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The estimation of two parameters of the Kumaraswamy distribution is considered under 
Type II progressive censoring with random removals, where the number of units removed 
at each failure time has a binomial distribution. The MLE was used to obtain the 
estimators of the unknown parameters, and the asymptotic variance - covariance matrix 
was also obtained. The formula to compute the expected test time was derived. A 
numerical study was carried out for different combinations of model parameters. 
Different censoring schemes were used for the estimation, and performance of these 
schemes was compared. 
 
Keywords: Expected test time, maximum likelihood estimation, progressive 
censoring, random removals 
 

Introduction 

Life tests are often one of the main research topics in many experimental designs. 
There are several situations in life testing, in reliability experiments and survival 
analysis in which units are lost or removed from the experiments while they are 
still alive. The loss may occur out of control or be reassigned. The out of control 
case can happen when an individual under study (testing) drops out. The other 
case may occur because of limitation of funds or to save time. For more details 
Balakrishnan and Aggarwala (2000) provide a comprehensive reference on the 
subject of progressive censoring and its applications. There are several types of 
censoring schemes; the Type II censoring scheme is one of the most common for 
consideration. In a Type II censoring, a total of n units are placed on test, but 
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instead of containing until all n units have failed, the test is terminated at time of 
the mth (1 ≤ m ≤ n) unit failure. Type II censoring with different failure time 
distributions has been studied by many authors including Mann (1971), Meeker 
and Escobar (1991), and Lawless (2003). 

If an experimenter desires to remove live units at points other than the nth 
termination point of the life test, the above described scheme will not be of use to 
the experimenter. Type II censoring does not allow for units to be lost or removed 
from the test at other than the nth termination point. This allowance may be 
desirable, as in the case of accidental breakage of experimental units, in which the 
loss of test units at points other than the termination point may be unavoidable. 
Intermediate removal may also be desirable when a compromise between reduced 
time of experimentation and the observation of at least some extreme lifetimes is 
sought. These reasons lead directly into the area of progressive censoring; see 
Balakrishnan and Agarwala (2000).  

A generalization of Type II censoring is progressive Type II censoring. The 
progressive Type II censored life test is described as follows. Firstly, the 
experimenter places n units on a test at time zero, with m failures to be observed. 
When the first failure is observed, r1 of the surviving units are randomly selected 
and removed. At the second observed failure, rth of the surviving units are 
randomly selected and removed. This experiment terminates at the time when the 
mth failure is observed and the remaining rm = n – r1 – ... – rm-1 – m surviving units 
are all removed. The statistical inference on the parameters of failure time 
distributions under progressive Type II censoring has been studied by several 
authors, such as Cohen (1963), Mann (1971), Viveros and Balakrishnan (1974), 
Balakrishnan and Aggarwala (2000), Ng et al. (2002), Chan and Balakrishnan 
(2004), Soliman (2008) and Raqab et al. (2010) (and the references therein). Note 
that, in this scheme, r1, r2, ..., rm are all pre-fixed. However, in some practical 
situations, these numbers may occur at random. Yuen and Tse (1996) indicated 
that, for example, the number of patients who drop out from a clinical test at each 
stage is random and cannot be pre-determined. In some reliability experiments, an 
experimenter may decide that it is inappropriate or too dangerous to carry on the 
testing on some of the tested units even though these units have not failed. In 
these cases, the pattern of removal at each failure is random. Suppose that any test 
unit being dropped out from the life test is independent of the others but with the 
same removal probability p. Then, Tse et al. (2004) indicated that the number of 
test units removed at each failure time has a binomial distribution. The main 
purpose of this article is to assess the required time to complete a life test under 
progressive Type II censored data with random removal (PCR). Assume that the 
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lifetime follows the Kumaraswamy distribution. The number of units removed at 
each failure time follows a binomial distribution with parameters n and p. 

The Model 

The maximum likelihood estimators for the parameters of the Kumaraswamy 
distribution are derived based on progressive Type II censoring. Let random 
variable X have a Kumaraswamy distribution with two positive shape parameters 
α and θ. The probability density function of X is given by 
 

   (1) 

 
while the cumulative distribution function is given by 
 

   (2) 

 
Kumaraswamy (1980) was interested in distributions for hydrological random 
variables and actually proposed a mixture of a probability mass, at zero and 
density (1) over (0,1). 

The corresponding survival function of random variable X is 
 
   (3) 
 
and the failure (hazard) rate function takes the following form 
 

   (4) 

 
For X ≥ 0, let X1 < X2 < ...< Xm be the m ordered failure times out of n 

randomly selected items, where m is predetermined before testing. At the ith 
failure, ri items are removed from the test. For progressive Type II censored 
sample with predetermined number of removals, say , 
where R = . 
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Let (X1, X2, ..., Xm) denote a progressive Type II censored sample. Then the 
joint probability density function of all m progressive Type II censored order 
statistic is given by 
 

   (5) 

 
Thus for progressive Type II censoring with pre-determined number of 

removals  the conditional likelihood function can be written as (Cohen, 
1963) 
 

   (6) 

 
Equation (6) is derived conditional on ri, where ri can be of any integer value 
between 0 and n – m – (r1 + r2 + ...+ rm-1). The main difference between Type II 
progressive censoring and PCR is that the R are pre-determined in the former case 
while they are random in the latter case. Note that m is predetermined in both 
cases. Under PCR, the ri terms are random. In particular, assume that each ri 
follows a binomial distribution, such that 
 

   (7) 

and 
 

   (8) 
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where . 

Furthermore, assume that Ri independent of Xi for all i. Then the likelihood 
function can be found as 
 
   (9) 

 
where P(R, p) is the is the probability distribution of the R terms (R = r1, r2, …, 
rm) and, in particular, results in 
 

   (10) 

 
Substituting (4) and (5) into (7) results in 
 

   (11) 

and 

   (12) 

Maximum Likelihood Estimation 

The maximum likelihood estimators of the parameters α, θ, and p are derived 
based on progressive Type II censored data with binomial removals. Both point 
and interval estimations of the parameters are derived. 
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Point Estimations 
Because P(R, p) does not depend on the parameters α and θ, the maximum 
likelihood estimators (MLEs) of α and θ can be derived by maximizing (6) 
directly. Similarly, because L1(x, α, θ ׀ R = r) does not involve the binomial 
parameter p, then the MLE of p can be found by maximizing P(R, p) directly. The 
log likelihood function of (9) is given by 
 

   (13) 

 
Take the partial derivative of logL1(x, α, θ |R = r) with respect to α and θ and let 
them be zero 
 

   (14) 

 

 is given by . Thus the MLE  and the 

MLE is the numerical solution of equation (14). 
It is observed from (14) that the MLE of the parameter α cannot be obtained 

in closed form. It can be obtained by solving a one dimensional optimization 
problem. A simple fixed point iteration algorithm can be used to solve this 
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optimization problem. Firstly, the parameter θ in log-likelihood (13) has been 
replaced by its MLE the  resultant log-likelihood becomes  
 

   

 
After some simplification it can be presented as 
 

   (15) 

 
MLE of α can be obtained by maximizing (15) with respect to α and it is 

unique. Most of the standard iterative process can be used for finding the MLE. 
The following simple algorithm is proposed: If  is the MLE of α, then it is 

obvious from  that  satisfies the following fixed 

point type equation;   
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   (16) 

 
The iterated result of the above function has been considered as an MLE of α 

and denoted by . Now the approximate MLE of α has been incorporated in (14) 
to obtain the MLE of β. 

Similarly, from (12) the partial derivative of log P(R, p) with respect to 
binomial parameter p can be obtained by solving the following equation 
 

   

 
thus the MLE of  of p is given by 
 

   

Interval Estimations 
The approximate confidence intervals of the parameters based on the asymptotic 
distributions of the MLE of the parameters α, θ and p are derived in this 
subsection. The elements of the Fisher information matrix for the parameters of 
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the Kumaraswamy distribution based on progressive censored samples have been 
derived explicitly. The Fisher information matrix can be defined as 
 

   (17) 

 
For the information matrix for α, θ and p, find 
 

   

   

   

   

and 
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In order to derive the expressions for  the distribution of 

the ith order statistics from the Kumaraswamy distribution is required, which can 
be written as 
 

,  

 

where   

Here, the expectations necessary to derive the elements of the Fisher 
information matrix are 
 

   

 

   

 
where  are Euler gamma and Poly gamma functions respectively. 

Using these results, the Fisher information matrix can be obtained, which can 
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further be used to derive the elements of the approximate variance-covariance 
matrix as 
 

   

 
. It is known that the asymptotic distribution of the MLE is given by 

 

   (18) 

 
Because V involves the parameters α, θ and p, replace the parameters by the 
corresponding maximum likelihood estimators in order to obtain an estimate of V, 
which is denoted by . Using (18), approximate 100(γ)% confidence intervals for 
α, θ and p are determined respectively as , , , 

where zγ is the upper 100(γ)% percentile of the standard normal distribution. 

The Expected Time Test 

In practical applications, it is often useful to have an idea of the test time of the 
whole test. For progressive Type II censoring sampling plan with random or 
binomial removals, the expected test time for the experiment is given by the 
expectation of the mth order statistic X(m). From Balakrishnan and Aggarwala 
(2000), the conditional expectation of X(m) for a fixed set of R = R1 = r1, R2 = r2, 
Rm−1 = rm−1 is given by 
 

   (19) 
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where  
 

   

 
and ‘i’ is the number of live units removed from experimentation (or number of 
failure units). Substituting (1) and (2) into (19) results in the following 
 

   (20) 

 
Let 
 

   

 
Plugging this quantity into the right hand side of equation (20), the expected test 
time of progressive Type II censoring with fixed number of removal will be 
 

   (21) 
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Also, the expected time under the Type II censoring scheme without removal is 
defined by the expected value of the mth failure time, denoted by X*(m) where 
 

   (22) 

 
Because ri = 0 for all i = 1, 2, …, m − 1. Similarly, the expected value of X(m) for 
complete sample can be derived from (22) by setting m = n and ri = 0 as 
 

   (23) 

 
Under PCR, the R terms are random. The expected time to complete an 
experiment under PCR is given by taking the expectation of both sides equation 
(21) with respect to the R terms. That is 
 

   (24) 

 
where g(ri) = n – m – (r1 + r2 + … + ri−1) and P(R) is given in (10). Thus equation 
(24) gives an expression to compute the expected time for given values of m and n. 
To see how much time is saved under Type II progressive censoring, compare  
equations (23) and (24) where the ratio of the expected test time for Type I 
progressive censoring sample with binomial removals (PCR) with respect to the 
expected time for complete sample , that is 
 

   (25) 

 
If replacing the numerator by the expected test time under Type II 

progressive censoring with random removals (PCR), this ratio is defined by 
REET2. Notice that the ratios REET1 and REET2 provide important information in 
determining the shortest experiment time significantly if the sample size n is large. 
When REET1 and REET2 are closer to one, the test time under respective 
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censoring scheme is closer to the complete sample. The influence of the binomial 
probability removals p on the expected time can be studied by analyzing REET1 
for various values of p. The comparisons between the three expected times will be 
made in order to reward some information about m and n on the duration of the 
experiment. As it seems, analytical comparisons between these three expected 
times is difficult. Therefore, these comparisons can be made numerically for 
various values of m, n, α, and θ. 

Numerical Study 

The MLEs, their variances and 95% confidence intervals for parameters of the 
Kumaraswamy distribution using progressively censored data with random 
removals are now computed. The computations were made for different censoring 
schemes including various choices of m and n. the parametric space includes 

. 

 
The censoring schemes are framed as follows: 
 
Scheme 1: 
n = 20, m = 15,  
r1 = …= r14 = 0, 
r15 = 5 

Scheme 2: 
n = 20, m = 15,  
r1 = …= r7 = r9 = …= r15 = 0, 
r8 = 5 

Scheme 3: 
n = 20, m = 15, 
r2 = …= r15 = 0, 
r1 = 5 

 
Scheme 4: 
n = 20, m = 18, 
r1 = …= r17 = 0, 
r18 = 2 

Scheme 5: 
n = 20, m = 18, 
r1 = … = r8 = r11 = …= r18 = 0, 
r9 = r10 = 1 

Scheme 6: 
n = 20, m = 18, 
r2 = … = r18 = 0, 
r1 = 2 

 
Scheme 7: 
n = 30, m = 20,  
r1 = … = r19 = 0, 
r20 = 10 

Scheme 8:  
n = 30, m = 20,  
r1 = …= r10 = r13 = …= r20 = 0, 
r11 = r12 = 5 

Scheme 9:  
n = 30, m = 20,  
r2 = … = r20 = 0, 
r1 = 10 

 
Scheme 10: 
n = 30, m = 25,  
r1 = … = r19 = 0, 
r20 = 5 
 

Scheme 11: 
n = 30, m = 25,  
r1 = …= r10 = r13 = …= r20 = 0, 
r11 = 2, r12 = 3 
 

Scheme 12: 
n = 30, m = 25,  
r2 = …  = r20 = 0,  
r1 = 5 
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Scheme 13: 
n = 40, m = 30,  
r1 = …  = r29 = 0, 
r30 = 10 

Scheme 14:  
n = 40, m = 30,  
r1 = …= r14 = r17 = …= r30 = 0, 
r15 = r16 = 5 

Scheme 15:  
n = 40, m = 30,  
r2 = … = r30 = 0, 
r1 = 10 

 
Scheme 16: 
n = 40, m = 36,  
r1 = …  = r35 = 0, 
r36 = 4 

Scheme 17:  
n = 40, m = 36,  
r1 = …= r17 = r20 = …= r36 = 0,  
r18 = r19 = 2  

Scheme 18:  
n = 40, m = 36,  
r2 = …  = r36 = 0,  
r1 = 4 

 
The notations used in the tables are 
 

: Variance of the estimator 

: Lower limit of the confidence interval 

: Upper limit of the confidence interval 
 
 
Table 1. MLEs, their variances and 95% confidence intervals for parameters using 
α = 0.50, θ = 0.75 
 

Schemes                  

1 0.674492 0.941582 0.088685 0.059105 0.090802 1.258182 0.465076 1.418088 

2 0.675560 0.955438 0.090411 0.060857 0.086219 1.264902 0.471920 1.438956 

3 0.689900 0.988406 0.096476 0.065130 0.081111 1.298689 0.488204 1.488608 

4 0.640946 0.917092 0.087820 0.046725 0.060112 1.221780 0.493417 1.340766 

5 0.640955 0.926610 0.088027 0.047700 0.059434 1.222475 0.498538 1.354682 

6 0.649568 0.934912 0.088397 0.048559 0.066829 1.232306 0.503005 1.366819 

7 0.615257 0.909485 0.073949 0.041358 0.082264 1.148250 0.510886 1.308085 

8 0.620614 0.912566 0.080909 0.041639 0.063103 1.178126 0.512616 1.312516 

9 0.632944 0.915290 0.084524 0.041888 0.063112 1.202776 0.514146 1.316433 

10 0.581573 0.836671 0.071226 0.028001 0.058485 1.104661 0.508696 1.164646 

11 0.584405 0.854518 0.072029 0.029208 0.058375 1.110434 0.519547 1.189490 

12 0.602121 0.896171 0.073575 0.032125 0.070475 1.133767 0.544872 1.247470 

13 0.546138 0.809125 0.058654 0.021823 0.071455 1.020821 0.519583 1.098667 

14 0.546197 0.816111 0.059933 0.022201 0.066365 1.026028 0.524069 1.108152 

15 0.553892 0.823240 0.064746 0.022591 0.055164 1.052621 0.528647 1.117833 

16 0.510985 0.774778 0.038303 0.016674 0.127392 0.894579 0.521684 1.027872 

17 0.532987 0.781340 0.042096 0.016958 0.130846 0.935128 0.526102 1.036577 

18 0.536114 0.796164 0.048681 0.017608 0.103665 0.968562 0.536084 1.056245 
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Table 2. MLEs, their variances and 95% confidence intervals for parameters using 
α = 1.00, θ = 0.80 
 

Schemes                  

1 1.232107 1.026742 0.103913 0.070280 0.600290 1.863925 0.507139 1.546344 

2 1.238510 1.026802 0.105153 0.070288 0.602936 1.874084 0.507168 1.546435 

3 1.242170 1.027064 0.106155 0.070324 0.603573 1.880767 0.507298 1.546830 

4 1.218273 0.985327 0.099675 0.053937 0.599476 1.837070 0.530129 1.440525 

5 1.220254 0.987677 0.099778 0.054195 0.601136 1.839372 0.531393 1.443960 

6 1.220848 1.008086 0.103164 0.056458 0.591313 1.850382 0.542374 1.473797 

7 1.174262 0.958474 0.095742 0.045934 0.567794 1.780731 0.538404 1.378543 

8 1.190808 0.961994 0.097742 0.046272 0.578039 1.803578 0.540381 1.383606 

9 1.215313 0.969807 0.098676 0.047026 0.599623 1.831002 0.544770 1.394844 

10 1.132875 0.937474 0.083493 0.035154 0.566531 1.699219 0.569984 1.304964 

11 1.141405 0.941570 0.089372 0.035462 0.555460 1.727350 0.572475 1.310666 

12 1.163471 0.942070 0.092902 0.035500 0.566065 1.760876 0.572779 1.311362 

13 1.113024 0.878943 0.080758 0.025751 0.556034 1.670015 0.564417 1.193469 

14 1.128151 0.928314 0.081152 0.028726 0.569802 1.686501 0.596121 1.260507 

15 1.129390 0.936065 0.081241 0.029207 0.570737 1.688044 0.601098 1.271031 

16 1.110531 0.853722 0.076051 0.020246 0.570015 1.651048 0.574840 1.132605 

17 1.111389 0.856941 0.078882 0.020399 0.560905 1.661872 0.577007 1.136875 

18 1.111504 0.865018 0.080522 0.020785 0.555328 1.667680 0.582445 1.147590 
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Table 3. MLEs, their variances and 95% confidence intervals for parameters using 
α = 2.00, θ = 3.00 
 

Schemes                  

1 2.405773 3.331680 0.173545 0.740006 1.589262 3.222285 1.645617 5.017742 

2 2.420848 3.341618 0.175239 0.744427 1.600362 3.241334 1.650526 5.032709 

3 2.424628 3.349518 0.180851 0.747951 1.591108 3.258149 1.654428 5.044608 

4 2.363294 3.323579 0.153386 0.613677 1.595669 3.130919 1.788164 4.858994 

5 2.390266 3.328627 0.161481 0.615542 1.602645 3.177887 1.790880 4.866374 

6 2.395203 3.331073 0.172947 0.616447 1.580101 3.210306 1.792196 4.869950 

7 2.309179 3.258572 0.131193 0.530914 1.599256 3.019103 1.830440 4.686704 

8 2.313648 3.285888 0.133527 0.539853 1.597437 3.029859 1.845784 4.725992 

9 2.325209 3.321773 0.135464 0.551709 1.603822 3.046596 1.865942 4.777604 

10 2.254230 3.191529 0.110980 0.407434 1.601281 2.907178 1.940450 4.442609 

11 2.255714 3.220759 0.121270 0.414931 1.573166 2.938263 1.958221 4.483296 

12 2.278655 3.255155 0.125297 0.423841 1.584868 2.972441 1.979134 4.531176 

13 2.180235 3.120957 0.102417 0.324679 1.552983 2.807487 2.004137 4.237778 

14 2.184516 3.135531 0.102438 0.327719 1.557201 2.811832 2.013496 4.257567 

15 2.253760 3.140167 0.103276 0.328688 1.623882 2.883637 2.016473 4.263862 

16 2.104538 3.112679 0.082326 0.269133 1.542166 2.666911 2.095871 4.129487 

17 2.133270 3.117755 0.099195 0.270011 1.515963 2.750577 2.099288 4.136221 

18 2.177042 3.117986 0.100672 0.270051 1.555156 2.798928 2.099444 4.136528 
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Table 4. MLEs, their variances and 95% confidence intervals for parameters using 
α = 2.50, θ = 1.50 
 

Schemes                  

1 2.747904 1.730365 0.239122 0.199611 1.789462 3.706346 0.854679 2.606050 

2 2.757010 1.732250 0.240154 0.200046 1.796503 3.717517 0.855610 2.608889 

3 2.792415 1.733128 0.241268 0.200249 1.829681 3.755148 0.856044 2.610212 

4 2.708039 1.681290 0.227382 0.157041 1.773420 3.642658 0.904574 2.458007 

5 2.735921 1.713229 0.228650 0.163064 1.798701 3.673141 0.921757 2.504700 

6 2.739513 1.728698 0.237295 0.166022 1.784740 3.694287 0.930080 2.527315 

7 2.704854 1.647548 0.191089 0.135721 1.848065 3.561643 0.925478 2.369617 

8 2.705733 1.665756 0.214797 0.138737 1.797348 3.614119 0.935706 2.395806 

9 2.705802 1.678866 0.221835 0.140930 1.782654 3.628950 0.943071 2.414662 

10 2.677496 1.612695 0.171758 0.104031 1.865201 3.489791 0.980518 2.244871 

11 2.691698 1.616866 0.182896 0.104570 1.853477 3.529919 0.983055 2.250678 

12 2.700314 1.624152 0.183897 0.105515 1.859804 3.540824 0.987484 2.260819 

13 2.601492 1.542551 0.139221 0.079315 1.870170 3.332814 0.990556 2.094546 

14 2.628847 1.554005 0.165617 0.080498 1.831203 3.426491 0.997912 2.110099 

15 2.652432 1.581927 0.167527 0.083416 1.850203 3.454662 1.015842 2.148012 

16 2.564242 1.518715 0.118527 0.064069 1.889457 3.239027 1.022602 2.014829 

17 2.585654 1.532091 0.126751 0.065203 1.887853 3.283454 1.031608 2.032574 

18 2.590843 1.538084 0.128757 0.065714 1.887542 3.294144 1.035643 2.040524 
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Table 5. MLEs, their variances and 95% confidence intervals for parameters using 
α = 3.00, θ = 5.00 
 

Schemes                  

1 5.516209 3.339823 0.350879 0.743628 4.355202 6.677216 1.649639 5.030007 

2 5.532574 3.379539 0.352004 0.761419 4.369708 6.695441 1.669256 5.089822 

3 5.540173 3.381127 0.356985 0.762135 4.369107 6.711238 1.670041 5.092213 

4 5.484345 3.318767 0.332414 0.611901 4.354300 6.614389 1.785575 4.851959 

5 5.505484 3.325015 0.337346 0.614207 4.367087 6.643880 1.788936 4.861093 

6 5.509684 3.333368 0.343636 0.617297 4.360723 6.658645 1.793431 4.873306 

7 5.312807 3.283075 0.317312 0.538929 4.208731 6.416883 1.844204 4.721946 

8 5.462259 3.311419 0.321464 0.548275 4.350982 6.573536 1.860126 4.762713 

9 5.466648 3.313941 0.322346 0.549110 4.353848 6.579448 1.861542 4.766339 

10 5.241934 3.232154 0.287640 0.417873 4.190746 6.293123 1.965150 4.499159 

11 5.252454 3.250657 0.292829 0.422671 4.191826 6.313081 1.976400 4.524915 

12 5.271842 3.252974 0.308544 0.423274 4.183126 6.360557 1.977808 4.528140 

13 5.189160 3.208891 0.269755 0.343233 4.171176 6.207144 2.060604 4.357177 

14 5.203086 3.220785 0.276195 0.345782 4.173022 6.233150 2.068242 4.373328 

15 5.221027 3.226427 0.277078 0.346994 4.189318 6.252735 2.071865 4.380989 

16 5.160790 3.144943 0.251366 0.274741 4.178117 6.143463 2.117595 4.172291 

17 5.185568 3.147283 0.265617 0.275150 4.175422 6.195714 2.119170 4.175395 

18 5.187746 3.196740 0.266302 0.283865 4.176298 6.199194 2.152472 4.241009 
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Table 6. MLEs, their variances and 95% confidence intervals for parameters using 
α = 4.00, θ = 2.50 
 

Schemes                  

1 4.388710 2.724225 0.315652 0.494760 3.287524 5.489896 1.345577 4.102873 

2 4.419342 2.761146 0.318780 0.508262 3.312714 5.525969 1.363813 4.158478 

3 4.444269 2.786841 0.325157 0.517766 3.326626 5.561911 1.376505 4.197178 

4 4.362571 2.681995 0.292876 0.399617 3.301859 5.423284 1.442977 3.921014 

5 4.366521 2.690268 0.295321 0.402086 3.301390 5.431652 1.447428 3.933109 

6 4.380645 2.721175 0.309534 0.411378 3.290184 5.471106 1.464056 3.978294 

7 4.274244 2.667550 0.270601 0.355791 3.254665 5.293822 1.498445 3.836655 

8 4.315312 2.668255 0.274710 0.355979 3.288022 5.342602 1.498840 3.837669 

9 4.347334 2.671510 0.281012 0.356848 3.308326 5.386341 1.500669 3.842352 

10 4.212643 2.589071 0.267819 0.268132 3.198320 5.226967 1.574155 3.603987 

11 4.242698 2.638366 0.268059 0.278439 3.227919 5.257478 1.604127 3.672606 

12 4.254647 2.644628 0.270255 0.279762 3.235719 5.273574 1.607934 3.681322 

13 4.160297 2.574998 0.252870 0.221021 3.174688 5.145906 1.653547 3.496450 

14 4.198490 2.579545 0.259322 0.221802 3.200386 5.196594 1.656467 3.502624 

15 4.205975 2.580193 0.266779 0.221913 3.193622 5.218328 1.656883 3.503503 

16 4.097057 2.552605 0.234649 0.180994 3.147622 5.046492 1.718754 3.386456 

17 4.106227 2.554844 0.237447 0.181312 3.151148 5.061306 1.720262 3.389426 

18 4.159811 2.558519 0.239472 0.181834 3.200668 5.118953 1.722736 3.394302 

 
 
Tables 1-6 include the maximum likelihood estimates (MLEs), the variances of 
MLEs, and 95% confidence intervals for the parameters of the Kumaraswamy 
distribution under progressively Type II censored samples using different 
parametric values for various censoring schemes. It has been observed that by 
increasing the sample size (keeping censoring rate fixed), the estimated value of 
the parameter become closer to the true value, the variances of the MLEs decrease 
and widths of 95% confidence intervals tend to be lesser. This is an indication that 
the estimators are consistent in nature. It can further be assessed that the censoring 
schemes, concerned with survivals from the right, result in more precise results 
than their counterparts. As expected, the increase in true parametric values leads 
to the slower convergence of the estimates along with larger variances of the 
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estimates which lean to increase the widths of the confidence intervals. The 
increase in censoring rate, that is, the smaller values of ‘m’ has the same natural 
consequences. However, these negative impacts can be protected by employing 
larger (n > 30) sample sizes. 

Conclusion 

This study addressed the problem of estimation of parameters of the 
Kumaraswamy distribution under progressive censoring based on random 
removals. The maximum likelihood estimation was used to serve the purpose. The 
findings of the study indicate that the proposed estimators are consistent in nature. 
It is interesting to note that the removal of items from the right leads to the most 
efficient results. 
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