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A test statistic based on population quantiles using sample order statistics is suggested. 
The quantiles of the test statistics are evaluated for generalized exponential distribution. 
Similar test statistic based on moments of sample order statistic is referred and the 
proposed test formula is compared with it. Between the pairs of the above models it is 
established that the test formula proposed by us is more effective and useful than the 
formula based on the moments of order statistics as developed by Sultan (2007). 
 
Keywords: Population quantiles, generalized exponential distribution 
 

Introduction 

The three-parameter generalized exponential (GE) distribution has its probability 
density function (pdf) as  
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Its cumulative distribution function (cdf) is given by 
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The two-parameter GE distribution has its pdf as 
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Its cdf is given by 
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The GE distribution was introduced by Gupta and Kundu (1999). It is compared 
with the two-parameter Gamma and Weibull distributions in Gutpa and Kundu 
(2001a). Different models of estimations are discussed in Gutpa and Kundu 
(2001b). Raqab and Ahsanullah (2001) and Raqab (2002) studied the properties of 
order and record statistics from the two-parameter GE distribution respectively. 
Discriminating between gamma and GE distribution were studied by Gutpa and 
Kundu (2004). Discriminating between lognormal and GE distribution was given 
in Kundu et al (2005). The expected values of order statistics may not always be 
available in numerical form nor analytically simple beyond a given sample size. 
However if the distribution function is invertible analytically the population 
quantile for any ‘n’ can be easily obtained. Also moment of order statistics are 
conceptually similar to the population quantiles with an admissible measure of 
closeness. Therefore, quantiles are used to develop the test statistic and to 
distinguish the GE distribution from other well-known life testing models. The 
proposed work is similar to that of Sultan (2007) wherein moments of order 
statistics are used to develop the test statistic with GE distributions null 
population. The aim of this article is to explore the usefulness of analytical 
expressions of population quantiles of GE distribution. In section 2 the GE 
distribution and its quantiles are developed. In section 3 the goodness of fit tests 
of the two-parameter and three parameter GE distribution are developed. Section 
4 deals with the power of the proposed test procedure in comparison with that of 
Sultan (2007) with the same alternative populations. In section 5 the performance 
of quantiles of GE distribution is tested, and Section 6 contains concluding 
remarks. 

The GE distribution and its quantiles 
The pth quantile of population is defined as the solution of the equation ( ) iF x p=
where F(x) is the cdf given in (1.4). This is also called the standard population 



DISCRIMINATING BETWEEN GENERALIZED EXPONENTIAL 

338 

quantile. If 1 2, ,... nx x x  is an ordered sample of size n and 
1i

ip
n

=
+

 then the 

solution of ( ) iF x p=  is defined as ith population quantile corresponding to its 

order statistic ix . In the sample this is denoted by ( ) i.e., 
1i i

id F d
n

=
+

 . Expected 

value of its order statistic in the sample is denoted by iµ , the theory of order 
statistics indicate that iµ , id  can be approximated by each other. If the distribution 
function of the population is in a closed form, 'sid  sometimes can be obtained 
more easily than 'sα  , moments of order statistics. This possibility is explored in 
developing the proposed test statistics of this article. Given the form of ( )F x and 
a natural number n, 'sid  can be obtained by inverting the population distribution 
function. This was done for the GE distribution with the shape parameter 

0.5, 2.0α =  and sample size 10, 20, 25n = . To make use of them in the proposed 
test statistic, the details are given in the following sections. 

Goodness-of-Fit Test using quantiles 
Test for two-parameter case  Let 1 2, ,... nx x x denote a sample from two-
parametric GE distribution. The correlation type goodness of fit test procedure in 
this case using quantiles can be formed as follows: 

0 :H F  is correct, that is 1 2, ,... nx x x have ( )0, ,GE σ α  given in (4) versus 

1 :H F is not correct, that is 1 2, ,... nx x x  have another cdf and the test statistic used 
to run the test is given by 
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The test statistic 1T  is simulated through Monte-Carlo method based on 

10,000 simulations. Table 1 represents the percentages points of 1T  for sample 
sizes 10, 20, 25n = and 0.5, 2.0α = . It can be seen from the Table 1, the 
percentage points of 1T  follow the naturally expected order. 
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Table 1. Percentage points of 1T  
 
α n 0.50% 1% 2% 2.50% 5% 10% 20% 30% 40% 50% 

0.5 10 0.9947 0.9931 0.991 0.9901 0.9865 0.9808 0.9708 0.9611 0.9499 0.9374 
  20 0.9921 0.9903 0.9879 0.9865 0.9818 0.9747 0.963 0.9506 0.9375 0.9221 
  25 0.991 0.989 0.986 0.9847 0.9796 0.9717 0.959 0.9462 0.9334 0.9189 
2 10 0.9954 0.9944 0.9933 0.9928 0.9908 0.9877 0.9829 0.9782 0.9734 0.9674 
  20 0.9944 0.9932 0.9918 0.9912 0.9891 0.9863 0.9818 0.9773 0.9723 0.9665 
  25 0.9936 0.9925 0.9911 0.9906 0.9886 0.9856 0.9812 0.977 0.9722 0.9669 

 
 
Test for the three-parameter case Let 1 2, ,... nx x x denote a sample from three-
parametric GE distribution and let 1i iZ X X= −  and , 1, 2,.... 1i i iv d d i n= − = − . 
The correlation type goodness of fit test in this case using quantiles can be formed 
as follows: 

0 :H F is correct, that is 1 2, ,... nx x x  have ( )0, ,GE σ α  given in (2) versus

1 :H F is not correct, that is 1 2, ,... nx x x  have another cdf and the test statistic used 
to run the test is given by 
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The statistic 2T  is simulated through Monte-Carlo method based on 10,000 
simulations. Table 2 represents the percentages points of 2T for sample sizes 

10, 20, 25n = and 0.5, 2.0α = . It can be seen from the Table 2 the percentage 
points of 2T follow the naturally expected order. 
 
Table 2. Percentage points of 2T  

 
α n 0.50% 1% 2% 2.50% 5% 10% 20% 30% 40% 50% 

0.5 10 0.9951 0.9934 0.9914 0.9905 0.9869 0.9813 0.9712 0.9615 0.9505 0.9382 
  20 0.9923 0.9904 0.998 0.9865 0.9818 0.9748 0.963 0.507 0.9376 0.9222 
  25 0.9912 0.9891 0.9861 0.9847 0.9797 0.9718 0.959 0.9462 0.9334 0.919 
2 10 0.9968 0.9958 0.9947 0.9943 0.9928 0.9902 0.9857 0.9812 0.9767 0.971 
  20 0.9953 0.9942 0.9929 0.9924 0.9905 0.9879 0.9834 0.979 0.974 0.9682 
  25 0.9945 0.9935 0.9922 0.9917 0.9898 0.987 0.9826 0.9785 0.9737 0.9683 
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Power of the test 

The power of the test is calculated by replacing ( ), ,GE µ σ α  random variates 
generator in the simulation program with generators from the alternative 
distributions including: normal, lognormal, Cauchy, Weibull and gamma. Based 
on different sample sizes and 10,000 simulations, the power is calculated to be 
 

 0# of rejections of
10,000

HPower =   

 
Where 0H is rejected if ( )1 2T T  greater than or equal to the corresponding 

percentage points given in Table 1 (Table 2 and ( )1 2T T  is evaluated from the 
alternative distributions. Table 3 and 4 represent the power of the test for the two-
parameter and three-parameter cases, respectively. The different alternative 
distributions considered are: (i) normal distribution N(µ, σ), (ii) lognormal Ln(µ, 
σ), (iii) Weibull distribution with location parameter µ, scale parameter σ and 
shape parameter α, W(µ, σ, α), (iv) gamma distribution with location parameter µ, 
scale parameter σ and shape parameter k G(µ, σ, k) and (v0 Cauchy distribution 
with location parameter µ and scale parameter σ C(µ, σ). Table 3 and 4 indicate 
that the correlation test has good power to reject sample from the chosen 
alternative distributions. 
 
 
Table 3. Power of the test of the two-parameter case ( )1σ =   
 

    N(0,1) W(0,1,3) G(0,1,7) 

α n 5% 10% 5% 10% 5% 10% 

0.5 10 0.9227 0.745 1 1 0.9991 0.9946 

  20 0.9999 0.9985 1 1 0.9845 0.9306 

  25 0.9989 0.9986 1 1 0.9959 0.9857 

2 10 0.9971 0.9999 0.9991 0.9947 1 0.9996 

  20 0.9997 0.9996 1 0.998 0.9972 0.9944 

  25 0.9998 0.9997 1 1 0.9995 0.9986 
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Table 4. Power of the test of the two-parameter case ( )0, 1µ σ= =   
 

    LN(1,5) W(0,1,6) C(0,1) 

α n 5% 10% 5% 10% 5% 10% 

0.5 10 0.975 0.937 1 1 1 1 

  20 0.975 0.943 1 1 1 1 

  25 0.982 0.959 1 1 1 1 

2 10 1 1 1 1 1 1 

  20 1 1 1 1 1 1 

  25 1 1 1 1 1 1 
 
 

Tables similar to that of 3 and 4 are available in Sultan (2007), evaluated 
using the moments of order statistics. By comparison, notice that the coverage 
probability given in the tables are uniformly larger than what are given in Sultan 
(2007). Therefore, the test statistic proposed based on the population quantiles is 
more powerful than that based on the moments of order statistics. Moreover, for a 
distributional GE distribution moments of order statistics are not available 
completely beyond a given sample size whereas population quantiles are available 
for any sample size provided the mathematical form of the cdf is analytically 
invertible. Therefore it can be concluded that the proposed test statistic T is more 
powerful than that of Sultan (2007). 

Numerical Examples 
In order to show the performances of the test of GE distribution in both cases 
(two-parameter and three-parameter), four sets of order statistics each of size 25 
were simulated, they are 
 

1. Sample from GE(0,1,2): two-parameter case of the GE distribution 
with scale parameter is equal to 1 and shape parameter is equal to 2 

2. Sample from GE(1,1,2): three-parameter case of GE distribution with 
location parameter is equal to 1, scale parameter is equal to 1 and 
shape parameter is equal to 2. 

3. Sample from G(0,2,2): gamma distribution with location parameter is 
equal to 0, scale parameter is equal to 2 and shape parameter is equal 
to 2. 
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4. Sample from GE(2,2,2): gamma distribution with location parameter is 
equal to 2, scale parameter is equal to 2 and shape parameter is equal 
to 2. 

 
The above four order statistics samples with the analogous quantiles of order 

statistics from GE(0,1,2) are used to run the test. The results of the test at 5% 
significance level and at α=2 (whether accept (A) or reject (R) 0H ) are given for 
different values in the following table. 
 
 
Table 5. Results at 5% significance, α = 2 
 

Decision 
GE(0,1,2) GE(1,1,2) G(0,2,2) G(2,2,2) 

A A R R 
 

Conclusions 

This article proposed a test formula parallel to the one developed by Sultan (2007). 
It was found to be simple and can be used for any sample size. Moreover, it is 
more effective with respect to power evaluation and coverage probabilities. 
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