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Among different candidate parametric detection functions, it is suggested to use Akaike 
Information Criterion (AIC) to select the most appropriate one of them to fit line transect 
data. Four different detection functions are considered in this paper. Two of them are 
taken to satisfy the shoulder condition assumption and the other two estimators do not 
satisfy this condition. Once the appropriate detection function is determined, it also can 
be used to select the smoothing parameter of the nonparametric kernel estimator. For a 
wide range of target densities, a simulation results show the reasonable and good 
performances of the resulting estimators comparing with some existing estimator, 
particularly the usual kernel estimator when the half normal model is use as a reference to 
select the smoothing parameter. 
 
Keywords: Line transect sampling, Akaike Information Criterion, kernel method, 
smoothing parameter 
 

Introduction 

Line transect sampling is one of the popular sampling method adopted by 
ecologists to estimate the population density D of specific objects in a given 
region. The estimation procedure can be performed by walking a distance L 
following a specific line transect, counts the number objects being investigated 
and records the perpendicular distance, X from the detected object to the center of 
the line transect. Let g(x) be the detection function of observing an object at 
distance X, then X will tend to have a probability density function f (x) of the same 
shape as g(x) but scaled so that the area under f (x) equals unity. Buckland et al. 
(2001) and Burnham et al. (1980) constitute the key references for this distance 
sampling procedure. 
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The first logical assumption related the detection function g(x) indicates that 
g(x) is monotonically decreasing function in x. The second important assumption 
is that g(0) = 1, which indicates the objects located on the center of line will never 
be missed. In other words, this condition means that the probability of detected an 
object given that its perpendicular distance is zero equals one. In addition to the 
previous two assumptions, some authors (see Mack and Quang, 1998) stated that, 
in many practical situations the shape of the detection function of the data should 
have a shoulder at distance x = 0. If that is required then it can be translated 
mathematically as g' (0) = 0. The condition g' (0) = 0 is known in the literature as 
the shoulder condition assumption. However, Buckland et al. (2001) pointed out 
that the shoulder condition assumption may not be satisfied for some cases in 
practice, especially for the experiment with small objects or the experiment that 
performed with existing a fog or a tall grass etc. If g(x) is monotonically 
decreasing and g' (0) = 0 then this ensures that f (x) is in turn monotonically 
decreasing with f ' (0) = 0. 

Burnham and Anderson (1976) gave the fundamental relation for estimating 
the density of objects in a specific area, which can be expressed as 

, and the general estimate for D is given by , 

where E(n) is the expected value of the number of detected objects n, and  is 
an approximate sample estimator of f (0) based on the n observed perpendicular 
distances x1, x2, …, xn. Hence, the key aspect in line transects sampling can be 
reduced to be the modeling of f (x) as well as the estimation of f (0). 

Let X1, X2, …, Xn be a random sample of n perpendicular distances from 
unknown pdf f (x). A parametric approach would involve by assuming that f (x)  is 
a member of a family of proper pdf of a known functional form but depends on an 
unknown parameter θ, where θ may take a vector value and should be estimated 
by using the perpendicular distances. A variety of approaches to estimate θ will 
lead to  In contrast to the parametric method, the nonparametric 

kernel method requires no assumptions about the form of f (x). This method 
allows the data at hand to talk about themselves. 

Given that the line transect data are available and their true pdf is unknown, 
our first aim in this paper is to choose the most appropriate pdf for these data by 
considering four logical parametric models. The Akaiki Information Criterion 
(AIC) is suggested for use to select the best parametric model. The second aim is 
to use the AIC to determine the best parametric model that can be used as a 
reference to determine the smoothing parameter of the kernel estimator of f (0). 
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Some Parametric Estimators 

A number of parametric models have been proposed in the literature for f (x). The 
negative exponential model and the half normal model are the most prominent 
models. Gates et al. (1968) suggested the negative exponential model with 
detection function, 
 
   
 
The corresponding pdf is, 
 

   (1) 

 
The maximum likelihood (ML) method indicates that the ML estimator of f (0) is 

, where  is the sample mean. The detection function g1(x) (or the 
pdf f1(x)) do not satisfy the shoulder condition, which minimizes the importance 
of utilizing this model in line transect sampling. In contrast to the exponential 
model, the half normal model (Burnham et al., 1980) satisfies the shoulder 
condition assumption. The half normal detection function is given by 
 
   
 
and the pdf is 
 

 ( ) 2 2/2
2

2 , x 0.
2

xf x e σ

σ π
−= ≥  (2) 

 

The ML estimator of f (0) is ( )
1/2

2
2ˆ 0f
Tπ

 =  
 

 under the half normal model, where 

 is the ML estimator of σ2. Ababneh and Eidous (2012) suggested the 

weighted exponential detection function with the form, 
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and the corresponding pdf is 
 

   (3) 

 
The parameter required to estimate is 
 

   

 
The expected value of X based on Model (3) is 7/(6θ), which gives  

as the moment estimator for . The moment estimator for  is given in a 
closed form, while the maximum likelihood estimator needs a numerical method 
to find it. It is worthwhile to note that the Model (3) satisfies the shoulder 
condition assumption. That is, f3' (0) = 0. Finally, Burnham et al. (1980) suggested 
the Reversed Logistic detection function, which is given by 
 

 ( )
0

4 0

3 ,
1 2

x

x

eg x
e

−

−=
+

  

 
and the corresponding pdf is given by 
 

   (4) 

 
It is easy to verify that Model (4) does not satisfy the shoulder condition 
assumption. Based on Model (4), the parameter that to estimate is 

 If one decides to use the moment estimator for , then he 

obtains ( ) ( )4
2 1.3078 0.7936ˆ 0 .

3ln 3
f

X X
= =  Again the ML estimator of θ based on 

Model (4) does not exist in closed form and consequently it is not exist in closed 
form for . Therefore, a numerical method is required to find the 
corresponding ML estimator. 
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The Nonparametric Kernel Estimator 

Let X1, X2, …, Xn be n perpendicular distances (assumed to be independent and 
identically distributed) from a continuous probability density function f (x). 
Because the perpendicular distances are nonnegative, the usual kernel estimator of 
f (x) (Silverman, 1986 and Chen, 1996) is 
 

   (5) 

 
where h is called the smoothing parameter (or bandwidth) and K is a symmetric 
kernel function assumed to satisfy the following conditions 
 

   (6) 

 
The kernel estimator of f (0) is obtained by taking x = 0 in Equation (5), which 
gives 
 

   

 
Since K is a symmetric function (i.e., K(−x) = K(x)), then 
 

   (7) 

 
If f (x) has a second continuous derivative at x = 0 then under the assumption that 

 and  when , the bias and variance of  are (Chen, 
1996) 
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   (8) 

 
and 
 

   (9) 

 

where  is the ith derivative of f (x) at x = 0,  and 

 Hence, if f ' (0) = 0, then the bias convergence rate is O(h2), 

if not (i.e., f ' (0) ≠ 0), the bias convergence rate is only O(h), which is slower than 
O(h2) as . 

The estimator of D by using the kernel method is now obtained by 
substituting the estimator  from (7) back into the formula of . 

The Optimal Smoothing Parameter 

There are many kernel functions that satisfy Condition (6). Wand and Jones 
(1995) pointed out that there is very little to choose between the various kernel 
functions on the basis of the mean square error of the estimator. In other words, 
given that the kernel function that satisfies (6) is selected, then the performance of 
the kernel estimator remains almost the same as any other kernel estimator when 
the kernel function is changed. However, it becomes very well know that the way 
to select the smoothing parameter h is very sensitive on the performance of the 
kernel estimator (see for example, Gerard and Schucany, 1999 and Eidous, 2005). 
The popular method that used to select h using line transect data is the reference 
method. This method can be used by adopting the half normal detection function 
as a reference. Gerard and Schucany (1999) pointed out that this technique is very 
acceptable in line transect sampling and there is no need to adopt the other 
computational methods such as least squares cross validation and likelihood cross 
validation methods. 

As opposed to referring to only the half normal detection function to 
compute h, the other detection functions as stated in the section on Parametric 
Estimators are introduced as references to select h. This gives a choice to select 
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the most appropriate model to select the smoothing parameter and then, as 
expected, to improve the performances of the kernel estimator. 

As stated, the smoothing parameter h has a strong effect on the accuracy of 
the kernel estimator (7) as illustrated by examining Formulas (8) and (9). As they 
demonstrated, the choice of a large value of h gives a large bias and small 
variance and vice versa. The logical method to determine h is to find its optimal 
value that minimizes the asymptotic mean square error (MSE) of the estimator 

. The formula of the asymptotic MSE of  (based on (8) and (9)) is 
given by 
 

   (10) 

 
Formula (10) is obtained by assuming that f ' (0) = 0. By differentiating both sides 
of (10) with respect to h and equating the resulting equation with zero, the value 
of h that minimize the asymptotic MSE of f (0) can be obtained. This value is 
known as the optimal smoothing parameter with respect to the asymptotic MSE, 
which is given by 
 

   (11) 

 
The smoothing parameter h is now computed by assuming a reasonable form for 
f(x). Gerard and Schucany (1999) compared among different methods to compute 
h in practice. They recommended to use the half-normal pdf as a reference, i.e., 

they assumed that f (x) = f2(x) (see Formula (2)), which gives  and 

, where σ is now estimated by its maximum likelihood estimator 

2
1ˆ

n
i ix
n

σ == ∑ . Now, assume that the kernel function is the standard normal, i.e. 



EIDOUS & AL-SALMAN 

351 

K(t) = N(0,1), then . By adopting the same technique, the formulas 
of h for the other densities can be derived, and are stated as follows: 

• If , then , where  is the 
maximum likelihood of θ. 

• If , then , where  is the 

maximum likelihood of θ under the weighted exponential pdf. 

However if the moments estimator of θ is required then . 

• If , then , where  is the 

maximum likelihood of θ under the reversed Logistic pdf. Note that 

the moments estimator of θ is . 

Akaike Information Criterion (AIC) and the Proposed 
Estimators 

The AIC (Buckland et al., 2001) is defined by 
 
 ( )2 2eAIC Log L p= − +  
 
Where  is the log-likelihood function evaluated at the maximum 
likelihood estimates of the model parameter and p is the number of parameters in 
the model. The above criterion provides a method to select the best model (among 
a set of models) that fit the data at hand. For a given data set, AIC is computed for 
each model and the model with the smallest AIC is considered to be better than 
the others. For models (1), (2), (3), and (4), the AICs are given by 

• ( )1 2 2 2eAIC n nLog X= + +  for the negative exponential (Model 1). 

• ( ) ( )2
2 ˆ2 log 2 log 2 2e eAIC n n nπσ= − + + +  for the half normal 

(Model 2), where 
2

1ˆ
n
i ix
n

σ == ∑  is the maximum likelihood 

estimator for σ2. 
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• ( ) ( )( ){ }3 1 1
ˆ ˆ ˆ2 log 2 / 3 log 2 exp 2n n

e i i i e iAIC n x xθ θ θ= == − − + − − +∑ ∑  

for the weighted exponential (Model 3), where  is the maximum 
likelihood estimator for θ. 

•  

for the reversed Logistic (Model 4), where  is the maximum 
likelihood estimator for θ. 

Two proposed estimators will be constructed for f (0) based on the AIC. For 
a random sample of n perpendicular distances X1, X2, …, Xn, the first proposed 
estimator is constructed by computing the AIC for each model and the model with 
the smallest AIC is selected to estimate f (0). If the selected model is fj (x), 

1, 2,3, 4j =  then ( )ˆ 0jf  is the estimator of f (0). For example, if f1 (x) is selected 

based on the AIC then ( )ˆ 0 1/f X=  is the estimator of f (0). The first estimator of 

f (0) will be denoted by , where the sub P stands for “parametric.” The 
second estimator is the usual kernel estimator (Estimator 7) but here the 
smoothing parameter of the kernel estimator is computed by using the reference 
model that is selected based on the AIC. In other words, compute the AIC for the 
previous four models and then select the model that has the smallest AIC, then 
based on the selected model, use the corresponding optimal formula to compute h. 
For example, if f1 (x) is selected based on the AIC then 1/50.8918h Xn−= . This 
value is substituted in Estimator (7), which enables us to compute its final value 
for a given data set. The second estimator of f (0) is denoted as ( )ˆ 0Nf , where the 
sub N stands for “non-parametric.” 

Simulation Study and Results 

In order to assess the performances of the proposed estimators  and  
of f (0), discussed in the previous section, a simulation study is performed. For the 
sake of comparison, the usual kernel estimator  with smoothing parameter 

 (Gerard and Schucany, 1999) is also considered. Four target 
families were considered in the simulation. These families were chosen using the 
criterion that they are representative of many different shapes that might occur in 
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the field. The target models – not necessary the same as the four models discussed 
in the Introduction – that used to simulate the perpendicular distances are 

1) Exponential Power (EP) family (Pollack, 1978) 

 ( ) ( )
1 , 0, 1

1 1/
xf x e x
β

β
β

−= ≥ >
Γ +

  

2) Hazard-Rate (HR) family (Hayes and Buckland, 1983)  

 ( ) ( ) ( )1 1 , 0, 1
1 1/

xf x e x
β

β
β

−−= − ≥ >
Γ −

  

3) Beta (BE) family (Eberhardt, 1968)  

 ( ) ( )( )1 / , 0 , 0f x w x w x wββ β= + − ≤ ≤ >   

4) General Reversed Logistic (GRL) family (Burnham et al., 1980)  

 ( )
( )( )

, 0, , 0
ln 1 1 x

bf x x b
b be β

β β
−

= ≥ >
+ +

 

Two target models with two values for parameter β are selected from each 
of the above families. The selected model is truncated at a distance w. The 
selected values for β and for w for each model are as follows: (β, w) = (1,5), (2,3) 
for EP family; (β, w) = (1.5,20), (2,12) for HR family; (β, w) = (10,5), (20,9) for 
BE family; and (β, b, w) = (6,10,1), (8,30,1) for GRL family. These models cover 
a wide range for the detection functions of perpendicular distances, which vary 
near zero from spike to flat. It is worthwhile to mention here that the Reversed 
Logistic model (i.e. f4 (x)) is a special case of the above GRL with b = 2. The 
target GRL models that selected to simulate the data are taken for b = 10,30, 
which differ in their shape for f4 (x). This choice is made to avoid our knowledge 
of the true detection function of the perpendicular distances. 

It should be remarked that the EP model with β = 1, BE family and the GRL 
family do not satisfy the shoulder condition assumption. These choices were made 
in order to assess the robustness of the considered estimators with respect to the 
violation of the shoulder condition assumption. Note also that the other 
considered models satisfy the shoulder condition assumption. 

For each model and for sample sizes n = 50,100,200, one thousand samples 
of perpendicular distances were randomly drawn. For each model and for each 
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sample size, Tables 1 – 4  demonstrate the simulated value of the relative bias 
(RB); ( )( ) ( ){ } ( )ˆ 0 0 / 0RB E f f f= −  and the relative mean error (RME); 

( )( ) ( )ˆ 0 / 0RME MSE f f=  for each considered estimator. 
 
 
Table 1. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from EP detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 1 
w = 5 

-0.322 0.337 1.000  -0.288 0.298 1.000  -0.265 0.272 1.000 
 -0.043 0.209 1.614  -0.031 0.166 1.798  -0.024 0.133 2.038 

 -0.221 0.259 1.302  -0.194 0.224 1.332  -0.177 0.192 1.417 

             
 

β = 2 
w = 2.5 

-0.083 0.156 1.000  -0.070 0.120 1.000  -0.052 0.097 1.000 
 0.043 0.172 0.908  0.008 0.080 1.511  0.006 0.055 1.765 

 -0.087 0.173 0.906  -0.082 0.124 0.971  -0.058 0.098 0.994 
 
 
Table 2. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from HR detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 1.5 
w = 20 

-0.474 0.485 1.000  -0.439 0.444 1.000  -0.398 0.401 1.000 
 -0.255 0.297 1.633  -0.269 0.284 1.563  -0.277 0.285 1.411 

 -0.301 0.333 1.457  -0.268 0.284 1.562  -0.227 0.238 1.689 

             
 

β = 2 
w = 12 

-0.266 0.290 1.000  -0.215 0.231 1.000  -0.171 0.183 1.000 
 0.050 0.188 1.536  0.069 0.146 1.581  0.068 0.113 1.612 

 -0.119 0.190 1.522  -0.080 0.131 1.760  -0.050 0.094 1.944 
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Table 3. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from BE detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 10 
w = 5 

-0.299 0.316 1.000  -0.271 0.281 1.000  -0.244 0.252 1.000 
 -0.064 0.233 1.354  -0.039 0.194 1.451  -0.014 0.147 1.716 

 -0.217 0.264 1.197  -0.184 0.217 1.298  -0.147 0.166 1.516 

             
 

β = 20 
w = 9 

-0.317 0.333 1.000  -0.285 0.296 1.000  -0.257 0.264 1.000 
 -0.068 0.220 1.518  -0.036 0.168 1.756  -0.020 0.133 1.984 

 -0.229 0.266 1.253  -0.198 0.224 1.318  -0.171 0.184 1.431 
 
 
Table 4. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from GRL detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 6 
b = 10 
w = 1 

-0.092 0.166 1.000  -0.087 0.132 1.000  -0.070 0.107 1.000 
 0.028 0.172 0.968  -0.013 0.075 1.758  -0.009 0.050 2.155 

 -0.098 0.181 0.922  -0.097 0.135 0.975  -0.073 0.107 1.001 

             
 

β = 8 
b = 30 
w = 1 

-0.058 0.150 1.000  -0.040 0.115 1.000  -0.035 0.094 1.000 
 0.101 0.168 0.891  0.088 0.115 1.001  0.080 0.095 0.996 

 -0.063 0.157 0.953  -0.045 0.114 1.015  -0.035 0.094 1.000 
 
 

For simple comparison, compute the efficiency (EFF) of the proposed 
estimators  and  with respect to the classic kernel estimator , 
which is given by 

 
( )( )
( )( )or

ˆ 0
ˆ 0P N

MSE f
EFF

MSE f
=   

 
Depending on the simulation results of Tables 1 – 4, several conclusions can be 
drawn by inspecting the results in regard to RB, RME, and EFF 
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• The RBs that associated with the proposed estimators  and 

 are generally smaller in their magnitude than that associated 

with the classic kernel estimator . 

• The RMEs for different estimators decrease when the sample size 
increases. This is a strong sign for the consistency of these 
estimators. 

• The performance of the classical kernel estimator seems to be 
reasonable for EP model with β = 2 and for GRL model comparing 
to the proposed estimator , at which the performances of the 

two estimators are similar. However,  beats  for the 
other cases. 

• By comparing between the two proposed estimators  and 

, the performance of the former one seem to be surprisingly 
for most considered cases especially when the sample size increases. 

Generally, Tables 1 – 4 demonstrate clearly that there is a significantly 
improvement by applying the estimator  or even  instead of the 

classic kernel estimator . 
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