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A Comparison between Biased and 
Unbiased Estimators in Ordinary Least 
Squares Regression
Ghadban Khalaf 
King Khalid University 
Saudi Arabia 
 
 
During the past years, different kinds of estimators have been proposed as alternatives to 
the Ordinary Least Squares (OLS) estimator for the estimation of the regression 
coefficients in the presence of multicollinearity. In the general linear regression model, 
Y X eβ= +





, it is known that multicollinearity makes statistical inference difficult and 
may even seriously distort the inference. Ridge regression, as viewed here, defines a class 
of estimators of β



 indexed by a scalar parameter k. Two methods of specifying k are 
proposed and evaluated in terms of Mean Square Error (MSE) by simulation techniques. 
A comparison is made with other ridge-type estimators evaluated elsewhere. The 
estimated MSE of the suggested estimators are lower than other estimators of the ridge 
parameter and the OLS estimator. 
 
Keywords: OLS estimator, linear regression, multicollinearity, ridge regression, 
Monte Carlo simulation. 
 

Introduction 

Consider the multiple linear regression model 
 

 Y X eβ= +




  (1) 
 
where Y



 is an ( 1)n×  response vector, X is a fixed ( )n p×  matrix of independent 

variables of rank p, β


 is the unknown ( 1)p× parameter vector of regression 
coefficients and, finally, e  is an ( 1)n×  vector of uncorrelated errors with mean 
zero and common unknown variance 2σ . If X X′  is nonsingular, the OLS 
estimator for β



 is given by 
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 1ˆ ( )X X X Yβ −′ ′=


  (2) 
 
For orthogonal data, the OLS estimator in the linear regression model is strongly 
efficient. But in the presence of multicollinearity, the OLS efficiency can be 
reduced and hence an improvement upon it would be necessary and desirable. 

The term multicollinearity is used to denote the presence of linear 
relationships, or near linear relationships, among explanatory variables. If the 
explanatory variables are perfectly linearly correlated, that is, if the correlation 
coefficient for these variables is equal to unity, then the parameters become 
indeterminate; i.e, it is impossible to obtain numerical values for each parameter 
separately and the method of lease squares breaks down. Conversely, if the 
correlation coefficient for the explanatory variables is equal to zero, then the 
variables are called orthogonal and there are no problems concerning the 
estimates of the coefficients. 

When multicollinearity occurs, the least squares estimates are still unbiased 
and efficient but the problem is that; the estimated standard error 

î
S
β

 for the 

coefficient îβ  become infinitely large; i.e, the standard error tends to be larger 
than it would be in the absence of multicollinearity and when 

î
S
β

is larger than it 

would be, then the t- value for testing the significance of iβ  is smaller than it 
should be. Thus one is likely to conclude that a variable iX  is not important in the 
relationship when it real1y is. 

To solve the problem of multicollinearity, there is no single solution that 
will eliminate multicollinearity altogether. One common procedure is to select the 
independent variable most seriously involved in the multicollinearity and remove 
it from the model. This procedure often improves the standard error of the 
remaining coefficients and may make formerly insignificant variables significant, 
since the elimination of a variable reduces any multicollinearity caused by it. The 
difficulty with this approach is that the model now may not correctly represent the 
population relationship and all estimated coefficients would contain a population 
specification. 

The procedure of increasing the sample size is sometimes recommended as 
another suggested procedure to solve the problem of multicollinearity. In fact this 
method improves the precision of an estimator and hence reduces the adverse 
effects of multicollinearity. 

Hoerl and Kennard (1970) suggested a new technique to overcome the 
problem of multicollinearity. This technique is called ridge regression. Ridge 
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regression is a variant of ordinary multiple linear regression whose goal is to 
circumvent the predictors collinearity. It gives up the least squares as a method for 
estimating the parameters of the model and focuses instead of the X X′  matrix. 
This matrix will be artificially modified so as to make its determinant appreciably 
different from zero. This is accomplished by adding a small positive quantity, say 
k (k > 0), to each of the diagonal elements of the matrix X X′  before inverting it 
for least squares estimation. The resulting estimator is given by 
 

 1ˆ( ) ( ) ,   0pk X X kI X Y kβ −′ ′= + >




  (3) 
 
which coincides with the OLS estimator, defined by (2), when k = 0. The resulting 
estimator will be biased, but have smaller variances than β̂



. This is precisely 
what the ridge regression estimator we study can accomplish. 

The plan of this paper is as follows: Section 2 presents the proposed 
estimators included in the study; a novel feature is our proposed ridge estimator 
which, as we shall see presently, has lower MSE. Section 3 is described the 
simulation technique that we have adopted in our study to evaluate the 
performance of the new values of the ridge parameter we suggest. The results of 
the simulation study, which appear in the tables, are presented in Section 4. 
Finally, Section 5 contains summary and conclusions. 

The Proposed Estimators  

With the ridge estimator method, there arises the problem of determining an 
optimal value of k. With a good choice of k, one might hope to improve on the 
OLS estimator for every coefficient.  

Hoerl, Kennard and Baldwin (1975) showed, through simulation, that the 
use of ridge estimator with the following biasing parameter 
 

 
2

2

1

ˆˆ
ˆ

p

i
i

pk σ

β
=

=

∑
  (4) 

 

implies that ˆ ˆ( ( )) ( )MSE k MSEβ β<
 

, where p denotes the number of parameters 
(excluding the intercept) and 2σ̂  is the usual unbiased estimate of 2σ , defined by; 
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2 2

1

ˆ / ( 1).
n

i
i

e n pσ
=

= − −∑
 

 
They showed that the probability of a smaller MSE using (4) increases with the 
number of parameters p. We will use the acronym HKB for the estimator (4).  

Khalaf and Shukur (2005) suggested a modification of Hoerl and Kennard 
(1970) given by; 
 

 
2

max
2 2

max max

ˆˆ
ˆˆ( )

tk
n p t

σ
σ β

=
− +

  (5) 

 
which guaranteed lower MSE, where maxt  is the maximum eigenvalue of X X′  
matrix. For this estimator we will use the acronym KS.  

From the estimators (4) and (5), we suggest as a modification of HKB and 
KS by multiplying them by the amount; 
 

max min
max min

1 1

1 ( )
2

ˆ ˆ2
p p

i i
i i

t t t t

β β
= =

+ +
=

∑ ∑
, 

 

where mint  is the minimum eigenvalue of the matrix X X′ . This leads to the 
following estimators; 
 

 
2

max min
1

2

1 1

ˆ( )ˆ .
ˆ ˆ2

p p

i i
i i

t t pk σ

β β
= =

+
=

∑ ∑
  (6) 

 

 
2

max min max
2

2 2
max max

1

ˆ( )ˆ .
ˆ ˆˆ2 (( ) )

p

i
i

t t tk
n p t

σ

β σ β
=

+
=

− +∑
  (7) 

 
For our two suggested estimators, defined by (6) and (7), we use the 

acronym 1K  and 2K , respectively. 
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The Simulation Study  

A simulation study was conducted in order to draw conclusions about the 
performance of our suggested estimators relative to HKB, KS and the OLS 
estimator. To achieve different degree of collinearity, following Kibria (2003), the 
explanatory variables are generated by using the following equation; 
 

2 1/2(1 ) ,              1, 2,..., . 1, 2,...,ij ij ipx z z i n j pρ ρ= − + = =  
 

where ijz  are independent standard normal distribution, p is the number of the 
explanatory variables and ρ  is specified so that the correlation between any two 

explanatory variables is given by 
2ρ  . Three different sets of correlation are 

considered according to the value of ρ = 0.85, 0.95 and 0.99. The n observations 
for the dependent variable are determined by the following equation; 
 

0 1 1 2 2 ... ,             1, 2,...,i i i p ip iy x x x e i nβ β β β= + + + + + =  
 
where ie  are i.i.d pseudo-random numbers. In this study, 0β  is taken to be zero 
and the term ie  is generated from each of the following distributions: N(0, 1), 

T(3), T(7) and F(3, 11). The parameters values are chosen so that 2

1
1

p

i
i
β

=

=∑ , 

which is a common restriction in simulation studies (see Muniz and Kibria 
(2009)). 

The other factors we chose to vary is the sample size and the number of 
regressions. We generate models consisting of 25, 50, 100 and 150 observations 
and with 2 and 4 explanatory variables. It is noted from the results of the previous 
simulation studies (see Khalaf and Shukur (2005), Alkhamisi and Shukur (2008) 
and Khalaf (2011)) that increasing the number of regressor and using non-normal 
pseudo random numbers to generate ie  leads to a higher estimated MSE, while 
increasing the sample size leads to a lower estimated MSE.  

The criterion proposed here for measuring the goodness of an estimator is 
the MSE using the following formula; 

 

 1ˆ ˆ ˆ( ) ( ) ( ),
5000r r rMSE β β β β β′= − −∑

  

 

  (8) 
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where ˆ
rβ


 is the estimator of β


 obtained from the OLS estimator or from the ridge 
estimator for different estimated values of k considered for comparison reasons 
and, finally, 5000 is the number of replicates used in the Monte Carlo simulation. 

The Simulation Results 

Tables 1 – 6 below, present the output from the Monte Carlo experiment 
concerning properties of the different methods that used to choose the ridge 
parameter k. The results showed that the estimated MSE is affected by all factors 
we choose to vary in the design of experiment. It is also noted that the higher the 
degree of correlation the higher estimated MSE, but this increase is much greater 
for the OLS than the ridge regression estimator. The distribution of the error term 
and the number of explanatory variables having a different impact on the 
estimators. 
 
 
Table 1. Estimated MSE when ρ = 0.85 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.238 0.181 0.190 0.243 0.181 

50 0.111 0.093 0.097 0.255 0.176 

100 0.057 0.051 0.053 0.266 0.178 

150 0.034 0.032 0.032 0.282 0.184 

T(3)           

25 2.259 0.957 1.325 0.506 0.497 

50 1.219 0.602 0.896 0.521 0.364 

100 0.531 0.312 0.445 0.588 0.329 

150 0.473 0.261 0.414 0.632 0.351 

T(7)           

25 0.350 0.248 0.266 0.304 0.218 

50 0.169 0.135 0.143 0.324 0.212 

100 0.076 0.067 0.069 0.352 0.220 

150 0.053 0.048 0.049 0.367 0.224 

F(3, 11)           

25 0.853 0.502 0.584 0.383 0.289 

50 0.391 0.261 0.309 0.429 0.236 

100 0.178 0.139 0.157 0.481 0.276 

150 0.126 0.104 0.115 0.520 0.290 
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Table 2. Estimated MSE when ρ = 0.85  and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.796 0.549 0.572 0.187 0.159 

50 0.334 0.255 0.268 0.216 0.162 

100 0.156 0.131 0.137 0.257 0.182 

150 0.103 0.090 0.093 0.284 0.196 

T(3)      

25 7.387 3.781 4.330 1.049 1.205 

50 6.222 2.961 4.179 1.073 1.622 

100 1.685 0.969 1.318 0.509 0.409 

150 1.240 0.754 1.018 0.551 0.332 

T(7)      

25 1.159 0.730 0.776 0.212 0.178 

50 0.504 0.362 0.389 0.255 0.184 

100 0.235 0.188 0.200 0.323 0.218 

150 0.152 0.127 0.135 0.353 0.231 

F(3, 11)      

25 2.667 1.446 1.601 0.338 0.328 

50 1.130 0.699 0.805 0.316 0.226 

100 0.578 0.402 0.468 0.415 0.263 

150 0.362 0.271 0.311 0.467 0.282 

 
Table 3. Estimated MSE when ρ = 0.95 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.705 0.427 0.450 0.193 0.147 

50 0.353 0.250 0.265 0.193 0.134 

100 0.168 0.133 0.140 0.220 0.145 

150 0.114 0.095 0.010 0.231 0.149 

T(3)      
25 7.899 3.010 3.580 1.501 1.725 

50 5.575 2.137 2.969 0.988 1.256 

100 1.703 0.789 1.152 0.486 0.275 

150 1.283 0.655 0.959 0.541 0.299 

T(7)      
25 1.174 0.670 0.718 0.241 0.186 

50 0.528 0.340 0.371 0.249 0.164 

100 0.250 0.185 0.200 0.287 0.177 

150 0.161 0.127 0.137 0.311 0.187 

F(3, 11)      
25 2.556 1.223 1.372 0.401 0.343 

50 1.167 0.623 0.738 0.336 0.215 

100 0.566 0.346 0.419 0.397 0.224 

150 0.378 0.251 0.300 0.444 0.244 
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Table 4. Estimated MSE when ρ = 0.95 and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 2.356 1.308 1.351 0.154 0.145 

50 1.057 0.673 0.705 0.125 0.099 

100 0.359 0.251 0.266 0.120 0.088 

150 0.323 0.245 0.258 0.194 0.138 

T(3)      

25 18.886 8.484 9.026 2.145 2.299 

50 14.573 7.274 8.218 1.939 2.315 

100 4.122 2.079 2.527 0.284 0.194 

150 3.390 1.815 2.266 0.422 0.306 

T(7)      

25 3.716 1.996 2.068 0.228 0.221 

50 1.502 0.892 0.948 0.146 0.114 

100 0.745 0.495 0.534 0.199 0.139 

150 0.478 0.341 0.368 0.239 0.162 

F(3, 11)      

25 8.220 4.148 4.334 0.776 0.796 

50 3.578 1.882 2.064 0.206 0.171 

100 1.755 1.034 1.170 0.248 0.164 

150 1.180 0.741 0.849 0.309 0.195 

 
Table 5. Estimated MSE when ρ = 0.99 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 4.050 1.850 1.905 0.349 0.331 

50 1.776 0.884 0.931 0.133 0.099 

100 0.913 0.533 0.568 0.138 0.091 

150 0.572 0.358 0.385 0.155 0.099 

T(3)      
25 43.786 15.618 16.407 12.046 12.512 

50 21.736 7.673 8.510 3.155 3.377 

100 8.794 3.602 4.217 0.481 0.399 

150 7.046 2.461 3.274 0.362 0.231 

T(7)      
25 6.108 2.657 2.745 0.561 0.544 

50 2.623 1.192 1.274 0.171 0.124 

100 1.370 0.732 0.797 0.178 0.111 

150 0.865 0.502 0.551 0.204 0.123 

F(3, 11)      
25 12.863 4.822 5.037 1.421 1.438 

50 6.402 2.550 2.779 0.343 0.296 

100 3.329 1.508 1.715 0.246 0.152 

150 1.901 0.899 1.060 0.279 0.151 
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Table 6. Estimated MSE when ρ = 0.99 and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 13.319 6.484 6.547 0.971 0.981 

50 6.095 3.078 3.141 0.109 0.107 

100 2.708 1.466 1.520 0.061 0.050 

150 1.720 0.990 1.036 0.076 0.057 

T(3)      

25 169.385 72.238 73.397 58.482 59.442 

50 65.170 33.982 34.732 15.466 15.685 

100 30.913 15.077 15.913 2.328 2.448 

150 19.922 8.885 9.738 0.505 0.556 

T(7)      

25 19.789 9.337 9.473 1.739 1.756 

50 8.782 4.342 4.442 0.230 0.229 

100 4.068 2.152 2.240 0.077 0.063 

150 2.550 1.390 1.467 0.086 0.062 

F(3, 11)      

25 44.422 20.834 21.062 7.010 7.089 

50 21.347 9.485 9.785 1.073 1.131 

100 9.172 4.498 4.730 0.145 0.131 

150 6.178 3.077 3.303 0.114 0.085 

 
 

For non-normal error term in combination with 0.95ρ =  and 0.99ρ =  
leads to a larger estimated MSE for the OLS estimator and the ridge parameter, 
especially when n is small, but when the sample size increases the estimated MSE 
of the suggested ridge parameters, namely 1K  and 2K  decreases substantially. 

The performance of 1K  and 2K  is well for all cases when the error term is 
distributed as a normal and, when n is greater than 25 and the error term in non-
normal . 

When n is greater than 25, the modified ridge parameter performance, 
defined by (6) and (7), is much better than the estimators HKB, KS and the OLS, 
where 2K  has a low estimated MSE when the number of regressor equals 4. 

Summary and Conclusions 

In multiple linear regression, the effect of non-orthogonality of the explanatory 
variables is to pull the least squares estimates of the regression coefficients away 
from the true coefficients, β



, that one is trying to estimate. The coefficients can 
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be both too large in absolute value and incorrect with respect to sign. Furthermore, 
the variance and the covariance of the OLS tend to become too large.  

A slight movement away from this point can give completely different 
estimates of the coefficients. This is accomplished by adding a small positive 
quantity, k, to each of the diagonal elements of the matrix X X′ . The resulting 
estimator is called the ridge estimator, suggested by Hoerl and Kennard (1970) 
and given by (3). 

Several procedure for constructing ridge estimators have been proposed in 
the literature. These procedures were aiming at a rule (or algorithm) for selecting 
the constant k in equation (3). In fact, the best method of estimating k is an 
unsolved problem and there is no constant value of k that is certain to yield an 
estimator which is uniformly better (in terms of MSE) than the OLS in all cases.  

By means of Monte Carlo simulations two suggested ridge parameters were 
evaluated and the result were compared with ridge parameters evaluated by Hoerl 
et. al (1975) and Khalaf and Shukur (2005). The estimator HKB performed well in 
this study. It appears to outperform KS when ρ  is small and the sample size is 
greater than 25. The suggested estimators 1K  and 2K  performs well in our 
simulation. They appeared to offer an opportunity for large reduction in MSE 
when p = 2 and the error term in normally distributed. For non-normal error term 
the versions of the ridge parameter has a lower estimated MSE when the sample 
size is greater than 25. 2K is always minimizes the estimated MSE when the error 
term in normally distributed. 
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