. 95% credible intervals under real life data 
 

Priors 
α1 α2 p = 0.45 

LL UL UL–LL LL UL UL–LL LL UL UL–LL 
Uniform 1.7475 2.4206 0.6731 2.0316 2.8689 0.8373 0.3924 0.5872 0.1948 

Jeffreys 1.7300 2.3964 0.6664 2.0113 2.8402 0.8289 0.3978 0.5731 0.1753 

Gamma 1.7186 2.3244 0.6058 1.9927 2.7462 0.7535 0.4087 0.5450 0.1363 

Chi Square 1.7328 2.3520 0.6192 2.0099 2.7801 0.7703 0.4033 0.5591 0.1558 

Exponential 1.7452 2.3854 0.6401 2.0259 2.8222 0.7962 0.4034 0.5692 0.1657 

 
 
Table 19. 95% posterior predictive intervals under real life data 
 

Priors LL UL UL–LL 
Uniform 0.6227 11.0830 10.4602 
Jeffreys 0.6165 10.9721 10.3556 
Gamma 0.6124 10.6426 10.0302 

Chi Square 0.6175 10.7688 10.1514 
Exponential 0.6219 10.9216 10.2997 
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Conclusion 

The study proposed the point and interval estimators for the parameters of the 
two-component mixture of the Gompertz distribution under a Bayesian 
framework along with posterior predictions for the future value from said model. 
The performance of the different estimators has been compared in terms of 
posterior risks (for point estimators) and widths of interval estimates with respect 
to various priors and loss functions. The findings of the study suggest that for 
Bayesian estimation of the parameters (along with posterior predictions) of the 
two-component mixture of the Gompertz distribution, the use of gamma prior 
under precautionary loss function is preferred. The proposed estimators are 
consistent in nature. The results of the study are useful for practitioners looking to 
model some failure time data, where the cases of failures are more than one. 
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